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Quantum nondemolition measurement
of mechanical motion quanta
Luca Dellantonio1,2, Oleksandr Kyriienko 1,3, Florian Marquardt 4,5 & Anders S. Sørensen 1,2

The fields of optomechanics and electromechanics have facilitated numerous advances in the

areas of precision measurement and sensing, ultimately driving the studies of mechanical

systems into the quantum regime. To date, however, the quantization of the mechanical

motion and the associated quantum jumps between phonon states remains elusive. For

optomechanical systems, the coupling to the environment was shown to make the detection

of the mechanical mode occupation difficult, typically requiring the single-photon strong-

coupling regime. Here, we propose and analyse an electromechanical setup, which allows

us to overcome this limitation and resolve the energy levels of a mechanical oscillator.

We found that the heating of the membrane, caused by the interaction with the environment

and unwanted couplings, can be suppressed for carefully designed electromechanical

systems. The results suggest that phonon number measurement is within reach for modern

electromechanical setups.
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Energy quantization is one of the hallmarks of quantum
mechanics. First theorized for light by Einstein and Planck,
it was found to be ubiquitous in nature and represents a

cornerstone of modern physics. It has been observed in various
microscopic systems starting from nuclei, atoms and molecules,
to larger mesoscopic condensed matter systems such as super-
conductors1. For macroscopic systems, however, the observation
of energy quantization is hindered by the smallness of the Planck
constant. Thus, although being a milestone of contemporary
physics, up to date the discrete energy spectrum of mechanical
resonators has never been seen directly.

Extreme progress in studying mechanical systems has been
achieved in experiments exploiting radiation pressure. This is the
core of optomechanics2, where photons and phonons of the
optical and mechanical subsystems interact with each other. A
similar type of coupling can be realized in the microwave domain
with electrical circuits, leading to the field of electromechanics3–8.
The numerous advances of optomechanics and electromechanics
include ground state cooling4,5,9–11, ultra precise sensing12–15,
generation of squeezed light and mechanical states7,8,16–18, back
action cancellation19,20 and detection of gravitational waves21. In
all of these systems, however, the operation in the single-photon/
phonon regime is challenging due to the small value of the bare
coupling3,22. Instead, experiments exploit an enhanced linearized
effective coupling induced by a large driving field. This severely
limits the nature of the interactions23 and possible quantum
effects. In particular, it precludes the observation of the energy
quantization in mechanical resonators.

Quantization of mechanical energy can be observed by a
quantum nondemolition (QND) measurement24,25 of an oscilla-
tor’s phonon number operator n̂b. Here, QND means that
the interaction, which couples the mechanical system with the
measurement apparatus, does not affect the observable we are
interested in. This is achieved if the total Hamiltonian commutes
with n̂b, and the influence of the environment is minimized.

Considering the electromechanical setups in Fig. 1, we show
that QND detection is feasible for a capacitor in which one of the
electrodes is a light micromechanical oscillator. By choosing an
antisymmetric mode for the oscillator, the interaction between
the electrical and mechanical subsystems is quadratic in the
displacement. Along with the suppression of the linear coupling,
this ensures the QND nature of the measurement, as originally
proposed in refs. 26,27 for an optomechanical system. In that
system, however, it was shown in refs. 28,29 that the combination
of unwanted losses and the coupling to an orthogonal electro-
magnetic mode spoils the interaction, unless strong single-photon
coupling is achieved. Here, we show that for the considered
electromechanical setup the equivalent orthogonal mode can have
dramatically different properties, allowing for the phonon QND
detection. We derive general conditions under which the QND
measurement is possible, and characterize its experimental sig-
natures. As compared to most approaches to phonon QND
measurement26,27,30–32, our procedure does not impose stringent
requirements on the single-photon optomechanical coupling,
but relies on the ratio of the involved coupling constants. This
makes our approach attractive even for systems where the
interaction is limited, for example, due to stray capacitances in
the setup. For a measurement of the square displacement, a
similar advantage was identified in ref. 31.

