
REVIEW
published: 20 August 2015

doi: 10.3389/fimmu.2015.00404

Edited by:
Cordula M. Stover,

University of Leicester, UK

Reviewed by:
Andrew Tasman Hutchinson,

University of Technology Sydney,
Australia

Janos G. Filep,
University of Montreal, Canada

*Correspondence:
Tobias Schuerholz,

Department of Intensive Care and
Intermediate Care, University Hospital

RWTH Aachen, Pauwelsstr. 30,
Aachen 52074, Germany
tschuerholz@ukaachen.de

Specialty section:
This article was submitted to

Molecular Innate Immunity, a section
of the journal Frontiers in Immunology

Received: 11 February 2015
Accepted: 23 July 2015

Published: 20 August 2015

Citation:
Martin L, van Meegern A, Doemming

S and Schuerholz T (2015)
Antimicrobial peptides in human

sepsis.
Front. Immunol. 6:404.

doi: 10.3389/fimmu.2015.00404

Antimicrobial peptides in human
sepsis
Lukas Martin, Anne van Meegern, Sabine Doemming and Tobias Schuerholz*

Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany

Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important
part of innate immunity. They exist in species from bacteria to mammals and can
be isolated in body fluids and on surfaces constitutively or induced by inflammation.
Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria
as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1–3 and
human beta-defensins (HBDs) 1–3 are some of the most important defensins in humans.
Recent studies have demonstrated higher levels of HNP 1–3 and HBD-2 in sepsis. The
bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response
and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity
of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with
organ failure. HNP 1–3, lactoferrin, BPI, and heparin-binding protein are increased in
sepsis. Human lactoferrin peptide 1–11 (hLF 1–11) possesses antimicrobial activity and
modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)]
has been shown to decrease mortality in critically ill patients. A phase II/III study with
TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is
an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote
the liberation of pro-inflammatory cell components and thus augment the severity of
sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors
such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their
high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat
septic patients effectively without causing harm. This overview focuses on natural and
synthetic AMPs in human and experimental sepsis and their potential to provide significant
improvements in the treatment of critically ill with severe infections.
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Natural Occurrence in Humans – Change of AMPs in
Inflammatory Disease

Antimicrobial peptides (AMPs) are an important component of multicellular organisms’ innate
immune systems, targeting invading pathogens, including bacteria, viruses, fungi, and parasites (1).
The growing relevance of AMPs in recent years is owed to their capability to overcome increasing
antibiotic resistance due to their unique combination of anti-inflammatory, antimicrobial, and
immunostimulatory qualities (2–4). Generally, AMPs differ greatly in sequence and structure. These
peptides are predominantly short (10–50 amino acids) amphipathicmolecules. Based on amino acid
composition and secondary structures, they can be divided into four groups: (i) α-helical peptides,
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(ii) β-sheet peptides stabilized by two to four disulfide bonds,
(iii) extended structures, and (iv) loop peptides with one disulfide
bond (3, 5, 6).

The most extensively investigated peptides of the mammalian
gene family are the defensins and cathelicidins. The defensins,
consisting of the alpha and beta subgroups, represent more than
5% of the total protein of human neutrophils (7) and are derived
from intestinal Paneth cells, neutrophils, macrophages (1), epithe-
lial cells, mucosal epithelial cells, and keratinocytes (8). Through
the stimulation of toll-like receptors (TLRs), including TLR-
2, TLR-3, and TLR-5, α-defensins [human neutrophil peptides
(HNP) 1–4] are released by their producing cells (4, 8–17). Alto-
gether, six human α-defensins from the granules of neutrophils
(HNPs1–4) and Paneth cells (human defensins including HD5
andHD6) as well as four human β-defensins derived from epithe-
lial cells were studied in detail. It has been shown that alterations in
expression may influence inflammatory disorders, which empha-
sizes the importance of these peptides in controlling and prevent-
ing microbial infections (18, 19). Some AMPs are constitutively
expressed, whereas others can be induced [e.g., HNP 1–3, human
beta-defensin (HBD)-2] in response to inflammation (8).

The mechanisms in neutrophil trafficking and function in
sepsis have been reviewed previously in Ref. (20). A weakened
response to chemotaxis and alterations in neutrophils may result
after dysregulation of TLR expression. TLR activation itself results
in a downstream liberation of AMP as well as cytokine and
chemokine release. This, in turn, activates NF-kB and mitogen-
activated protein kinase (MAPK) pathways. A constantly activated
TLRmay lead to a strongly increased expression of cytokines, thus
aggravating sepsis in critically ill patients (20–22).

