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Abstract: Despite intensive research, malignant brain tumors are among the most difficult to treat due
to high resistance to conventional therapeutic approaches. High-grade malignant gliomas, including
glioblastoma and anaplastic astrocytoma, are among the most devastating and rapidly growing
cancers. Despite the ability of standard treatment agents to achieve therapeutic concentrations
in the brain, malignant gliomas are often resistant to alkylating agents. Resveratrol is a plant
polyphenol occurring in nuts, berries, grapes, and red wine. Resveratrol crosses the blood-brain
barrier and may influence the central nervous system. Moreover, it influences the enzyme isocitrate
dehydrogenase and, more importantly, the resistance to standard treatment via various mechanisms,
such as O6-methylguanine methyltransferase. This review summarizes the anticancer effects of
resveratrol in various types of brain cancer. Several in vitro and in vivo studies have presented
promising results; however, further clinical research is necessary to prove the therapeutic efficacy of
resveratrol in brain cancer treatment.
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1. Resveratrol

Resveratrol (RES) is a well-known polyphenol found in many plants, such as grapes (Vitis
vinifera), mulberries (Morus sp.), and peanuts (Arachis hypogaea) [1]. It is a phytoalexin produced
by spermatophytic plants in response to stress, injury, or UV radiation, or by fungal infection (e.g.,
Botrytis cinerea) and/or another pathogen [2–4]. The effects of different biotic and abiotic agents on the
induced synthesis of RES in various plants have been studied. RES biosynthesis in plants occurs via
the phenylalanine pathway [4]. The end product is synthesized as trans form, which may isomerize
to cis form, or to trans and cis-piceid due to resveratrol 3-O-beta-glycosyltransferases [5]. Moreover,
stilbene synthesis pathway is a side chain of the phenylpropanoid pathway, which may be considered
an extension of the flavonoid pathway [6,7].

RES was first isolated in 1939 by Michio Takaoka from the root of Veratrum grandiflorum O. Loes [8].
In 1963, RES was defined as one of the chemical constituents of Polygonum cuspidatum (Ko-jo-kon) [9].
In 1976, the first reported detection method of trans-resveratrol has been described [10]. Thereafter,
RES fell into oblivion until 1992, when Renaud and de Lorgeril described for the first time the “French
paradox”—[11]. The “French paradox” is based on epidemiological data from French people who had
a low incidence of coronary heart disease despite a high intake of dietary cholesterol and saturated
fat. Actually, France is still a country with low coronary heart disease incidence and mortality when
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compared to the USA, UK, or Sweden [12–14]. During the same year, the concentration of RES
in selected wines was measured [15]. In 2001, a study was carried out where the authors found
an association between low to moderate wine intake and lower mortality from cardiovascular and
cerebrovascular diseases [16]. After these observations, great attention has been paid to the French
paradox and thousands of studies have been performed on various aspects of it [12].

1.1. Chemical Structure

Knowing the chemical structure of RES (3,4′,5-trihydroxy-trans-stilbene) is important for
understanding its biological activity in living organisms. Due to the presence of more than one
phenol group [17], RES belongs to the polyphenols [18]. RES is a stilbenoid polyphenol, possessing two
phenol rings linked by an ethylene bridge [19]. Polyphenols often have antioxidant properties because
they can react with free radicals and form a stable molecule that is less toxic than the radical itself [20,21].
Although the presence of a double ‘bridge’ makes it possible to form both the cis and trans forms of
RES (Figure 1), the trans isomer is spatially more stable than the cis isomer [2]. Other minor conjugated
forms containing 1–2 methyl groups (pterostilbene), a sulfate group (trans-resveratrol-3-sulfate), or a
fatty acid have also been identified [22]. In spectrophotometric analysis, the maximum absorbance of
trans-resveratrol is at approximately 304 nm, with cis-resveratrol at 286 nm [23]. The trans isomer is
commercially available and converts to the cis form when exposed to UV radiation [24]. The stability
of trans-resveratrol is influenced by various chemical and physical factors, e.g., light exposure, pH
above 6.8, or temperature above 37 ◦C can cause degradation [25].
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RES is an off-white powder (extracted by methanol), insoluble in water, but dissolves in ethanol
or dimethylsulfoxide (DMSO) [26]. It has a melting point of 253-255 ◦C and a molecular weight of
228.25 g/mol [2].

