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ABSTRACT

Numerous large genome-wide association studies
have been performed to understand the influence
of genetics on traits. Many identified risk loci are
in non-coding and intergenic regions, which com-
plicates understanding how genes and their down-
stream pathways are influenced. An integrative data
approach is required to understand the mechanism
and consequences of identified risk loci. Here, we
developed the R-package CONQUER. Data for SNPs
of interest are acquired from static- and dynamic
repositories (build GRCh38/hg38), including GTEx-
Portal, Epigenomics Project, 4D genome database
and genome browsers. All visualizations are fully in-
teractive so that the user can immediately access the
underlying data. CONQUER is a user-friendly tool to
perform an integrative approach on multiple SNPs
where risk loci are not seen as individual risk factors
but rather as a network of risk factors.

INTRODUCTION

In the past decades, numerous genome-wide association
studies (GWASs) have been performed to understand the
genetic contribution of traits. While GWASs have provided
valuable insight into putative mechanistic pathways, the
way the identified risk loci exert their effect on traits remain
largely unclear. In general, GWAS-associated loci are not
limited to coding regions but are frequently found in inter-
genic regions (1). As such, inferring how risk loci jointly in-
fluence genes and their downstream pathways remains often
unclear. To increase the understanding of those variants, an
integrative approach is required where the effects of variants
are investigated at a multitude of molecular levels.

In recent years, the number of rich publicly avail-
able datasets and repositories has tremendously increased,
which include histone modification data, multi-tissue gene
expression data, chromosomal interactions driven by ini-
tiatives such as GTEx and Epigenomics Roadmap. In ad-
dition, an increasing number of studies have investigated
the relation between genetic variation and molecular mea-
sures, for example gene expression (eQTLs), lipids (lQTLs),
metabolites (mQTLs) and proteins (pQTLs). These datasets
provide a valuable resource for understanding the possi-
ble functional consequences of GWAS risk loci. Extract-
ing, combining and analyzing relevant biological informa-
tion from public datasets can be complicated and time-
consuming. There are several tools to perform gene set en-
richment analysis (2,3), colocalization (3), or tools to in-
vestigate a single SNP in disease-specific context such as
the different Knowledge Portals based on HuGeAMP that
exist for multiple diseases (4). Existing tools are often on-
line, provide static plots or one type of analysis, rely on
proprietary software, require GWAS summary statistics,
miss intuitive user experience or contain outdated data and
genome builds. For example, MAGENTA, a commonly
used tool, was last updated in 2011 and is based on MAT-
LAB (5).

A flexible offline all-in-one tool, where one can do path-
way enrichment, colocalization analyses, compare a sin-
gle or set of SNPs against an up-to-date compendium of
QTLs and genomic data is currently lacking. To provide
researchers with an easy to use interface with the latest
data to comprehend the effects of variants, we developed an
R-package named CONQUER (‘COmprehend fuNctional
conseQUencEs R’). Given a single SNP or multiple SNPs
associated with a disease or trait, CONQUER allows the
user to efficiently extract relevant biological information
from various repositories/databases. On these data, path-
way enrichment can be performed in up to 44 tissues. More-
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over, one can investigate a single SNP in more detail by com-
paring it to chromatin state segmentations, chromosomal
interactions, expression-, lipid-, protein-, metabolite-, DNA
methylation QTLs and perform Bayes Factor colocalization
analysis to identify the causal variant. All these data are ac-
cessible through interactive visualizations in the local web
browser.