Cathelicidins are produced by proteolysis of the C-terminus
of protein precursors. In humans, only one precursor, hCAP18,
is produced mainly in leukocytes and epithelial cells and forms
the LL-37 peptide, among others. The application of LL-37 in
infection therapy has been hampered by its toxicity. The incuba-
tion of smooth muscle cells with 20 μM LL-37 resulted in 20-fold
higher DNA fragmentation compared to the control (23). More-
over, human serum inhibited the antimicrobial effects. Another
problem is that some multiresistant strains (e.g., USA600-MRSA)
showed increased resistance against LL-37, which has been sug-
gested to be responsible for higher mortality rates (24). When
theN-terminal hydrophobic amino acids of LL-37 were removed,
a decrease in cytotoxicity was detected. Furthermore, inhibition
of the antimicrobial and lipopolysaccharide (LPS)-neutralizing
effects of LL-37 by human serum was reduced. Thus, LL-37-
derived peptides may provide a benefit when treating sepsis
patients (23). Innate immunity, especially in the case of sepsis,may
be influenced by vitamin D status. In turn, vitamin D status regu-
lates the LL-37 levels in sepsis (25). The possible underlyingmech-
anism has been described as a TLR activation of macrophages,
which results in increased expression of both the receptor and the
hydroxylase of vitamin D, thus inducing AMPs (26). Interestingly,
a deficiency in vitamin D is a predictor of sepsis in critically ill
patients and results in higher mortality in the intensive care unit
(ICU) (27).

Bactericidal/permeability-increasing protein (BPI) is an AMP
stored in leukocytes that has a high affinity for LPSs of

Gram-negative bacteria. The anti-infective properties of BPI
include the permeabilization of bacterial membranes, in addition
to the neutralization of LPS (28).

Lactoferrin is a glycoprotein located in the majority of exocrine
secretions (e.g., milk, tears, nasal secretions) (29) and in neu-
trophils (30). Its wide antimicrobial spectrum supports the body’s
immune response to bacterial, viral, and fungal pathogens (31–
34). Anti-bacterial peptides, which are part of the polypeptide
chain of lactoferrin, are released after proteolysis and may be
developed for new agents in antimicrobial therapy (35, 36). Nev-
ertheless, the exact mechanism of the antimicrobial activity of
lactoferrin peptides has not been described to date.

Antimicrobial peptides prevent and control microbial infec-
tions by both direct antimicrobial killing and innate immune
modulation (4, 9, 37, 38). Direct antimicrobial killing is achieved
by the disruption of bacterial cell membranes or translocation
into bacteria to affect internal targets (3) (Figure 1). The cationic
amphipathic AMPs bind to the negatively charged phospholipids
of the bacterial cell membranes (3). It is assumed that pore
formation and non-specific membrane permeabilization lead to
a disruption of the membrane (Figure 1). Recently, there has
been increasing evidence that molecules on the cell surface act
as targets for the AMPs and induce direct killing (10, 39). How-
ever, the immunostimulatory properties have been more appre-
ciated for their diversity, including cell migration, survival and
proliferation, induction of antimicrobial and immune mediators
such as cytokines/chemokines, wound healing, and angiogenesis
(Figure 2) (4, 40). The results show that HBD-2 seems to be
chemotactic for cells that express the human chemokine recep-
tor CCR6 (41). CCR6 is preferentially expressed by immature
monocytic dendritic cells (DCs) and CD8+ T-cells that have
the memory phenotype (42). Additionally, HNP 1–3 are chemo-
tactic for monocytes, immature DCs and CD4+ and CD8+

FIGURE 1 | Different modes of action of antimicrobial peptides. AMPs
may have direct neutralizing effects on bacteria e.g., by membrane disruption
through pore forming or by targeting internal structures of bacteria. In addition
to direct effects, AMPs may modulate cells of the adaptive immunity
(neutrophils, t-cells, macrophages) to control inflammation and/or to increase
bacterial clearance. Modified from Ref. (3). AMPs, antimicrobial peptides.
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FIGURE 2 | Antimicrobial peptides play a central role in innate and
adaptive immunity. A given stimulus by bacteria leads to the release of
constitutively expressed AMPs in different cells (here: epidermis). AMPs are
released by neutrophils and will activate and recruit macrophages, monocytes,

dendritic cells, and T-cells. A direct anti-endotoxin effect of AMPs may decrease
the activation of immune cells and thus lead to a decrease in pro-inflammatory
cytokine release. Modified from Ref. (26). AMPs, antimicrobial peptides; LPS,
lipopolysaccharide; PMNs, neutrophils.