1.2. Metabolism of Resveratrol and Biotransformation

Glycosylation protects RES from oxidative degradation—glycosylated RES is more stable and
soluble and readily absorbed in the human gastrointestinal tract [27]. The metabolism of RES is a complex
process, involving various pathways, predominantly the conjugation to glucuronides and sulfates in
phase II. Both isomers of RES undergo glucuronidation by uridine-diphosphate-glucuronosyltransferase
(UGT) to two corresponding glucuronides, 3′-O-glucuronide and 4′-O-glucuronide [22], accounting
for its predominant urine excretion [28]. Moreover, in humans, RES is subject to sulfate conjugation
by sulfotransferases to form resveratrol-3′-O-sulfate and resveratrol-4′-O-sulfate [22,29]. Abundant
trans-resveratrol-3-O-glucuronide and trans-resveratrol-3-sulfate were identified in rat urine, mouse
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serum, and incubations with rat and human hepatocytes [30]. Several other sulfate conjugates
(4′-sulfate, 3,5-disulfate, 3,4′-disulfate, 3,4′, 5-trisulfate) have been identified in the rat [22].

Some RES metabolites are derived from intestinal bacterial metabolism. Dihydroresveratrol was
also later identified in rat urine [31], plasma [32], and, most importantly, in mammalian fecal bacterial
species [33]. These RES conjugates are then either absorbed by the intestine or excreted in the urine.
Up to 50% of the RES dose can be metabolized in this way [34].

1.3. Accumulation of Resveratrol in Tissues

After entering into an organism, the RES in plasma reaches a half-life of 8–14 min; however, for its
metabolites it is around 9.2 h [28]. RES binds to some proteins and protein transporters in the blood
stream, to serum albumin or to lipoproteins in the order high-density lipoprotein (HDL) < low-density
lipoprotein (LDL) < very low-density lipoprotein (VLDL) [35,36]. The absorption of RES occurs by
passive diffusion [37] or by transport via ion channels [38] to pass through the cell membrane, allowing
its intracellular biological action [39,40].

After oral administration, RES is absorbed [41] and accumulates in various organs, such as the
stomach [42], intestines, or liver [28,30,42–44], as sites of its extensive absorption and metabolism [45].
RES (and its metabolites) is able to accumulate in target cells or organs of various diseases [46] including
cancer, such as breast cancer tissue [47,48] and colorectal [49,50] or leukemia cancer cells [51]. RES
and its metabolites accumulate in myocardial tissue [52] and even in the ocular tissues after oral
administration [53]. However, no RES accumulation in the tumor tissue of neuroblastoma in athymic
mice was observed [54].

1.4. Bioavailability of Resveratrol and Potential Side Effects

Over the past few decades, RES has received widespread attention as a preventive agent for
numerous diseases. However, low bioavailability limits its use. After oral administration in humans,
up to 75% of RES is absorbed, possibly by transepithelial diffusion [34]. However, oral bioavailability is
low (<1%) due to rapid and extensive metabolism in the intestine and liver [55–57]. Thus, increasing the
bioavailability is one of the aims nowadays. As has been shown, when loaded in casein nanoparticles,
the oral availability of RES increased up to 10 times [58]. Various methodological approaches have
been developed in recent years. These include several delivery systems such as the encapsulation of
RES in lipid nanocarriers or liposomes, emulsions, micelles, insertion into polymeric nanoparticles,
solid dispersions, and nanocrystals [59,60]. For example, the bioavailability of RES from the grapevine
shoot extract Vineatrol30 has been significantly increased using a liquid micellar formulation, without
any treatment-related adverse effects, making it a suitable system for improved supplementation [61].
On the other hand, the bioavailability of RES delivered through oral mucosa may be significantly
higher than by swallowing, as determined by the fraction of the initial RES intake in the blood and,
under metabolized form, in the urine [62].

Numerous studies described various side effects of RES [19,63,64]. In a single high dose (500 mg)
of RES in 15 healthy volunteers under fasting conditions, no side effects were seen after 24 h [57].
However, long-term administration of RES at a dose of 2.5 g per day led to diarrhea, vomiting, or
nausea in healthy volunteers [65]. Interestingly, no severe side effects were reported during long-term
administration (up to one year) of doses of up to 16 mg grape RES [66]. Also, renal toxicity has been
reported after a dose of 5 g RES in the form of SRT501 (developed by Sirtris, a GSK company) in two
cycles during multiple myeloma, but no renal toxicity was observed in healthy controls, type 2 diabetics,
or patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS)
syndrome [67]. The results suggest that the right dose of RES is essential to target specific diseases.

1.5. Biological Effects of Resveratrol

It has been shown that RES possesses numerous therapeutic effects, such as antioxidant [68–71],
anti-inflammatory [72–75], cardioprotective [76–79], or analgesic effects [80–82], and has an impact
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on diabetes and obesity [83–85]. RES has been further studied for its increasing relevance in various
neurological disorders, such as Alzheimer’s [86–88], Parkinson’s [89,90], and other neurodegenerative
diseases [91,92], as well as brain tumors [93–95]. In addition, RES showed anticancer activity in
many other cancer types, such as breast, prostate, skin, lung, liver, or colorectal cancer, as reviewed,
for example, in [45,96–98].

