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ABSTRACT: We address the problem of intermolecular inter-
action energy calculations in molecular complexes with localized
excitons. Our focus is on the correct representation of the
dispersion energy. We derive an extended Casimir-Polder formula
for direct computation of this contribution through second order
in the intermolecular interaction operator V̂. An alternative
formula, accurate to infinite order in V̂, is derived within the
framework of the adiabatic connection (AC) theory. We also
propose a new parametrization of the VV10 nonlocal correlation
density functional, so that it corrects the CASSCF energy for the
dispersion contribution and can be applied to excited-state
complexes. A numerical investigation is carried out for benzene,
pyridine, and peptide complexes with the local exciton
corresponding to the lowest π−π* or n− π* states. The extended Casimir-Polder formula is implemented in the framework of
multiconfigurational symmetry-adapted perturbation theory, SAPT(MC). A SAPT(MC) analysis shows that the creation of a
localized exciton affects mostly the electrostatic component of the interaction energy of investigated complexes. Nevertheless, the
changes in Pauli repulsion and dispersion energies cannot be neglected. We verify the performance of several perturbation- and AC-
based methods. Best results are obtained with a range-separated variant of an approximate AC approach employing extended
random phase approximation and CASSCF wave functions.

1. INTRODUCTION

The theoretical description of intermolecular forces underlying
fundamental physical and chemical phenomena continues to
pose a challenge for quantum science. The knowledge of
accurate potential energy surfaces gives access to measurable
quantities such as rovibrational spectra, phase equilibria, or
molecular crystal structures. Although most of the focus so far
has been on interactions in ground-state systems, there has
been a growing interest in investigating bound molecular
systems in excited states.
Interactions involving excited-state molecular species are

crucial in fundamental processes of charge1 and energy
transfer.2 Modeling of intermolecular forces is therefore useful
in designing nanostructures with high phosphorescence
quantum yields3,4 or optoelectronic materials.5,6 For instance,
the efficiency of organic light emitting diodes can be increased
by exploiting the spin fission process, in which a highly
energetic singlet exciton is converted into two triplet excitons.7

Spin fission may be driven by molecular interactions,8−10 but
the mechanism of this process is not fully understood.11

Interactions between an excited molecule and its environment
is also an active field of research. There, accurate prediction of

the solvent effects on the absorption and emission bands
requires going beyond simple electrostatic models.12,13

A reliable description of interactions in excited-state
complexes is intrinsically more difficult than in the case of
ground states. The multireference second-order perturbation
approaches, which are the methods of choice for these systems,
are plagued with the well-known problems of size-incon-
sistency and intruder states.14 Coupled cluster response
theories, such as CC2 and CC3, are a viable alternative,15,16

but they are limited in practice to small- and medium-size
systems. For larger complexes, time-dependent DFT (TD-
DFT) or its semiempirical variants offer the best accuracy-to-
cost ratio.14,17 Unfortunately, the combination of weak
intermolecular forces and excited states is particularly
challenging even for modern exchange-correlation functionals.
In particular, ground-state semiempirical corrections for the
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dispersion energy are no longer adequate. They have been
parametrized to account for the ground state dispersion energy
and may fail miserably if applied to excited states involving
redistribution of electron density.18 To the best of our
knowledge, only the local response dispersion (LRD) model
of Nakai and co-workers19 has been extended specifically to
excited-state systems.20 It should be noticed that the LRD
approximation is based on assumptions valid for ground states,
which may affect the accuracy of the method when applied to
excited-state molecules.
In this work, we formulate a framework to describe the

London dispersion energy in electronically excited van der
Waals complexes. We first generalize the Casimir-Polder
formula to excited states. We show that the emergent terms,
absent from the ground-state expression, can be positive, which
can ultimately lead to repulsive dispersion terms. We then
derive an alternative dispersion energy expression by employ-
ing the adiabatic correction (AC) theory for multiconfigura-
tional wave functions.21 The AC-based formula is correct
through infinite order in the interaction operator. A connection
between the supermolecular AC energy and the second-order
dispersion energy is established in the long-range regime.
The dispersion energy for excited-state complexes is

computed using response properties obtained from solutions
of extended random phase approximation (ERPA) equations22