Results
Proceeding. We first study an RLC circuit with one capacitor
plate being an oscillating membrane, without assuming the
symmetry discussed above (Fig. 1b). The mechanical motion of
the plate shifts the resonance frequency of the circuit, while the

electric potential exerts a force on the membrane. In order to
perform a QND measurement of the phonon number, we require
this interaction to be proportional to n̂b. We therefore Taylor
expand the inverse of the capacitance to second order
in the displacement, 1=Cðx̂Þ≃ C�1

0 + ~g1ðb̂þ b̂yÞ+ ~g2ðb̂þ b̂yÞ2=2,
where we replaced the position x̂ with the creation b̂y
and annihilation b̂ operators of the mechanical motion, and ~g1;2
denote linear and quadratic coupling constants. Within the
rotating wave approximation, ~g2ðb̂þ b̂yÞ2=2≃ ~g2n̂b, leading to the
desired QND interaction, while the ~g1 term adds unwanted
heating that spoils the phonon measurement.

The main aim of this work is to identify conditions under
which the QND measurement is feasible, despite the presence of
heating. We initially consider the simple circuit in Fig. 1b, and
assume the incoming signal V̂in to be in a coherent state resonant
with the circuit. The quadratic interaction then shifts the
electrical resonance frequency proportionally to the phonon
number ~g2n̂b. For small ~g2, this shift leads to a phase change of the
outgoing signal V̂out that can be determined by homodyne
measurement. Different phononic states will thus lead to distinct
outcomes VM, as shown in Fig. 2. The distance d between output
signals for different n̂b and the standard deviation σ of the noise
define the signal-to-noise ratio D= d/σ (see Fig. 2), which needs
to be maximized.

In order to have a successful QND measurement, the phonon
number n̂b must be conserved. If the mechanical state jumps during
a measurement, the outcome VM ends up between the desired
peaks. This leads to a reduced contrast, as illustrated by the
distribution in the background of Fig. 2. The probability for n̂b to
change is generally state-dependent, in the sense that higher Fock
states are more likely to jump. A state-independent characterization
of this heating is given by the average phonons Δnb added to the
ground state during the measurement time T. The jump probability
for any state can then be derived from Δnb using standard results
for harmonic oscillators (for details see Supplementary Note 3
available in Supplementary Material online).

Both D and Δnb are proportional to the incoming intensity. We
therefore characterize a setup by the parameter λ=D2/Δnb,
where λ � 1 is required for successful QND detection. For the
RLC circuit in Fig. 1b, we find below that

λ ¼ 1

2 1þ 2�neð Þ2
g2
g1

� �2 ωm

γt

� �2

; ð1Þ

where g1 ¼ ~g1C0ωs, g2 ¼ ~g2C0ωs and �ne is the thermal occupation
of R0 and Zout (assumed equal, R0= Zout). Here, ωm and
ωs= (C0L0)−1/2≫ ωm are the mechanical and electrical frequen-
cies, respectively, and γt= Zout/L0 corresponds to the output
coupling rate. A result similar to Eq. (1) is derived in ref. 33.

Despite progresses in reaching the resolved sideband regime
ωm � γt in both optomechanical and electromechanical systems,
g2 is generally much smaller than g1, implying λ � 1 in Eq. (1).
To circumvent this problem, we use the second fundamental
mode of the membrane in the capacitor, as depicted in Fig. 1a.
The first-order coefficient ~g1 of the 1=Cðx̂Þ expansion then
vanishes, leaving ~g2 to be the largest contribution to the
electromechanical coupling. In this situation λ seemingly grows
indefinitely, the induced heating disappears and the QND
measurement of the phonon number is easily realized. In
practice, however, two effects will limit the achievable value of
λ. First, inaccuracies in the nanofabrication can cause misalign-
ments and, consequently, a residual linear coupling. Second, the
oscillation of the membrane induces a charge redistribution in
the capacitor to maintain it at an equipotential. The associated
antisymmetric electrical mode introduces an effective linear
coupling, and a similar heating mechanism as the one identified
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in ref.28 for the optomechanical setup of refs26,27. In these papers,
the quadratic interaction results from a hybridization of two
modes linearly coupled to the mechanical position, and the QND
detection was found to be impossible unless the single-photon
coupling g1 exceeded the intrinsic cavity damping. In our case, the
QND interaction arises directly from the Taylor expansion of the
capacitance. Hence, there is no constraint tying the second-order
coupling g2 to the properties of the symmetric and antisymmetric
electrical modes, which can have vastly different resonance
frequencies and dampings. This inhibits the mechanical heating
and ultimately allows for the QND detection of the phonon
number. We model the charge redistribution in the capacitor by
parasitic inductances (L) and resistances (R) in the equivalent
circuit of Fig. 1c. Each of the two arms containing R and L
represents one half of the capacitor, with opposite dependence on
the membrane position, Cðx̂Þ and Cð�x̂Þ.