T-cells (43, 44). Furthermore, they induce the release of pro-
inflammatory cytokines such as IFN-λ, IL-6, and IL-10 from T-
cells as well as TNF-α and IL-1β from monocytes (45, 46). These
processes contribute to the maturation of DCs, which link the
innate and adaptive immune systems. Stimulation with TNFα
contributes to this maturation. DCs activate CD4+ T-cells (and
their subsets) and CD8+ T-cells as well as B-cells. In turn, mono-
cytes may be induced by a peptide to differentiate into DCs (47).

Moreover, AMPs protect the organism against harmful pro-
inflammatory immune responses, especially against TLR-induced
cytokine release. For instance, the above described LL-37 allows
free DNA fragments to enter DCs. Consequently, IFN-α is
released in reasonable amounts by TLR-9 interaction (Figure 2)
(48). The free DNA fragments are able to neutralize extracellular
LPS and/or stimulate the expression of anti-inflammatory media-
tors by affecting different signaling pathways associated with, for
example, MyD88 and TRIF (49–52).

Role of AMPs in Sepsis

Antimicrobial peptides were identified nearly 100 years ago in
body fluids and on body surfaces after inflammatory stimulation
(53). However, studies of AMPs in patients with severe sepsis or
septic shock are limited. AMPs have been investigated in patients
with abscesses, peritonitis, or uninfected body fluid levels of the
LPS-binding protein (LBP) and BPI, which prevents endotoxin
binding to CD14. The BPI/LBP ratio was significantly elevated
in abscesses compared to peritoneal and non-infected fluids.
Moreover, the BPI concentration was higher in abscesses with

Gram-positive compared to those with Gram-negative organ-
isms. The authors concluded that BPI might attenuate the local
inflammatory response and the systemic toxicity of endotoxins
released during Gram-negative infections (54). A further study
in the same year investigated the levels of polymorphonuclear
leukocyte surface BPI, plasma BPI, and plasma LBP in normal
human volunteers who were administered Escherichia coli LPS
and in patients with sepsis and Gram-negative infections. Com-
pared with controls, LPS-challenged volunteers and patients with
sepsis both exhibited increased concentrations of polymorphonu-
clear leukocyte surface BPI and plasma LBP (55). Rintala et al.
investigated BPI levels and BPI/neutrophil ratios in 42 healthy
controls and 34 patients with severe sepsis. Because of an asso-
ciation between decreased arterial blood pressure and levels of
BPI, the authors concluded that BPI might indicate the severity
of organ dysfunction in sepsis (56).

As endogenous ligands of TLR-4, HBD 1–3 interact with TLR-
4 on immune cells and regulate the expression of inflammatory
mediators via the NF-κB pathway (57).

A study determined concentrations of HBD-1, HBD-2, and
cathelicidin LL-37/hCAP-18 in tracheal aspirates of mechanically
ventilated newborn infants. Concentrations of AMPs correlated
with each other and with levels of interleukin-8 and tumor necro-
sis factor-α in the bronchoalveolar lavage fluid. Pulmonary or
systemic infections were associated with significantly increased
concentrations ofHBD-1,HBD-2, and LL-37 (58). A further study
investigated the effect of overexpression of BD-2 on lung injury
to evaluate whether the function of BD-2 in the lung could be
attributed to both antimicrobial action and modulation of the
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immune response. Therefore, recombinant adenoviruses carrying
an expression cassette of rat BD-2 or control adenovirus carrying
an empty vector were administered intratracheally to Sprague-
Dawley rats. After 48 h, acute lung injury was induced by either
Pseudomonas aeruginosa infection or cecal ligation and puncture
(CLP). The amounts of the P. aeruginosa in the lung with BD-2
overexpression were significantly lower compared to those of the
controls. Furthermore, the overexpression of BD-2 reduced alveo-
lar damage and interstitial edema and also significantly improved
the survival rate (59).

A prospective case-control study investigated levels of HBD-2
in 16 patients with severe sepsis. HBD-2 plasma levels in septic
patients were significantly higher compared to those in healthy
controls and critically ill non-septic patients. Procalcitonin plasma
levels and HBD-2 protein plasma levels showed a positive corre-
lation in patients with severe sepsis. Moreover, the study investi-
gated the ex vivo inducibility ofHBD-2mRNA in peripheral whole
blood cells from patients with severe sepsis compared to non-
septic critically ill patients and healthy individuals. Endotoxin-
inducible HBD-2 mRNA expression was significantly decreased
in patients with severe sepsis compared to healthy controls and
non-septic critically ill patients, whichmay contribute to the com-
plex immunological dysfunction in patients with severe sepsis.
The contradiction between the decreased inducibility of HBD-2
in peripheral blood cells of patients with severe sepsis and the
elevated levels of HBD-2 in septic plasma may suggest that in
addition to peripheral blood cells, circulating endothelial cells or
reticuloendothelial cells (e.g., monocytes or macrophages) may
serve as a possible source of HBD-2 in vivo (60).