and wave functions of the complete active space (CAS) type.
The damping of the dispersion energy is represented via the
exchange-dispersion term calculated in the framework of
multiconfigurational symmetry-adapted perturbation theory,
SAPT(MC).23,24 We assess the performance of several
approximate approaches for excited-state interactions based
on CAS self-consistent field (CASSCF), which account for the
dispersion energy. A special attention is paid to the
representation of dispersion forces in the recently developed
variants of the AC theory.21,25,26 Methods combining wave
function and DFT are also investigated, including multi-
configurational range-separated theory27 and reparametrization
of the nonlocal van der Waals VV1028 functional.
Our focus is on noncovalent interactions in complexes of

low-lying excited states either of a π−π* or n−π* character.
The reason for choosing these systems is 2-fold. First, the
π−π* and n−π* excitations are the keystone of organic
photochemistry29 and of keen interest to computational
chemists.30 Second, owing to the localization of the exciton,
the excimer and resonance phenomena do not overshadow the
effect of dispersion.
Several works investigated excited-state complexes of the

π−π* and n−π* types. Reimers and Cai31 studied changes in
the relative stability of hydrogen bonds between heteroar-
omatic rings and water upon n−π* excitations. The authors
observed a weaker binding of the excited-state in linear
geometries. In contrast, on-top structures become more stable
compared to ground states. Ge and Head-Gordon32 performed
an energy decomposition analysis (EDA) based on absolutely
localized orbitals (ALMOs) for representative pyridine/
pyrimidine−water complexes. The decrease in electrostatics
following the n−π* transition was identified as the major factor
responsible for changes in the binding strength. Similar
conclusions were also drawn from density functional tight
binding (DFTB) interaction energy decomposition.33

Although the rearrangement of the electron density is no
doubt the primary effect behind the change from ground- to
excited-state interactions, second-order effects in the inter-

molecular potential cannot be neglected.34 At present, neither
ALMO- nor DFTB-EDA provides a rigorous account for the
second-order dispersion energy. The latter relies on dispersion
corrections35,36 parametrized for ground-state interactions.
The former, ALMO-EDA for excited states, is based on
configuration interactions singles (CIS) method, thus missing
the bulk of dispersion interactions.32,37 An alternative to
variational EDAs, which offers a correct description of
dispersion interactions, is SAPT.38 To complement previous
findings, we investigate the character of interactions of n−π*
and π−π* states employing the SAPT(MC) variant24 of the
theory. The method is applied with CASSCF reduced density
matrices for the monomers.
The structure of the paper is as follows. In section 2, the

second-order expression for the dispersion energy is turned
into an extended Casimir-Polder formula valid for complexes
with localized excitons, while in section 3, a dispersion energy
formula is derived from the adiabatic connection approach.
Multiconfigurational methods adequate for computing inter-
action energies in excited state complexes are presented in
section 4. Results for interaction energies in complexes with
π−π* and n−π* excitons are presented and discussed in
section 5, and the paper is summarized and concluded in
section 6.

2. EXTENDED CASIMIR-POLDER FORMULA FOR
EXCITED STATES

First we investigate the dispersion energy expression which is
purely nonclassical and results from the long-range electron
correlation. If a combined system AB dissociates into
subsystems A and B in states I and J, respectively

lim ,
R

AB
I
A

J
B

AB

|Ψ ⟩ = |Ψ Ψ ⟩
→∞ (1)

and the unperturbed state I
A

J
B|Ψ Ψ ⟩ is not degenerate, then the

dispersion energy is well-defined in the Rayleigh−Schrödinger
(RS) perturbation theory as a second-order term in the
interaction potential reading39
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where a transition density for an NA-electron subsystem A
corresponding to a I → μ state transition, is defined as

Nr x x x x x x( ) ( , , ...) ( , , ...)d ... dA
I
A A

NA 2 2 2
I

A∫∑ρ = Ψ *Ψμ
σ

μ

(3)

(analogously for B), and x = (r, σ) combines Cartesian and
spin coordinates. It should be mentioned that a formula valid
for degenerate-state dimers could be developed by employing a
degenerate perturbation theory (see, e.g., refs 40−42 where the
authors computed Cn coefficients of homoatomic dimers
consisting of a ground-state atom interacting with an excited-
state atom).
The dispersion energy formula includes transition energies

for monomers between the unperturbed and excited states,
that is, for the monomer A we have

E EA A
I
AIω = −μ μ (4)
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In general, the formula for the dispersion energy can be divided
into four parts
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The first term involves only positively signed up-transition
energies for both monomers; that is,