Single-arm RLC circuit. In the following, we derive Eq. (1) for
the RLC circuit in Fig. 1b. The methods sketched here will
then be generalised for the double-arm circuit in Fig. 1c. Using
the standard approach34, we write the circuit Hamiltonian
as Ĥðx̂Þ= Φ̂

2
= 2L0½ � þ Q̂2= 2Cðx̂Þ½ �, where the conjugate variables

Q̂ and Φ̂ are the charge and magnetic flux, respectively. We
can expand Ĥðx̂Þ in the mechanical position x̂ / b̂þ b̂y, in
order to obtain the circuit Hamiltonian Ĥe = Ĥ x̂ ¼ 0ð Þ
and the coupling Hamiltonian Ĥem = g1ωsL0Q̂

2ðb̂þ b̂yÞ=2+
g2ωsL0Q̂

2ðn̂b þ b̂b̂=2þ b̂yb̂y=2Þ. The total Hamiltonian Ĥtot =Ĥe þ Ĥem þ Ĥm is therefore the sum of the circuit, interaction
and the mechanical Hamiltonian Ĥm = �hωmb̂

yb̂.

Next, we describe the environmental effects corresponding to
decay and heating of the modes. Associating each resistor Ri with
its own Johnson–Nyquist noise V̂Ri

, we find the equations of
motion of the composite system

:

Q̂ ¼ Φ̂

L0
; ð2Þ

:

Φ̂ ¼ � Q̂
C0
� γt þ γr
� �

Φ̂� g1ωsL0Q̂ b̂þ b̂y
� �

�g2ωsL0Q̂ n̂b þ b̂b̂þb̂y b̂y
2

� �
þ 2 V̂in þ V̂R0

� �
;

ð3Þ

:

b̂ ¼ �iωmb̂� g1
iωsL0Q̂

2

2�h
� g2

iωsL0Q̂
2

2�h
b̂þ b̂y

� �
� γb

2
b̂þ i

x0
�h
F̂b;

ð4Þ
where γr= R0/L0, γb is the intrinsic mechanical damping
rate with associated noise F̂b and x0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h= 2mωmð Þp

is the
amplitude of the zero-point motion for a membrane of
mass m. From now on, we consider optimally loaded setups
with γr= γt. Equations (2)–(4) fully characterize the dynamics
of the system, and represent the starting point for our detailed
analysis.
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t
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Fig. 1 Experimental setup. a Sketch of a capacitor with an oscillating plate, here represented by a graphene membrane. We consider an antisymmetric (2, 1)
mechanical mode. b RLC oscillator formed by the inductance L0, resistance R0, and position-dependent capacitance Cðx̂Þ. The circuit is driven by the input
voltage V̂in through a transmission line of impedance Zout. V̂out is the reflected signal. c Model circuit for an RLC system where the capacitor has the same
form as in a. The membrane has a vanishing linear coupling to the symmetric electrical mode used for probing the system. The antisymmetric mode,
residing in the small loop containing parasitic inductances L and resistances R, describes the redistribution of charge on the capacitor
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The feedback of the membrane’s motion on the electrical
circuit is described by Eq. (3). Driving the system at the electrical
resonance frequency ωs, the terms proportional to g1ðb̂þ b̂yÞ and
g2ðb̂b̂þ b̂yb̂yÞ give rise to sidebands at frequencies ωs ± ωm and
ωs ± 2ωm, respectively, whereas g2n̂b induces a phonon-dependent
frequency shift of the microwave cavity. Since homodyne
detection is only sensitive to signals at the measured frequency,
the sidebands are removed in the outcome VM, which is defined
as the phase quadrature of V̂out ¼ V̂in � γtΦ̂. This allows us to
neglect oscillating terms in the calculation of VM (the linear term
also leads to mechanically induced damping, but this is typically
negligible compared to γt). The only contribution to VM is
therefore the phonon-dependent frequency shift, which allows us
to resolve the mechanical state. On the contrary, the electrically
induced mechanical heating only involves the sidebands ωs ± ωm

and ωs ± 2ωm, being unaffected by the term g2n̂b in the
Hamiltonian. For the RLC circuit in Fig. 1b, the heating is
dominated by the linear term, since g1 � g2, and we shall neglect
g2 for the calculation of Δnb.