MATERIALS AND METHODS

CONQUER was developed in R version 4.0.2 and
JavaScript Data-Driven Documents (d3.js) version 4.13.0.
The data acquired for CONQUER are based on the hu-
man genome reference build GRCh38/hg38. The data are
both collected from static sources and Application Pro-
gramming Interfaces (APIs). The static sources are avail-
able in a separate R data package called conquer.db, which
is loaded when required. As conquer.db is a separate pack-
age it is easily updated with the latest datasets without al-
tering the programming structure of CONQUER. Static
data include chromatin interactions, chromatin state seg-
mentations, expression data, transcription factor binding
sites, protein QTLs (pQTLs), lipid QTLs (lQTLs), splic-
ing QTLs (sQTLs), DNA methylation QTLs (meQTLs) mi-
croRNA QTLs (miQTLs) and metabolite QTLs (mQTLs).
Data of pQTLs (6–9), meQTLs (10), lQTLs (11), mQTLs
(12,13), miQTLs (14–17) were acquired from their corre-
sponding references. sQTLs were obtained from GTEx v8
and included as a static resource in conquer.db. The chro-
matin interactions were obtained from the 4D genome
database (18). To have data from multiple tissues (N = 31),
only IM-PET data were included in CONQUER. Origi-
nally these data were based on the human genome reference
build GRCh19/hg19. UCSC LiftOver tool (19) was used to
lift over the data to GRCh38/hg38. Chromatin state seg-
mentations were obtained from the Roadmap Epigenomics
Project for all cell types available (N = 127, 15-state model)
(20). Normalized (TPM, Transcript per Million) expres-
sion data of all available tissues (N = 54) was obtained
from GTEx v8 (21). Missing expression values were im-
puted with k-nearest neighbor and default parameters of
the impute.knn function from the R-package impute (22).

The remaining data (linkage disequilibrium, gene infor-
mation, eQTLs) are obtained from APIs. Elementary in-
formation about the SNP of interest is acquired from the
Ensembl API (23). The linkage disequilibrium (LD) struc-
ture originates from the LDlink API (24). For both the En-
sembl API and LDlink API the population can be speci-
fied, by default the population is set on Utah Residents with
Northern and Western European Ancestry (CEU) from the
1000 Genomes Project phase 3 (25). The eQTLs and eGenes
corresponding to the SNP of interest are computed making
use of GTEx API v8 (21). By default, GTEx has an eQTL
mapping window of one Mb upstream and downstream of
the transcription start site of a gene. In CONQUER, we ex-
panded the search space by including genes that have chro-
mosomal interaction on the same chromosome with the LD
region (R2 ≥ 0.80) of the leading SNP. For every queried
SNP, CONQUER generates an RData output object con-
taining all previously described data and stores it in a direc-
tory the user has provided.

For colocalization, pre-calculated eQTLs are obtained
from GTEx (v8). Bayes Factor colocalization analysis was
performed using the R-package coloc based on the normal-
ized effect size and variance (26). Given that CONQUER
may also identify new eQTLs, outside the standard one Mb
window from the transcription start site used by GTEx, in-
dividual colocalization analysis can be performed on a sin-
gle gene and tissue.

Interactive figures were made using JavaScript data-
driven documents (d3.js) version 4.13.0, based on existing
and newly developed plots. D3.js code was integrated in R
making use of the htmlwidgets R-package (27) and all tools
were integrated into the R package CONQUER.d3. Interac-
tive heatmaps were made using plotly (28). The interactive
Circos plot was made with the R-package BioCircos (29).
Interactive tables were generated with the DT package (30).

RESULTS

CONQUER retrieves and interactively visualizes a multi-
tude of public data associated with any single or set of inde-
pendent SNPs of interest. The package can be used both
for single and multiple SNPs. For the single SNP analy-
sis there is no lower limit to the number of SNPs, but for
the integrated analysis twenty SNPs and up is advisable to
have enough eQTLs to perform the co-expression and en-
richment on. There is no upper boundary, although >500
SNPs will take substantially longer to process. Of note, the
pre-processing of the data can be performed in a cluster en-
vironment and the dashboard in a local environment. In
case of single and multiple SNPs, CONQUER collects data
about a SNP from multiple static and dynamic sources (see
‘Materials and Methods’ section, Figure 1). The user end of
CONQUER consists of two intuitive function calls, summa-
rize, and visualize. The summarize function minimally re-
quires a list of SNPs (rs* IDs), a directory to store them
in and an LDlink token to access the API and optionally
a list of tissues. Finally, for each variant fine mapping is
performed. For this pre-calculated SNPs are obtained from
GTEx on which Bayes Factor colocalization analysis is per-
formed. Summarize will collect the data and store data in
small files per SNP and a separate file for the colocalization
analysis.