1.6. The Passing of Resveratrol through the Blood-Brain Barrier

In 2002, Sinha et al. showed that RES exerts protective effects against oxidative stress in middle
cerebral artery occlusion model stroke in rats [99]; however, they did not monitor the ability of RES
to cross the blood-brain barrier (BBB). Nonetheless, during the same year, it was shown that RES
crosses the BBB successfully and thus may protect against global cerebral ischemic injury [100]. One
of the fundamental pathophysiology changes during ischemia reperfusion injury is the collapse of
the BBB. RES at a dose of 50 mg/kg of body weight significantly decreased the infarct volume and
improved the neurological score 24 h after reperfusion. Moreover, it improved the balance of matrix
metalloproteinase-9 (MMP-9) and its endogenous inhibitor, TIMP-1. Thus, RES attenuated cerebral
ischemia by maintaining the integrity of BBB via the regulation of MMP-9 and TIMP-1 [101]. At a
lower dose of 20 mg/kg of body weight, RES reduced the cerebral infarct size, and improved BBB
breakdown via the Hippo/YAP/TAZ pathway [102]. In another model of BBB dysfunction, autoimmune
encephalomyelitis (EAE), RES at doses of 25 and 50 mg/kg of body weight was dose-dependently able
to decrease EAE paralysis, ameliorate EAE-induced loss of tight junction proteins ZO-1, occludin, and
claudin-5, and repress the EAE-induced increase in adhesion proteins ICAM-1 and VCAM-1 [103].
In addition, RES suppressed the EAE-induced overexpression of proinflammatory transcripts iNOS and
IL-1β and upregulated the expression of anti-inflammatory transcripts arginase 1 and IL-10 cytokine in
the brain, downregulated the overexpressed NOX2 and NOX4 in the brain, and suppressed NADPH
activity [103]. However, the functional relationship between RES, BBB, brain cancer development, and
antitumor therapy has not yet been determined (Figure 2).

Biomolecules 2020, 10, 161 4 of 20 

on diabetes and obesity [83–85]. RES has been further studied for its increasing relevance in various 
neurological disorders, such as Alzheimer’s [86–88], Parkinson’s [89,90], and other 
neurodegenerative diseases [91,92], as well as brain tumors [93–95]. In addition, RES showed 
anticancer activity in many other cancer types, such as breast, prostate, skin, lung, liver, or colorectal 
cancer, as reviewed, for example, in [45,96–98].  

1.6. The Passing of Resveratrol through the Blood‒Brain Barrier 

In 2002, Sinha et al. showed that RES exerts protective effects against oxidative stress in middle 
cerebral artery occlusion model stroke in rats [99]; however, they did not monitor the ability of RES 
to cross the blood‒brain barrier (BBB). Nonetheless, during the same year, it was shown that RES 
crosses the BBB successfully and thus may protect against global cerebral ischemic injury [100]. One 
of the fundamental pathophysiology changes during ischemia reperfusion injury is the collapse of 
the BBB. RES at a dose of 50 mg/kg of body weight significantly decreased the infarct volume and 
improved the neurological score 24 h after reperfusion. Moreover, it improved the balance of matrix 
metalloproteinase-9 (MMP-9) and its endogenous inhibitor, TIMP-1. Thus, RES attenuated cerebral 
ischemia by maintaining the integrity of BBB via the regulation of MMP-9 and TIMP-1 [101]. At a 
lower dose of 20 mg/kg of body weight, RES reduced the cerebral infarct size, and improved BBB 
breakdown via the Hippo/YAP/TAZ pathway [102]. In another model of BBB dysfunction, 
autoimmune encephalomyelitis (EAE), RES at doses of 25 and 50 mg/kg of body weight was 
dose-dependently able to decrease EAE paralysis, ameliorate EAE-induced loss of tight junction 
proteins ZO-1, occludin, and claudin-5, and repress the EAE-induced increase in adhesion proteins 
ICAM-1 and VCAM-1 [103]. In addition, RES suppressed the EAE-induced overexpression of 
proinflammatory transcripts iNOS and IL-1β and upregulated the expression of anti-inflammatory 
transcripts arginase 1 and IL-10 cytokine in the brain, downregulated the overexpressed NOX2 and 
NOX4 in the brain, and suppressed NADPH activity [103]. However, the functional relationship 
between RES, BBB, brain cancer development, and antitumor therapy has not yet been determined 
(Figure 2). 

 
Figure 2. Resveratrol (RES) crosses the blood‒brain barrier via tight junctions [104]. In the brain, RES 
inhibits NF-κB in neurons, astrocytes, and microglia. In brain cancer cells, RES exerts proapoptotic 
activities via influencing the cell cycle. RES induces oxidative stress, leading to autophagy. 