Below, we quantify the heating of the membrane and the
phonon-dependent LC frequency shift. We first assume that the
mechanical state does not jump during the measurement. Then,
the equations of motion of the two subsystems decouple and we
find D2= g22 αj j2= 4ð1þ 2�neÞγ2t

	 

, where the number of photons

αj j2 sent into the circuit within the measurement time T sets the
measurement strength. As discussed above, Δnb is the average
phonon number at the end of the measurement Δnb= n̂bðTÞh i,
with the mechanics initially in its ground state. For T much
shorter than the mechanical lifetime γ�1

b , Δnb can be linearized to
find the rate at which the membrane heats up. For the RLC circuit
in Fig. 1b, we find Δnb= 1þ 2�neð Þg21 αj j2= 2ω2

m

� �
. The parameter

λ given in Eq. (1) is then found as the ratio λ=D2/Δnb. For
details see Supplementary Note 1 available in Supplementary
Material online.

Double-arm circuit. With the overall linear coupling vanishing,
the parameter λ will be limited by fabrication imperfections and
coupling to the antisymmetric mode. To model these phenomena,

we consider the circuit in Fig. 1c, where the antisymmetric mode
resides inside the small loop containing the two capacitors, and
the symmetric one probes the system. We derive g1 and g2 from
the expansion of each of the two capacitors: 1=C ± x̂ð Þ≃
C�1
0 ± ~g1ðb̂þ b̂yÞ þ ~g2n̂b, so that in the absence of fabrication

imperfections the total capacitor Ctot= C x̂ð Þ þ C �x̂ð Þ is not
linearly coupled to the symmetric mode. The coefficients g1 and
g2 are related to their tilde counterparts in the same way as before,
and the parameters D2 and Δnb are evaluated in a similar fashion
as we did for the RLC circuit. Since we quantify two sources of
heating, it is convenient to write λ= ðλ�1

b þ λ�1
p Þ�1, where λb

takes into account heating from charge redistribution, and λp
describes the influence of fabrication imperfections. With the
details presented in Supplementary Note 2 (for details, see Sup-
plementary Material available online) and Methods, we find

λb ¼
2

1þ 2�neð Þ2
g2
g1

� �2 ωs

γt

� �2Zout

R
; ð5Þ

λp ¼
2

1þ 2�neð Þ2
g2
g1

� �2 g1
gr

� �2 ωm

γt

� �2

; ð6Þ

where ωs= [C0(L+ 2L0)]−1/2 is the frequency of the symmetric
mode, γt= [2Zout]/[L+ 2L0] is the decay to the transmission line
and gr= 2C0x0ωs∂xC

�1
tot ðxÞ is the residual linear coupling induced

by fabrication imperfection. We use the same notation introduced
for the RLC circuit to allow a direct comparison. Equations (5)
and (6) express the gain of our approach to QND detection. First,
Eq. (6) quantifies the advantage of symmetry: λ dramatically
improves compared to Eq. (1) by having a small residual linear
coupling gr � g1. Second, Eq. (5) is multiplied by the factor
(ωs/ωm)2 with respect to Eq. (1). For microwave readout of a
megahertz oscillator, this factor can be substantial. Furthermore,
the mechnical oscillator is now only susceptible to the noise
associated with charge redistribution on the capacitor, and not to
the resistance in the inductor. This gives an additional
improvement if R < Zout.