To perform an integrated analysis of the SNPs, multiAna-
lyze should additionally be specified. CONQUER can mod-
ularize SNPs and associate them with biological pathways
in tissues of interest (Figure 1). Based on the GTEx data,
eQTLs and their associating eGenes are selected (P-value ≤
0.05). Next, the eGenes and their co-expressed genes (Spear-
man’s ρ ≥ |0.90|) are hierarchical clustered (31,32) based
the distance between genes (1 – � ). The number of mod-
ules within the clustered data is optimized by maximizing
the globalSEmax of the gap statistic (33) using the cluster R
package (34). Modules of co-expressed genes and eGenes
are then tested for pathway enrichment based on KEGG
pathways. For each pathway odds ratios and accompany-
ing P-values are calculated with Fisher’s exact test (35). If a
module does not contain an eQTL or is not enriched for a
pathway, it is omitted from the analysis. For the multi-tissue
analysis, a separate file will be stored.
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Figure 1. Overview of CONQUER. A set of SNPs is the input of CONQUER and is analyzed on three levels. First, SNPs are compared against a com-
pendium of data, including multiple QTLs and other genomic data. Second, SNPs are tested for enrichment in KEGG pathways. In addition, the modules
are tested for enrichment in number of databases using the R package enrichR, including Reactome, MSigDB. For this lead SNPs are tested against all
genes in the proximity. The genes of significant eQTLs are then tested for co-expression. Co-expression matrices are clustered and cut in modules and
on these modules, enrichment is performed. Only modules with one or more eQTLs are retained. Third, pre-calculated eQTLs are obtained and on these
eQTLs Bayes Factor Colocalization analysis is performed to find the likely causal variant(s) for each gene in each tissue. Finally, the input of all three
information sources is used as input for a shiny-based visualization dashboard.

After summarization, the results can be visualized with
the visualize function. It starts a Shiny-based dashboard,
with interactive plots of the integrated analysis and a tab
where individual SNPs can be investigated. Visualize re-
quires the directory where the CONQUER files are stored
and the SNP names to be included in the dashboard. CON-
QUER has two separate views (i) where in-depth analyses
of single SNPs can be performed and (ii) where multiple
SNPs associated with the trait of interest and their aggre-
gated consequences can be investigated and linked to bio-
logical pathways. When multiple SNPs are analyzed, asso-
ciated with a trait of interest, the first two tabs of CON-
QUER (Modules and All SNPs) give information about
the relation between all investigated SNPs. The Modules
tab shows on the tissue level the identified modules, the en-
riched pathways and the underlying SNPs and genes (Sup-
plementary Figure S1), which can be further explored in
more detail (Supplementary Figure S2). The All SNPs tab
shows for each (non-) disease pathway in which tissue it
was enriched. Moreover, it gives for all investigated SNPs
including SNPs in LD, the known pQTLs, lQTLs, sQTLs,
meQTLs, miQTLs and mQTLs.

The single SNP view (Supplementary Figure S3) is
comprised of five tabs, that is Linkage Disequilibrium,
Chromosomal interactions, Chromatin States, QTLs and
Gene expression. The chromosomal interaction tab (Figures
2A and 3A) displays a circular view of the chromosomal re-
gion that contains genes, chromatin state segmentations and
chromosomal interactions. The chromatin state segmenta-
tions of all tissues are displayed on a separate tab (Supple-
mentary Figure S4). The QTL tab gives all afore mentioned
QTLs for the selected SNP. In addition, the eQTL data are
used to identify likely causal SNP(s) by using Bayes Factor
Colocalization analysis. Finally, on the final tab the gene ex-

pression can be viewed of genes in the proximity of the LD
region.