Figure 2. Resveratrol (RES) crosses the blood-brain barrier via tight junctions [104]. In the brain, RES
inhibits NF-κB in neurons, astrocytes, and microglia. In brain cancer cells, RES exerts proapoptotic
activities via influencing the cell cycle. RES induces oxidative stress, leading to autophagy. Moreover,
RES influences cancer cells via various signaling mechanisms, including the PI3K/AKT/mTOR pathway,
Wnt, or STAT3.
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2. Resveratrol in Brain Cancer Studies

In Europe, the incidence of primary CNS cancers ranges from 4.5 to 11.2 cases per 100,000 men and
from 1.6 to 8.5 per 100,000 women. Astrocytic tumors include aggressive phenotype tumors such as
glioblastoma (GBM). The five-year survival of primary brain cancers varied from 4.9% for high-grade
to 43% for low-grade tumors [105]. GBM accounts for approximately 65% of all primary brain tumors
and is characterized by low survival, with only 10% of patients surviving for five years [106]. GBM is
one of the most malignant types of central nervous system tumors. Despite advances in treatment
modalities, it remains largely incurable [107]. Gliomas account for almost 80% of all primary malignant
brain tumors [108]. These include astrocytic tumors (astrocytoma, anaplastic astrocytoma and GBM),
oligodendrogliomas, ependymomas, and mixed gliomas [109]. Despite the variety of modern therapies
against GBM, it is still a deadly disease with extremely poor prognosis. Patients usually have a median
survival of approximately 14 to 15 months from diagnosis [109,110].

The current gold standard in the treatment of GBM is temozolomide (TMZ)—an oral alkylating
agent. TMZ is known to induce cell cycle arrest at G2/M, which leads to apoptosis. The cytotoxicity of
TMZ is mediated by its addition of methyl groups at N7 and O6 sites on guanines and the O3 site on
adenines in genomic DNA. Alkylation of the O6 site on guanine leads to the insertion of a thymine
instead of a cytosine opposite the methylguanine during subsequent DNA replication, and this can
result in cell death [111]. When TMZ is given concomitantly with radiotherapy, a statistically prolonged
patient survival compared to TMZ-only therapy was shown (26.5% vs. 10.4% of the two-year survival
rate). On the other hand, the concomitant treatment with radiotherapy plus TMZ resulted in grade 3
or 4 hematologic toxic effects in up to 10% of patients [112]. However, at least 50% of TMZ-treated
patients do not respond to TMZ. This is due primarily to the overexpression of O6-methylguanine
methyltransferase (MGMT) and/or a decreased rate of DNA repair in GBM cells [111,113,114], involving
a critical regulator of the p53 tumor suppressor, an MDM2 protein. MDM2 is overexpressed in many
human malignancies. It inhibits DNA break repair [115]. Another mechanism of resistance of human
gliomas causes ATP-binding cassette (ABC) transporters to be overexpressed by the endothelial and/or
epithelial cells of the BBB and the blood-tumor barrier [116].

One common feature in brain cancer types is the mutated form of isocitrate dehydrogenases (IDHs).
NAD (+)-dependent IDHs in the mitochondria play a pivotal role in the production of NADH from
NAD+ in the Krebs cycle. As reviewed before, IDH mutations inhibit glioma stem cells’ differentiation
by producing high levels of 2-hydroxyglutaric acid (2-HG), regulate vascular endothelial growth
factor (VEGF) to promote the formation of the tumor microenvironment, and induce high levels of
hypoxia-inducible factor-1α (HIF-1α) to promote glioma invasion [117]. IDH mutations also repress
the tumor-associated immune system by inhibiting complement activation, while reducing the number
of tumor-infiltrating T cells, phagocytosis and the excretion of cytokines. The oncometabolite 2-HG also
affects epigenetics and genome stability. So, there are clinical trials being conducted on inhibitors of
mutant IDH1, which target the production of 2-HG [118]. IDH1 mutations were predominantly found
in human low-grade astrocytoma, oligodendroglioma, and secondary GBM. On the other hand, IDH2
mutations occurred less frequently in gliomas and were mutually exclusive of IDH1 mutations [119].
RES has been found to maintain IDH levels in a middle cerebral artery occlusion stroke model [120]
and to protect the left ventricle by increasing IDH activity in myocardial infarction [121]. It has also
been shown that RES stimulated a mitochondrial Complex I decrease in NADH concomitant with
increased IDH levels in liver cells [122]. Even if many studies are dealing with the effect of RES on the
Krebs cycle and mitochondrial enzymes, no study has described the direct potential of RES action on
IDH during brain cancer.