Jumps
lR

l1

l0 d

O
ut

co
m

es

nb = 0 nb = 1
VM

�

�

Fig. 2 Sketch of the experimental outcome. Distribution of outcomes VM for two different phonon numbers: nb= 0 (first peak to the left) and nb= 1
(last peak to the right). For a given value of nb, repeated measurements are Gaussian distributed with a variance σ2 / 1þ 2�ne of the outgoing signal V̂out,
consisting of vacuum and thermal noise. The distance d between the two peaks depends on the circuit parameters and the number of incident photons, and
identifies the signal-to-noise ratio D= d/σ. Ideally, for each shot of the measurement, the mechanics is either in its ground or first excited state. However,
for Δnb > 0 there will be events where the mechanical state jumps, resulting in outcomes VM in between the peaks relative to nb= 0 and nb= 1
(smaller peaks in the figure). This leads to the smeared distribution shown in the back. The visibility of the QND measurement is quantified by the values
at the peaks and valleys, as indicated by I0, I1 and IR (see Eq. (9)). The figure is for illustration only, and is not to scale
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To describe a realistic situation, we numerically simulate the
case in which the parasitic resistances R, inductances L and the
two bare capacitances C0 differ from each other. In Fig. 3, we test
the system with these asymmetries and the physical parameters
given below. In the left plot, the role of a residual linear coupling
gr is investigated. In the right one, we consider unbalanced
resistances R ± δR, inductances L ± δL and capacitances C0 ± δC.
The results show that our analytical predictions accurately
describe a system with non-zero gr and δC. Furthermore, the
numerical points confirm that δR and δL enter as higher order
perturbations. In fact, we generally find that Eqs. (5) and (6) are
accurate for relatively large perturbations (up to 25%).

Inspired by recent experiments15,35–38, we estimate the value of
λ, which can be reached in state-of-the-art setups. We consider a
rectangular monolayer graphene membrane of length 1 μm and
width 0.3 μm, with a mechanical frequency of ωm= (2π)80MHz
and a quality factor Q= 106. It is suspended d0= 10 nm above a
conducting plate, forming the capacitor (see sketch in Fig. 1a).
Assuming that the membrane is clamped to the substrate along its
boundaries, we identify the ratio of the coupling coefficients for
each capacitor Cð± x̂Þ in Fig. 1c to be g2/g1= π2x0= 8d0ð Þ39.
Considering that for these geometries stray capacitances Cs are
typically preponderant with respect to C0, we take g1≃ (2π)7 kHz
and g2≃ (2π)1 Hz, corresponding to Cs≃ 100C0. For comparison,
a value of Cs= 50 fF is obtained in ref. 35, for a graphene
membrane about two and a half times the size considered
here. This stray capacitance would be 376 times C0≃ 13 fF.
Assuming a reduction of Cs due to the smaller dimensions,
we take Cs= 100C0.

With an electrical reservoir at zero temperature �ne ≃ 0 (valid
for milliKelvin experiments), an electrical frequency ωs= (2π)7
GHz and decay rate γt= (2π)150 kHz, we get λb= 105 × Zout/R
and λp= 0.014 × (g1/gr)2. Since the graphene coupling can be
tuned via electric fields40–42, we assume g1/gr ~ 100, which fixes λ
between 60 (R= Zout) and 122 (R= Zout/10), mostly restricted by
λp. This limit is well above the threshold for having a good
visibility of the phonon number states (see below), and can be
further improved by either increasing the sideband resolution
ωm/γt, the electrical frequency ωs or by reducing the size of the

membrane. In Fig. 4b, we show the linear coupling g1 as a
function of the stray capacitance. For small values of Cs, we reach
the strong-coupling regime, where g1 ≥ γt. In the realistic scenario
described above, where Cs � C0, our scheme still allows for
phonon QND measurement even for g1; g2 � γt . This is in
contrast to the typical optomechanical approach, where the
quadratic interaction results from a hybridization of two optical
modes, and strong coupling g1 > γt is required28. Regardless of
how much Cs reduces the coupling constants, it is in principle
always possible to compensate by using stronger power. For
details see the Supplementary Note 4 available in Supplementary
Material online).