Crohn’s disease associated SNPs are enriched for natural
killer cell mediated cytotoxicity

In order to demonstrate the utility of CONQUER, 165
SNPs associated with Crohn’s disease (CD) were investi-
gated in more detail in sigmoid and transverse colon, small
intestine and in whole blood (36). As a benchmark, we ran
the same set of SNPs in DEPICT (2). Between methods sim-
ilar pathways were found (Supplementary Figure S5), in-
cluding Toll-like receptor signaling pathway (CONQUER,
Pc = 6.25·10−9; DEPICT, PD = 1.59·10−9), T-cell recep-
tor signaling pathway (Pc = 1.23·10−8; PD = 2.93·10−5) in
whole blood. Moreover all tissues, the pathway Intestinal
immune network for IgA production was enriched in CON-
QUER (small intestine P = 3.35·10−15, sigmoid colon P =
5.00·10−11, transverse colon P = 1.77·10−10) and in DE-
PICT (PD = 3.02·10−6). Toll-like receptors, T-cell and IgA
signaling are known important processes in CD (37,38). In
transverse colon (P = 9.89·10−43) and sigmoid colon (P =
2.45·10−11) the Ribosome pathway was strongly enriched
(Supplementary Figure S5).

In addition, to expression QTLs and pathway enrich-
ment CONQUER identifies QTLs on other levels. For
the set of CD-associated SNPs, three SNPs were plasma
pQTLs in cis for ERAP2 (rs1363907, P = 1.31·10−6),
MST1 (rs3197999, P < 1·10−16) and IL18R1 (rs6708413,
9.00·10−35). Rs1363907 was also an eQTL for ERAP2 (Fig-
ure 2A), i.e. terminal ileum of the small intestine (P =
2.1·10−52, Figure 2B), transverse colon (P = 1.40·10−98,
Figure 2C) and sigmoid colon (P = 1.00·10−81, Figure 2D)
and whole blood (P = 5.00·10−177, Figure 2E). ERAP2 is
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Figure 2. In depth analysis of the ERAP2 locus. (A) Circos plot of the ERAP2 locus. From outer track to inner track: linkage disequilibrium, genes (gray),
chromatin state segmentations, chromosomal interactions. The LD track shows in red the lead SNP from the GWAS. The black dots represent the SNPs
in LD, with the r2 on the y-axis of the track. For the gene track, all known genes in the region are shown and hovering over genes gives information on
the gene symbol, Ensembl ID, start and end of the gene. The chromatin state segmentations show information about the function of that region based on
histone modifications. In the middle, the chromosomal interactions are shown. (B–E) QTL effect of rs1363907 on ERAP2 expression in small intestine (B),
transverse colon (C), sigmoid colon (D) and whole blood (E). (F) Bayes Factor colocalization analysis on ERAP2, LNPEP for the LD region of lead SNP
for Crohn’s disease, rs1363907. The black star indicates the location of rs1363907. x-axis, genomic location; y-axis, posterior probability of a SNP being
the causal variant.
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Figure 3. In depth analysis of the FADS2 locus. (A) Circos plot of the FADS2 locus. (B–D) From outer track to inner track: linkage disequilibrium, genes
(gray), chromatin state segmentations, chromosomal interactions. The LD track shows in red the lead SNP from the GWAS. The black dots represent the
SNPs in LD, with the r2 on the y-axis of the track. For the gene track, all known genes in the region are shown and hovering over genes gives information
on the gene symbol, Ensembl ID, start and end of the gene. The chromatin state segmentations show information about the function of that region based
on histone modifications. In the middle, the chromosomal interactions are shown. (B–D) QTL effect of rs174546 on FADS2 expression in whole blood (B),
colon transverse (C) and tibial artery (D). (E) Bayes Factor colocalization analysis on DKFZP434K028, FADS1, FADS2, FADS3, FEN1, TMEM258 for
the LD region of rs174546. The black star indicates the location of HDL GWAS lead SNP rs174546. x-axis, genomic location; y-axis, posterior probability
of a SNP being the causal variant.
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a protein known to be associated with immune-mediated
diseases (39). Colocalization analysis revealed that not
rs1363907, but rs2927608 was most likely the causal variant
in both transverse colon and whole blood (posterior prob-
ability, PP = 1.00, Figure 2F). For the other two pQTLs,
also eQTLs were identified. The variant near MST1 was an
eQTL in sigmoid colon and transverse colon. The variant
near IL18R1 was an eQTL in whole blood (P = 5.5·10−7),
but not on the sigmoid colon and transverse colon. For both
variants colocalization analysis did not point to a specific
causal variant.