2.1. The Effect of Various Routes of Administration

As described previously, RES has low bioavailability. However, the anticancer action of RES can be
slightly modified by various routes of administration. Protection of RES from extensive metabolization
in the gastrointestinal tract and liver increases its bioavailability [123], which is especially important
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in intracranial malignancies. RES administration via oral gavage or ad libitum in the water supply
suppressed subcutaneous GBM xenograft growth in mice; intratumor or peritumor RES injection had a
more pronounced effect on tumor volume [94]. RES administration via lumbar puncture effectively
inhibited the growth of intracranial orthotopic rat GBM and prolonged the mean survival time of
tumor-bearing animals [124]. Furthermore, a wide distribution of apoptotic foci with decreased Cyclin
D1 staining, as well as enhanced autophagy with upregulated autophagy-related protein LC3 and
Beclin 1, was found after RES treatment in brain tumor tissue [124,125]. Lumbar puncture is even
more effective than intra-arterial RES administration. Shu et al. [125] demonstrated a 5-fold higher
concentration of RES in the whole brain after lumbar puncture compared to intra-arterial external
carotid artery injection. Additionally, combination therapy such as lumbar-punctured RES with
neurosurgery significantly improved the prognosis of rats with advanced orthotopic GBM, prolonged
the postoperative survival time, suppressed tumor growth, induced apoptosis, and inactivated STAT3
signaling [126].

During brain cancer treatment, targeted RES delivery to the brain tumor tissue could help
to overcome the low bioavailability, poor water solubility, and chemical instability of RES.
To improve GBM treatment, various types of liposomes and polymeric nanoparticles were developed.
Vijayakumar et al. [127] reported that the biological half-life, passive brain targeting, and antiglioma
cytotoxicity of RES were significantly enhanced by using d-α-tocopheryl polyethylene glycol 1000
succinate (TPGS)-coated liposomes (RES-TPGS-Lipo). Guo et al. [128] modified the surface of
RES-loaded polyethylene glycol-polylactic acid nanoparticles with transferrin moieties (Tf-NP-RES),
which led to increased intracellular uptake, higher cytotoxicity, and apoptosis of rat C6 and human
U-87 MG GBM cell lines in vitro compared to free RES and nanoparticles without transferrin. Since
transferrin receptors are exclusively expressed in brain capillaries [129], the accumulation of Tf-NP-RES
in tumor tissue, decreased tumor volume, and prolonged survival were shown in rats bearing C6
orthotopic glioma. Similar results were obtained in the subcutaneous xenograft U-87 MG mouse
model. Moreover, S-phase cell cycle arrest, activation of caspases 3/7, and higher production of
reactive oxygen species were demonstrated in vitro [130]. Sallem et al. [131] have designed a new
nanovector system for the delivery of a synthetic derivative of the RES molecule to the brain tissue,
based on superparamagnetic iron oxide nanoparticles. This nanohybrid did not affect the mitochondrial
metabolism, but damaged the plasma membrane of C6 glioma cells in vitro, indicating cytotoxic
effects. The in vivo activity of this system still needs to be elucidated. Furthermore, the antitumor
efficacy of RES-loaded nanoparticles may be enhanced by combination with other food-derived natural
polyphenols, where synergistic effects are expected. Mukherjee et al. [132] have prepared liposomal
TriCurin (TrLp; curcumin: epicatechin gallate: RES 4:1:12.5) and demonstrated that TrLp upregulates
the activated protein p53 in cultured mouse GBM cells in vitro. Additionally, TrLp caused repolarization
of M2-like tumor-associated microglia/macrophages to the tumoricidal M1-like phenotype, led the
intratumoral recruitment of activated natural killer cells, suppressed tumor growth, and promoted the
apoptosis of GBM and GBM stem cells in vivo [132]. Neves et al. [133] used solid lipid nanoparticles
functionalized with apolipoprotein E, leading to increased (1.8-fold higher) permeability through the
hCMED/D3 monolayer.

2.2. Resveratrol and Standard Anticancer Therapy

Numerous studies have shown that RES is able to alleviate the side effects induced by
chemotherapeutic drugs [98,134]. Moreover, in combination with other anticancer agents, RES
synergistically or additively enhances their efficacy against various types of cancer [135]. RES can
reverse multidrug resistance and also can act as a sensitizer of cancer cells to standard chemotherapeutic
drugs [97]. It has been demonstrated that RES increases TMZ efficacy through several mechanisms. TMZ
induces both apoptosis and autophagy in human glioma cells through a reactive oxygen species (ROS)
burst and extracellular signal-regulated kinase (ERK) activation. However, during these processes,
autophagy protects glioma cells from apoptotic cell death. RES has been shown to augment the
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therapeutic capacity of TMZ by reducing ROS/ERK-mediated autophagy and subsequently increasing
apoptosis both in vitro and in vivo [136]. In the human SHG44 GBM cell line, the combination
RES+TMZ displayed additive antiproliferative effects by increased ROS production, subsequent
activation of AMPK, inhibition of mTOR signaling, and downregulation of antiapoptotic protein
Bcl-2. These results were confirmed in the orthotopic xenograft mouse model as the reduction of
tumor volume and decreased expression of Ki-67, a marker of proliferation [137]. GBM-initiating cells
(GICs) display stem cell properties and play a pivotal role in tumor development, resistance to TMZ,
and tumor recurrence [138]. RES enhanced the sensitivity of these highly resistant cells to TMZ via
activation of the DNA double strands/pATM/pATR/p53 pathway, leading to the activation of apoptosis.
Additionally, RES promoted the differentiation of GIC involving p-STAT3 inactivation [139]. A RES
dimer, ε-viniferin, has been shown to augment the apoptosis of the GBM cell line induced by another
chemotherapeutic agent, cisplatin, under in vitro conditions through the activation of caspases 3, 8,
and 9 [140].