Measurement. We now evaluate how well a given value of λ
allows for the QND detection of the phonon number. To this end,
we consider a situation where the system is continuosly probed
and measured. The output is then turned into discrete results by
averaging over a suitable time T, and a histogram is constructed
from the measured values VM. We assume that the heating of the
continuous QND probing is in equilibrium with the mechanical
damping and the associated reservoir. In this case, one also needs
to consider the thermal bath of the membrane. In addition to Δnb
determined above, the total heating out of the ground state is thus
Δnb+ γb�nmT. This additional term leads to a redefinition of the
parameter λ to

λ′ ¼ λ
Δnb

Δnb þ γb�nmT
; ð7Þ

and the equilibrium average mechanical occupation, resulting
from both the mechanical reservoir and the QND probe, becomes

�Neff ’ �nm
λ

λ� λ′
: ð8Þ

The phonon QND measurement is then characterized by λ′,
which is desirable to have as close as possible to its maximum λ.
This can be achieved by choosing a sufficiently strong probing
power and a short measurement time T, such that the mechanical
heating can be neglected. This leads to a large �Neff , which does
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Fig. 3 Heating simulations. a Average phonon number nb(t) as a function of time. We present a comparison between the analytical curves (grey, dotted
lines) and the full simulations of the system (blue dots). From the bottom to the top we set gr/g1 to be 0, 2 × 10−3, 10−2 and 3 × 10−2. We use δR= δL= δC
= 0. b Heating rate Δnb/T as a function of the normalized residual linear coupling gr/g1. Here we analyse the system in the presence of asymmetries in
the parasitic elements of the circuit. The three dark grey lines are the analytical predictions for δC/C0 being equal to 0 (dotted), 0.005 (dashed) and
0.02 (full). The circles, squares and diamonds are the simulated results for the values δR/R, δL/L and δC/C reported in the legend. We assume L/L0= 10−2,
R/Zout= 10−1, ωs= (2π)7 GHz, ωm= (2π)80MHz, γr≃ γt= (2π)0.15MHz, γb= (2π)80 Hz, g1= (2π)7 kHz, �ne ¼ �nm ¼ 0, and an incident photon flux ~αj j2
= 1.15 × 1015 s−1
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not significantly change the contrast of the QND measurement
(see Eq. (10) and Fig. 5b), but increases the time for acquiring
significant statistics (the mechanical system spends less time in
each Fock state).

Given λ′, we now want to optimize all remaining parameters
of the system, to be able to discern the ground and first excited
states with the largest contrast. We simulate the mechanical
system with the quantum-jump method, and pick Gaussian
distributed random values for the electrical vacuum and thermal
noise. From this, we make the histogram of the resulting output
voltages VM presented in Fig. 5a, where the induced heating
Δnb is optimized numerically. For the optimization we consider
the visibility

ξ ¼
1
2 I0 þ I1ð Þ � IR
1
2 I0 þ I1ð Þ þ IR

; ð9Þ

where I0 and I1 are the heights of the peaks corresponding
to nb= 0 and nb= 1 phonons, while IR is the lowest height in
between I0 and I1 (see Fig. 2).

Additionally, we make an analytical model where we allow for
one jump during each measurement period. We can extract the
asymptotic behaviour of the visibility

ξ λ′; �Neffð Þ ¼ 1� 8
3þ 5�Neff

1þ 2�Neff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π logλ′

p
λ′

; ð10Þ

reflecting the compromise between the contributions to IR
from the noise ∝ exp(−D2/8) and from the jumps during the
measurements ∝ Δnb.

The results of simulations and model are shown in Fig. 5a. The
blue points are the numerical optimization, which are in good
agreement with the analytical result (red, dotted line). Notice that
for small values of λ′, the optimal Δnb is sufficiently high to allow
multiple jumps during the measurement time T, leading to minor

discrepancies. The black, solid line is Eq. (10), and the shadowed
region corresponds to the predicted values of λ for the parameters
introduced above. Qualitatively, clear signatures of the mechan-
ical energy quantization are present for λ′≳ 40, where the
visibility exceeds 20%.