A prospective cross-sectional and longitudinal study in a uni-
versity children’s hospital pediatric ICU investigated the systemic
release of endogenous HNP 1–3 and lactoferrin in children with
severe sepsis. Septic patients showed increased HNP 1–3 and
lactoferrin plasma concentrations compared with non-septic crit-
ically ill control patients. Furthermore, HNP 1–3 and lactoferrin
plasma concentrations correlated with total white blood cell and
neutrophil counts. Although increased plasma lactoferrin con-
centrations were observed with the development of organ failure,
there was no association between plasma HNP 1–3 concentration
and organ failure or outcome. This observation is weakened by
the fact that other mediators such as cytokines and nitrite radi-
cals were not measured. Additionally, lactoferrin concentrations
did not differ between non-survivors and survivors and did not
correlate with the type of pathogen (61). The enhancement and
adherence of neutrophils in damaged tissue may serve as a possi-
ble explanation for the correlation between lactoferrin concentra-
tion and organ failure. Moreover, high levels of lactoferrin were
detected in patients with complement activation (62).

Another observational study determined HBD-2 levels and
their impact on sepsis in term and preterm neonates at birth.
HBD-2 levels in term neonates were higher compared with
preterm infants and correlated with gestational age and birth
weight. Of 31 preterm neonates, seven suffered from late-onset
sepsis, and this was associated with lower HBD-2 levels (63).
Furthermore, it was shown that HNP 1–3, lactoferrin, BPI, and
heparin-binding protein (HBP) exerted higher levels in neonates
with sepsis (64).

Failed Attempts to Introduce AMP in
Sepsis Therapy

Despite their discovery in 1939, AMPs are still rare in daily clinical
practice. Currently, there are a significant number of products in
development for topical applications of AMPs, such as BL 5010
(BiolineRX) against skin lesions or LTX-109 (Lytix) for the nasal
eradication of Staphylococcus aureus.

To date, there have been only a few investigations into the
therapeutic use of AMPs in sepsis. Promising results of the appli-
cation of AMPs for meningococcal infection in children have
been published (65). Children with suspectedmeningococcal sep-
sis were randomly assigned to receive a recombinant 21-kDA
modified N-terminal fragment of human BPI (rBPI21) within
8 h of diagnosis (65). The administration of rBPI21 compared
to placebo therapy was not superior with respect to mortality.
One underlying reason may be the lower-than-expected placebo
mortality (10%vs. expected 25%) becausemost deaths occurred in
the interval between identification of patients and rBPI21 admin-
istration (65). However, children randomized to rBPI21 treatment
showed a trend toward reduced multiple severe amputations and
significantly higher physical and neurological abilities according
to the pediatric overall performance category (POPC) scale (65).

Another AMP with clinical potential is the human lactoferrin
peptide 1–11 (hLF 1–11), a derivative of the human lactoferrin
that can be found in neutrophils or in body fluids (66). hLF 1–11
comprises antimicrobial activity andmodulation of the inflamma-
tory immune response. In a double-blind and placebo-controlled
study to assess the side effects of hLF 1–11, the drug was tested
in healthy volunteers and in patient undergoing hematopoietic
stem cell transplantation. It showed a favorable side effect profile
with only a slight elevation of liver enzymes (66). A planned study
for the intravenous application of hLF 1–11 for 10 consecutive
days in patients with bacteremia due to Staphylococcus epidermidis
was withdrawn prior to enrollment for strategic reasons by AM
pharma (NCT00509847). According to clinical trials, this decision
was based on a strategic company decision. The homepage of AM
pharma has no further information about hLF 1–11 or planned
trials with the drug, so the future use of hLF 1–11 remains unclear
(http://www.am-pharma.com).