RES also acts as a radiosensitizing anticancer agent in the prostate, skin, colon, breast cancer,
hepatoma, leukemia, and others [141], including brain malignancies [142–144]. It has been demonstrated
that RES is a radiation sensitizer for highly radioresistant human SU-2 glioma stem cells. The synergistic
effect of RES and radiation was seen in the inhibition of cell proliferation, induction of autophagy,
promotion of apoptosis, prevention of DNA repair in the early stage, and induction of differentiation,
both in vitro and in vivo [145].

2.3. Antiproliferative and Proapoptotic Effects of Resveratrol

Antiproliferative, proapoptotic, and anti-inflammatory activities are considered to be the most
important anticancer mechanisms of RES in different types of tumors [96,146,147]. Mammalian cell
proliferation comprises two processes: (a) the cell cycle, including duplication of genetic material and
cell division; (b) cell growth, regulated by many growth factors. The four phases of the cell cycle,
i.e., G1 (Gap 1), S (synthesis), G2 (Gap 2), and M (mitosis), are mainly regulated by cyclin-dependent
kinases (CDKs) that act in a complex with their cyclin partners [148]. Cell cycle arrest is an irreversible
process that can result in apoptotic cell death [147]. RES was able to delay the cell cycle progression
and inhibited the proliferation of rat C6 glioma cells by arresting the cell cycle at S phase at micromolar
concentrations [145]. The authors demonstrated the inhibition of the expression of specific oncogenic
microRNAs (miRs) such as miR-21, miR-19, and miR-30a-5p in glioma cells, which was consequently
associated with altered expression of their targeting genes such as p53, STAT3, EGFR, COX-2, NF-κB,
and the PI3K/AKT/mTOR signaling pathway. Moreover, RES suppressed tumor growth and prolonged
survival of rats bearing intracranial C6 glioma [145]. Induction of S-G2/M cell cycle arrest by RES was
also described in human GBM cell lines and was accompanied by an increase in levels of pCdc2(Y15),
cyclin A, E, and B and a decrease of cyclin D1 [149]. A recent investigation by Laaniste et al. [150]
revealed that, in low-grade gliomas, the M2 gene-regulatory network, consisting of 177 genes and
governing G2 to M progression, is substantially and significantly downregulated by RES. Transcription
of late cell cycle genes such as FosM1 and B-Myb was the most affected, even at nanomolar RES
concentrations [150].

Deregulation of precursor cell differentiation plays a crucial role in brain tumor development.
Therefore, differentiation-promoting agents may potentially suppress GBM and medulloblastoma
growth, reduce tumor resistance, and prevent recurrence in patients [151]. In human U87MG cells, RES
induced glial-like and neuronal-like differentiation, as evidenced by decreased expression of nestin
(stem cell marker) and, on the other hand, by increased expression of a glial acidic fibrillary protein (a
mature glial cell marker) and of beta III-tubulin (a neuronal differentiation marker) in a time-dependent
manner [152].

Some studies have indicated that RES also displays its anticancer activity on the level of
posttranscriptional regulation of gene expression. Tristetraprolin (TTP) is an RNA binding protein that
can bind AU-rich elements in target mRNAs with high affinity and then promote the deadenylation



Biomolecules 2020, 10, 161 8 of 19

and decay of target transcripts such as proto-oncogenes, antiapoptotic genes, immune regulatory genes,
and others [153,154]. In U87MG human glioma cells, RES increased TTP expression, thereby inducing
apoptosis and suppressing cell growth [155].

2.4. Resveratrol and Proteins of Resistance in Brain Cancer

Though TMZ-based chemotherapy following neurosurgery has been proven to be effective, not
all patients benefit clinically because of TMZ resistance. The most important feature of TMZ resistance
is the expression of the protein MGMT [115]. It has been shown that RES reverses the TMZ-induced
resistance of T98G GBM cells by downregulation of MGMT by the NF-κB-dependent pathway [156].
Repression of the activated Wnt signaling pathway through the downregulation of MGMT expression
seems to be another way of inhibiting proliferation and facilitating the apoptosis of resistant glioma
cells by the combination RES+TMZ [157]. The presence of RES forced various GBM cells (U87-MG,
U-138 MG, and U251) treated with TMZ through mitosis leading to mitotic catastrophe and senescence,
reducing the clonogenic capacity of cells and increasing the chronic effects of TMZ [158].