For the experimental parameters considered above, the
maximum attainable value of λ′ is λ= 122 (for R= Zout/10),
and is achieved with a strong probe such that �Neff � �nm. The
incident power and the measurement time T provide a handle to
optimize the performance for given experimental conditions.
Qualitatively, a short value of T minimizes the effects of the
mechanical heating, and makes λ′≃ λ. On the other hand, the
required power to reach such a regime can be troublesome43, and
we may need to integrate for too long time to have sufficient
statistics (since �Neff � 1). This last problem can be solved by
adding an electrical cooling, red-detuned by ωm � γt from the
QND probe. This cooling would not affect the parameter λ′, since
it does not heat up the system, but only reduces �Neff . The visibility
ξ thus remains almost unaltered (see Eq. (10) and Fig. 5b), but
the probability to find the membrane in low excited states is
increased, reducing the experimental time.

As an example, assume that the heating from the electrical
feedback and the mechanical bath are equal, such that λ′= λ/2=
61. Considering a cryogenic temperature of 14mK37, the average
mechanical occupation is �nm ≃ 3, implying �Neff ¼ 6. The optimal
Δnb is then 0.3, and can be obtained with a driving power of 16 nW
and a measurement time of 0.1 ms for a mechanical quality factor
Q= 106 and a stray capacitance Cs= 100C0. For other values of Q
and Cs, the driving power can be varied to fulfil the constraint
�Neff ¼ 2�nm, as shown in Fig. 4a. The incident field is rather
intense, which may cause additional heating to the system. In the
set up of ref. 43, such additional heating has been observed above
an intracavity photon number of 108. For comparison, in Fig. 4a
we show the intracavity photon number ~αj j2=γt for our system,
where ~αj j2¼ αj j2=T is the photon flux. Depending on the
parameters, we see that ~αj j2=γt will be similar or higher than 108

for Cs≳ 100C0. These devices cannot, however, be compared
directly. Nevertheless, since ref. 43 indicates that the source of this
heating is electrical, we believe that it would be strongly suppressed
for the QND measurement considered here. Since the linear
coupling is almost cancelled by symmetry, the resulting heating
rate is likely reduced by a factor (gr/g1)2≃ 10−4. In absence of this
suppression, conducting our experiment in a pulsed regime may
substantially reduce other heating mechanisms.

Discussion
We have revisited the challenge of performing a phonon QND
measurement. Employing symmetry to inhibit the linear cou-
pling, the detrimental heating is suppressed while retaining the
desired quadratic coupling. Contrary to the generally studied
optomechanical case28, the residual coupling to the antisym-
metric mode is strongly suppressed by its higher frequency and
reduced resistance. A particularly attractive feature of the current
approach is that it is only sensitive to the ratio g2/g1, and not to
their absolute values. Stray capacitances, which reduce the
electromechanical couplings, can thus be compensated using
stronger input fields.

These attractive features put QND detection within reach of
presently available technology. A successful realization of a QND
detection will not only represent a demonstration of genuine non-
classical behaviour of mechanical systems, but also extend the
interactions available in electro/optomechanics to non-Gaussian
operations44. This will considerably expand the realm of effects
that can be studied with these systems, and facilitate their
application for quantum information processing23.
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Fig. 4 Operating conditions in the presence of stray capacitances.
a Average intracavity photons ~αj j2=γt required for the QND measurement,
as a function of the relative value of the stray capacitance Cs/C0. The three
lines correspond to different values of the mechanical quality factor, as
indicated in the legend. We assume Δnb= 0.3 and equal contributions from
the mechanical and electrically induced reservoirs �nm ¼ �Neff=2 ¼ 3. As a
reference, the grey dashed lines indicate the associated powers of the
probe. b Linear coupling g1 as a function of Cs/C0. For both figures, the
shadowed region indicates the strong coupling g1≥ γt, where QND
detection is feasible with other approaches26, 31, 32

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06070-y

6 NATURE COMMUNICATIONS |  (2018) 9:3621 | DOI: 10.1038/s41467-018-06070-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


As an outlook, it is desirable to extend this work to the
optomechanical case, where mechanical systems with a similar
quadratic coupling have recently been studied33,45,46, but condi-
tions to have a successful phonon QND measurement have not
been yet determined. The electromechanical systems considered
here can be described with Kirchoff’s laws, which give rigorous
results within a well-defined model. The physical mechanisms
behind the heating are identified to be the Johnson–Nyquist
noises associated to the resistors, and fabrication imperfections.
For comparison, the exact description of dissipation in a multi-
mode optomechanical system may be more involved. Never-
theless, the results presented here could be useful for guiding the
intuition towards QND detection in the optical regime. As a
further extension, it would be interesting to investigate the effect
of squeezing. By reducing the vacuum noise, squeezing can lead
to a direct improvement in λ, thus reducing the physical
requirements for the QND detection.