SNPs associated with HDL cholesterol link to PPAR signal-
ing and fatty acid-related pathways

As a second example, 71 SNPs associated with HDL
(40) were investigated in adipose tissue, arteries, liver,
colon, muscle and whole blood. Again, pathway enrich-
ment was compared to DEPICT (Supplementary Figure
S6). Among the enriched pathways, pathways relevant for
HDL were identified in CONQUER that were also enriched
in DEPICT. For example, in multiple tissues PPAR sig-
naling pathway was enriched Supplementary Figure S6).
CONQUER identified other relevant pathways including
Fatty acid degradation in subcutaneous adipose fat (P =
3.63·10−4) and skeletal muscle (6.59·10−3) and Ribosome in
subcutaneous- and visceral fat, skeletal muscle, small intes-
tine and whole blood (P < 1.35·10−11).

Among the 71 SNPs, two were cis pQTLs and five lQTLs.
For the latter rs174546 was associated with 31 different lipid
species. The variant is located in the FADS2 gene (Figure
3A), which is encodes fatty acid desaturase 2 confirming
previous studies regarding this gene (41). In multiple tissues
eQTLs were identified, including FADS2, including whole
blood (P = 4.3·10−54, Figure 3B), colon transverse (P =
2.9·10−16, Figure 3C) and tibial artery (P = 4.8·10−14, Fig-
ure 3D). For FADS2, not rs174546 but rs174538 (r2 = 0.91
with rs74546) was the likely causal variant based on colo-
calization analysis in multiple tissues including whole blood
(PP = 1.00), transverse colon (PP = 0.99) and tibial artery
(PP = 0.96, Figure 3E). Rs174538 was also identified as the
causal variant in the association with TMEM258 in subcu-
taneous fat (PP = 1.00), tibial artery (PP = 0.92), sigmoid
colon (PP = 0.74) and whole blood (0.59, Figure 3E). While
rs174538 was not the lead SNP in the HDL GWAS used, it
was the lead SNP in another study investigating the genetic
influence on the omega-3 fatty acid eicosapentaenoic acid
(41).

DISCUSSION

In the current study, we have developed an R-package
that aids researchers in understanding the functional conse-
quences of SNPs. The R-package collects up-to-date data,
directed by SNPs of interest from a multitude of databases
and repositories, then, analyzes and visualizes the data.
With the user-friendly and interactive dashboard, we were
able to pinpoint SNPs and linked them to biological path-
ways in specific tissues. In contrast to previous studies that
have had similar approaches (42,43), we have developed
open-source software that is available as an R-package

where only the SNPs and tissues of interest have to be spec-
ified.

Our package has several strengths. First, a large part of
the package is based on APIs that automatically retrieve the
latest data available, such as GTEx. Moreover, for GTEx
CONQUER not only relies on the precalculated SNPs that
are limited to one Mb around start sites of genes, but also
calculates the relation between risk variants and more dis-
tant genes using GTEx’s API. The other static resources
that are included in CONQUER can be updated, given that
they are stored in a separate package conquer.db. CON-
QUER will be maintained and updated at least twice a
year to add new or updated data and make sure every-
thing remains functional also when a new version of R is
released. Second, CONQUER requires very basic program-
ming experience and is implemented in the free open ac-
cess software R. Third, CONQUER provides easy to un-
derstand and ready to publish visualizations that can be in-
teractively explored in a web interface. Fourth, it provides
not only information on the identified enrichments, but
also allows researchers to investigate single variants in more
detail, by looking at multiple types of associated QTLs,
surrounding genomic regulation, genomic interactions and
mRNA expression across tissues. Finally, CONQUER pro-
vides tissue-specific pathway enrichment. We benchmark
CONQUER against DEPICT and we showed similar per-
formance in both examples investigated, with the advantage
of tissue-specific enrichment.

A limitation of the package is that the package is de-
pendent on APIs which could be discontinued. However,
it would require little adaptation to implement other APIs
that provide the required information. This also applies to
static sources CONQUER is built upon, that is when larger
and better datasets become available these will be updated.

Together, our package is a user-friendly tool to perform
an integrative approach on multiple SNPs where risk loci
are not seen as individual risk factors but rather as a net-
work. Moreover, one can in detail investigate single SNPs
to find plausible mechanisms of action and fine map SNPs
in LD to find the causal variant.
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