Another mechanism of resistance provide ABC transporters that are overexpressed in the
BBB [116]. It has been previously reviewed that RES is able to reverse multidrug resistance via various
mechanisms [49,159]. However, no study deals with this mechanism directly in brain cancer.

2.5. Resveratrol and Cellular Senescence

Cellular senescence is an irreversible cell cycle arrest that is considered to be an important
tumor-suppressive mechanism as it stops proliferation. Therapy-induced senescence is thought to be
an effective tool in cancer treatment, with fewer side effects than apoptosis-inducing treatment [160,161].
In a study with U87 and U118 human glioma cell lines, RES inhibited proliferation by inducing cellular
senescence in a dose- and time-dependent manner [162]. RES induced significant changes in cell
volume and cell morphology: spindle-shaped glioma cells were transformed to hypertrophic, flat
cells expressing senescence-associated-β-galactosidase, a marker of senescence [161]. Moreover, RES
inhibited the mono-ubiquitination of histone H2B at K120 (uH2B) [162]. Another study has shown
that RES-induced senescence of human and rat glioma cells was increased by the inhibition of histone
deacetylases [163]. The role of the histone deacetylase sirtuin 2 (SIRT2) as a mediator of the inhibitory
action of RES on GBM stem cell (GSC) proliferation was revealed by Sayd et al. [164]. The blockade of
the GSC cell cycle by RES at doses lesser than 150 µM was mediated by SIRT2, whereas GSC necrosis
induced by higher doses of RES was independent of sirtuin activity. Yang et al. [165] have shown that
RES-induced glioma cell senescence, apoptosis, and antiproliferative effects could also be mediated
by downregulation of POK erythroid myeloid ontogenic factor (Pokemon), at least partially through
enhancement of the recruitment of histone deacetylase 1 (HDAC1) [165].

2.6. Resveratrol and STAT3 Signaling

Signal transducer and activator of transcription (STAT) 3 is a member of the family of transcription
factors that is involved in the transmission of extracellular signals into the nucleus, thereby influencing
the transcription of various genes. In carcinogenesis, STAT3 upregulates genes that can promote tumor
survival, angiogenesis, resistance to cell death, and cell cycle progression [166]. Upregulation of STAT3
in GBM has been demonstrated in numerous studies, as reviewed by Kim et al. [167]. STAT3 is required
for tumor formation and maintenance of the self-renewal of GBM stem-like cells [168,169], some of which
express CD133 as a cancer stem cell marker [170]. It has been shown that RES displays its anticancer
action on GBM-CD133+ tumor-initiating cells by inhibition of cell growth and viability, induction
of apoptosis, suppression of self-renewal capacity, and enhancement of radiosensitivity in vitro and
in vivo through the suppression of the STAT3 pathway [144]. Furthermore, in medulloblastoma,
the most common type of primary brain malignancy in children [171], RES suppressed cell growth
by STAT3 downregulation, decreased the incidence of STAT3 nuclear translocation, and promoted
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neuronal differentiation of medulloblastoma cells by axon regeneration and accumulation of SOCS3 to
the synapse-like end of long cell processes [172].

2.7. Resveratrol and p53

TP53 is a tumor suppressor protein commonly known as “a guardian of the genome”. TP53 is one
of the most commonly deregulated genes in various tumors, including GBM [173,174]. Suppression
of p53 activity is associated with the activation of a serine/threonine protein kinase AKT, thereby
promoting the survival and proliferation of tumor cells [175]. RES reduced AKT phosphorylation and
induced p53 expression and subsequent transcription of downstream p53 target genes such as Bax,
Pig8, and TP53INP in GBM cells. These changes led to the inhibition of cell growth and invasion
of U87 glioma cells and glioma stem-like cells as well as the suppression of GBM mouse xenograft
growth [94]. Moreover, in A172 and T98G GBM cell lines with a heterozygous p53 mutation, RES has
been able to restore wild-type p53 expression via the activation of intracellular Notch-1 expression
in a time-dependent manner. Simultaneous dephosphorylation of AKT, increased Bax expression,
decreased Bcl-2 expression, and cleavage of caspase-3 were observed in this study, suggesting strong
proapoptotic action of RES [176]. In a population of patient-derived glioma stem cells, which are
responsible for tumor progression and poor patient prognosis, RES was found to reduce the self-renewal
and tumor-initiating capacity of these cells via activation of the p53/p21 pathway and degradation of
Nanog, a transcription factor essential for the retention of stemness [177].