A different recombinant form of lactoferrin is talactoferrin
alpha (TLF). TLF and lactoferrin possess identical molecular
structures, biological activity and in other biochemical proper-
ties except for their nature of glycosylation (67). In a phase II
study, 194 sepsis patients with at least one organ dysfunction
were enrolled and assigned to a TLF or placebo group. Patients
under medication with oral TLF showed a lower 28-day mor-
tality rate with a sustained effect on mortality after 6months.
The decrease in mortality was more pronounced in patients with
a higher severity of disease as expressed by APACHE-II scores
above 25 points (Figure 3). Nonetheless, there was no signifi-
cant difference regarding ICU days or ventilator-free days (67).
Due to the promising results, a phase II/III study was initiated
(safety and efficacy of TLF in patients with severe sepsis, OASIS;
NCT 01273779). Surprisingly, the study was prematurely ter-
minated due to the recommendation of the data safety moni-
toring board because of a higher 28-day mortality rate in the

Frontiers in Immunology | www.frontiersin.org August 2015 | Volume 6 | Article 4044

http://www.am-pharma.com
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Martin et al. AMP in sepsis

FIGURE 3 | Mortality of patients with severe sepsis and septic shock
treated with talactoferrin or placebo. The mortality is reported in relation
to disease severity as expressed by the APACHE-II score. A positive effect of
oral talactoferrin treatment on mortality in sepsis is detectable in patients with
higher severity of disease (APACHE-II>25). Patients with a lower APACHE-II
score benefited less (APACHE-II 20–24) or not at all (APACHE-II<19).
APACHE-II score, Acute Physiology and Chronic Health Evaluation-II score.
Reprinted with permission from Guntupalli et al. (67).

talactoferrin group. Here, the reason for failure remains unclear.
One could speculate that oral administration is not the ideal route
in critically ill patients who often suffer from gastroparesis and
disturbed bowel motility.

The last attempt to useAMPs in sepsis was performed by stimu-
lating cathelicidin levels through the administration of calcitriol in
67 patients with severe sepsis or septic shock (46). ThoughmRNA
levels of cathelicidin increased, protein levels were comparable to
a placebo group. The authors concluded that the dose and timing
of calcitriol treatment might not have been ideally performed
(68). Currently, no clinical trial on AMP treatment in sepsis has
been initiated (clinicaltrials.gov; accession date February 10th,
2015).

Future Aspects

The growing relevance of AMPs in recent years is because of their
capacity to overcome increasing antibiotic resistance, which stems
from their ability to decrease pro-inflammation, kill bacteria,
and stimulate innate immunity (2–4). Whether one, two, or a
combination of all threemechanismswill serve best is still amatter

of debate. To date, the development of new drugs predominantly
targets only single aspects of the body’s response to bacteria rather
than bacterial pathogenicity factors (PF).

Synthetic AMPs based on the limulus-anti-LPS-factor (LALF)
were designed to bind to the lipid A-moiety of LPS, thus decreas-
ing inflammation and increasing survival in experimental sepsis
(69). These synthetic AMPs exerted effectivity against Gram-
negative bacteria and additionally against Gram-positive bacteria
and mixed infections in vitro and in experimental settings in vivo
(69–71). One further obstacle in the administration of AMPs is
the application route. Previous trials used the local or oral route
to administer AMPs in sepsis, with encouraging results in early
studies. Phase 3 studies could not confirm the first trials (67). The
application of designed AMPs is realized via continuous iv infu-
sion and allows decreased inflammation (71), thereby improving
the survival rate of septic mice (72). Moreover, virus attachment
of enveloped viruses was shown to be decreased by a strong inter-
action between designed peptides and heparan sulfate (HS) (73).
HS is a side chain shed in inflammation from proteoglycans (74,
75). Therefore,HS serves as a danger-associatedmolecular pattern
(DAMP) and triggers a pro-inflammatory cascade in severe sepsis
and septic shock (76). Peptide binding to and neutralization of HS
may be the underlying mechanism for controlling inflammation
(77). This prevents HS from binding to TLR-4, thus inhibiting
TLR-4-downstream activation (78).

The combination of different AMPs with anti-inflammatory
or bactericidal effects in varying doses may pave the way toward
individualized therapy instead of a “one-size-fits-all” antibiotic
attempt, which is the standard of care today. Moreover, AMPs
offer the unique opportunity to cope with both DAMPs and
pathogen-associated molecular patterns (PAMPs) such as LPS or
lipopeptides (LPs). Due to this dual mechanism, designed AMPs
exhibit their activity in both infectious and sterile inflammation
(77). The underlying mechanism seems to be a charge-dependent
alteration in the secondary structure that attenuates the inflamma-
tory activities of DAMPs and PAMPs (69, 73). This ability distin-
guishes synthetic AMPs from conventional antibiotics and other
attempts in sepsis therapy over the last several decades. Areas
other than sepsis are currently the subjects of ongoing clinical
studies to control inflammation; for example, talactoferrin, which
failed in sepsis therapy (NCT01273779), is now being investigated
in cancer studies (NCT00706862).

Thus, newly developed AMPs with decreased toxicity and a
broad spectrum efficacy have the potential to improve therapy of
bacterial and viral sepsis and to counter the increasing number of
bacterial resistances against established antibiotics.
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