Methods
The double-arm circuit. The Hamiltonian for the system in Fig. 1c is given by

Ĥ ¼ �hωmb̂
y b̂þ Φ̂

2
a

4L þ Q̂2
a

C0
þ Φ̂

2
s

Lþ2L0
þ Q̂2

s
4C0

þ g1
C0ωs

Q̂aQ̂sðb̂þ b̂yÞ þ g2
C0ωs

Q̂2
a b̂

y b̂þ g2
4C0ωs

Q̂2
s b̂

yb̂;
ð11Þ

where subscripts “a” and “s” indicate the asymmetric and the symmetric
electrical fields, respectively. From Eq. (11) and using Kirchoff’s laws, it is
possible to determine the equations of motions, including noises and decays.
The normalized distance D2= d2/σ2 is obtained assuming the phonon number to
be constant within T—that is: setting g1= 0—so that the asymmetric and
symmetric fields decouple. Looking at the phase quadrature of the reflected signal
V̂out ¼ V̂in � γtΦ̂s , we determine d. The noise σ is the sum of vacuum

noise from the input coherent field, and the Johnson–Nyquist noises of the
resistors.

As discussed above, the heating Δnb ¼ n̂bðTÞh i has two contributions:
asymmetries leading to a non-vanishing linear coupling gr, and the charge
redistribution. The first is found by assuming R � R0 and L � L0, such that the
circuit in Fig. 1c is equivalent to the one in Fig. 1b, for which we already know Δnb.
The contribution from charge redistribution is determined from the Hamiltonian
in Eq. (11) neglecting the quadratic interaction, which does not alter the phonon
number. The strongly driven symmetric electrical field is then substituted with its
steady state, obtained assuming a constant photon flux. The time evolution of n̂bh i
is finally found by looking at the equations of motion for the asymmetric field and
the mechanical creation/annihilation operators. With the amplitude of the
symmetric mode replaced by its steady state, these equations are now linear in the
annihilation (creation) operators b̂ ðb̂yÞ and can be solved by standard
optomechanics techniques.

Asymmetric circuit. To obtain Fig. 3, we analyse the system in the presence
of asymmetries. First, we derive the generalization of the Hamiltonian in Eq. (11)
with unequal rest capacitors, resistors, inductors and linear couplings.
Differently from above, we linearize the symmetric/asymmetric electrical fields
around their mean values (Q̂a=s ! hQ̂a=si þ δ̂Qa=s and ϕ̂a=s ! hϕ̂a=si þ δ̂ϕa=s),

and the mechanical creation/annihilation operators ðb̂ðyÞ ! hb̂ðyÞi þ δ̂bðyÞÞ. Here,
besides the usual oscillatory behaviour of the mechanical operators hb̂ðyÞi, the
amplitude is generally time dependent47. This can be understood by looking
at Eq. (11); since both the electrical fields have now non-zero average, the
three body interaction / Q̂aQ̂sðb̂þ b̂yÞ is equivalent to a force directly driving
the mechanical system. Once solutions for the averages are found, it is
possible to determine the variations, and finally the time evolution of the
phonon number.

Optimization of the visibility. To obtain Fig. 5 we rely on both an analytical
and a numerical optimization of the visibility ξ. To determine the red, dotted
curve, we assume that the initial mechanical state is thermal, such that the
occupations of the Fock states can be found. Given Δnb, the probability to
jump once either up or down during the measurement time T is a Poissonian
process. The probability distribution function for the outcomes VM can then be
obtained and maximized, by varying Δnb. The histograms and the blue points
are derived with Monte Carlo simulations, where the time evolution of single
mechanical trajectories are replicated with the stochastic wave-function method48.
Importantly, every measurement interval of duration T has been discretized,
to allow for multiple jumps. The parameter Δnb is then varied to find the best
visibility ξ.

Data availability
All material related to this work can be found at https://sid.erda.dk/share_redirect/
eUaGoI8JbN.
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