2.8. Resveratrol and Wnt Signaling

As mentioned above, RES enhances the antiglioma efficacy of TMZ by inhibiting the Wnt signaling
pathway, both in vitro and in vivo [157]. It has been demonstrated that the Wnt signal is essential for
the self-renewal, migration, and differentiation of GBM stem cells [178]. The study of Cilibrasi et al. [93]
revealed the highly heterogenous response of seven stem cell lines isolated from GBM-suffering patients
to RES exposure. RES generally modulated the Wnt system, inhibited cell proliferation, increased cell
mortality, and strongly decreased cell motility and invasiveness. As a result, suppression of nuclear
β-catenin levels, increased transcription activity of Wnt target gene MYC, and a drastic decrease of
c-Myc protein were observed. Additionally, RES inhibited epithelial-mesenchymal transition through
downregulation of transcription factors Twist1 and Snail1 [93].

3. Conclusions and Future Directions

Resveratrol, a plant polyphenol occurring in nuts, berries, grapes, and red wine, demonstrates
well-described anti-inflammatory, anti-oxidative, cardioprotective, and analgesic properties.
Resveratrol is a molecule with very low toxicity that targets multiple molecular signaling pathways and
consequently affects numerous carcinogenesis-related genes. The significant antineoplastic potential of
resveratrol was demonstrated in many cancer types when administered alone or in combination with
diverse anticancer agents and targeted therapies. It is known that resveratrol crosses the blood-brain
barrier and influences the brain’s structure. Its ability to prevent carcinogenesis in the brain includes
the suppression of oxidative stress and inflammation, as well as inhibition of cell proliferation with
the triggering of cell death mechanisms. It may influence cancer cells’ activity via affecting various
signaling mechanisms, including NF-κB, p53, Wnt, PI3K/AKT/mTOR, or STAT3. It has been described
that resveratrol alleviates the resistance to standard alkylating agents, such as temozolomide, through
influencing O6-methylguanine methyltransferase. However, the interaction between resveratrol
and mutated isocitrate dehydrogenase, one of the key features of various brain cancer types, needs
to be elucidated. Several other important questions must be resolved before the introduction of
resveratrol into the clinical management of brain malignancies. To the best of our knowledge, no
clinical trials have been conducted yet to evaluate the efficacy of resveratrol against brain cancer in
humans. However, due to the number and complexity of cancer-related signaling pathways affected by
resveratrol, further investigations are needed to overcome its pharmacokinetic limitations such as poor
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bioavailability in humans, describe its precise anticancer mechanisms of action, and define its efficacy
in different brain cancer cell subtypes. With the intention to increase resveratrol’s bioavailability
in organisms and its potential as an adjuvant drug in clinical oncology, research should focus on
resveratrol’s delivery systems, formulations, dosing protocols, modulations of cancer cell metabolism,
and possible interactions with other anticancer drugs. Finally, the development of optimized analogs of
the resveratrol molecule to fit the specific mechanisms of anticancer action and increased stability and
bioavailability in organisms should lead to its improved anticancer activity and reasonable clinical use.

4. Data Search Strategy

Data from the English-language biomedical literature were analyzed from the PubMed
bibliographic database using terms such as “resveratrol”, “brain cancer”, “chemical properties”,
“metabolism”, “bioavailability”, “side effects”, “blood-brain barrier”, “glioblastoma”, and
“medulloblastoma” as a keyword or medical subject heading (MeSH) term. We focused on in vitro,
in vivo, and clinical studies published from 2013 to 2020. As no clinical trials were found in PubMed, data
were also reviewed from the U.S. National Institutes of Health database (http://www.clinicaltrials.gov/).
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Abbreviations

2-HG 2-hydroxyglutaric acid
ABC ATP-binding cassette
AKT Protein kinase B
COX Cyclooxygenase
DMSO Dimethylsulfoxide
EAE Autoimmune encephalomyelitis
EGFR Epidermal growth factor receptor
ERK Extracellular signal-regulated kinase
GBM Glioblastoma
GSC Glioblastoma stem cells
HDL High-density lipoprotein
HIF-1α Hypoxia inducible factor-1α
ICAM Intercellular adhesion molecule 1
IDH Isocitrate dehydrogenase
LDL Low-density lipoprotein
MELAS Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes syndrome
MGMT O6-methylguanine methyltransferase
MMP Matrix metalloproteinase
mTOR Mammalian target of rapamycin
NADPH Nicotinamide adenine dinucleotide phosphate
NOX NADPH oxidase
PI3K Phosphoinositide-3-kinase
Pokemon POK erythroid myeloid ontogenic factor
RES Resveratrol
ROS Reactive oxygen species
SIRT Sirtuin
STAT Signal transducer and activator of transcription
TAZ Transcriptional coactivator with PDZ-binding motif
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TIMP Tissue inhibitor of metalloproteinases
TMZ Temozolomide
TTP Tristetraprolin
UGT Uridine-diphosphate-glucuronosyltransferase
VCAM Vascular cell adhesion molecule
VEGF Vascular endothelial growth factor
VLDL Very low-density lipoprotein
YAP Yes-associated protein
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