W 0I J
A B

,
I J∀ <μ ν μν> > (7)

and it takes a negative sign. The second term in eq 5 does not
vanish only if excitons are localized on both monomers, it
includes only terms corresponding to negative transitions

W 0I J
A B

,
I J∀ >μ ν μν< < (8)

and is of a positive sign.
What distinguishes the dispersion energy expression

pertaining to an excited-state system from that of the
ground-state expression (corresponding to I = 0 and J = 0),
is that for the latter all transition energies are positive, while
the former includes negative transition energies corresponding
to μ < I; that is,

0I
AIω∀ <μ μ< (9)

(analogously for B). The presence of negative transition
energies modifies the Casimir-Polder formula43 for the
dispersion energy. To see this, introduce factorization of the
denominators involving positive transition energies in eq 2 by
employing the integral identity

a b
ab

a z b z
z

a b

1 2
( )( )

d ,

0, 0

0 2 2 2 2∫π+
=

+ +

> >

∞

(10)

and express E A B( )I Jdisp
(2) by means of the density response

function of the imaginary frequency, for the noninteracting
subsystem A in the Ith state
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and that of B in the state J, BJχ , defined analogously. From now
on it will be assumed that wave functions are real-valued.
Decomposing the response functions of the monomers into
positive- and negative-transition-energy components as
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(analogously for B), the dispersion energy can be written as
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where the W A BI J
μν terms are defined in eq 6. The expression in

eq 15 is an extension of the Casimir-Polder formula (also
referred to as the Longuet-Higgins formula44) for excited
states. The ground-state dispersion energy is expressed entirely
through χ = χ+ response functions. For excited states, also the
non-Casimir-Polder terms, W A BI J

μν , have to be included. They
arise due to the presence of negative transitions in the density
response function of the unperturbed monomers. While the
first term in eq 15 is always negative and attractive,45,46 the
non-Casimir-Polder terms, eq 6, may take a positive sign. For
example, for a system with two localized excitons, one on a
subsystem A, another on B, non-Casimir-Polder terms
corresponding to negative transitions on A and B, μ < I,
ν < J in eq 6, are positive. Thus, this kind of non-Casimir-
Polder terms gives rise to repulsion for multiple localized-
exciton states.
It is worth noticing that the multipole expansion of non-

Casimir-Polder terms is identical as in the case of terms with
positive transitionboth decay with the sixth power of the
inverse of the intermonomer distance RAB. This is in contrast
to analogous terms derived from nonrelativistic quantum
electrodynamics in the multipolar formalism, fully accounting
for the retardation effects.47 The non-Casimir-Polder terms
obtained in this theory involve contributions associated with
the real-photon exchange between molecules, and they fall off
only as RAB

2− , i.e., five orders of magnitude more slowly than
terms corresponding to positive transitions on both monomers
(decaying as RAB

7− ). In the small-RAB limit, negative-transition

terms attain the RAB
6− dependence and the expression for the

dispersion energy for a ground state molecule interacting with
the excited state molecule presented in ref 47 becomes
identical to that in eq 15 in the multipole expansion.
In this work, we study systems with a single lowest localized-

exciton, for which repulsive dispersion forces are absent. A
non-Casimir-Polder term pertains to μ < I = 1, ν > J = 0 [cf.
the fourth term in eq 15] and it is negative. In the following,
we compute the non-Casimir-Polder contributions directly
from ground-state properties using a protocol introduced
recently in ref 24.

3. DISPERSION ENERGY FROM THE ADIABATIC
CONNECTION THEORY

Let us consider a wave function description of an excited dimer
and a supermolecular approach to computing the interaction
energy. Assuming that the exciton is localized in the region of
A, the simplest adequate wave function dissociates into
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multiconfigurational (MC) wave function I
AΨ and a single-

determinant ground state function B B
0 0Ψ = Φ

lim .
R

AB
I
A B

0
AB

|Ψ ⟩ = |Ψ Φ ⟩
→∞ (16)

The energy corresponding to such a wave function misses the
intersubsystem correlation; in particular, the dispersion energy
is not recovered.48 We now investigate how the dispersion
energy emerges from the recently developed adiabatic
connection theory for multiconfigurational wave functions.21,49

Begin by defining the correlation energy with respect to a
reference state of interest Ψ as

E E E ,corr exact[Ψ] = − [Ψ] (17)

where E H[Ψ] = ⟨Ψ| ̂ |Ψ⟩ is the reference energy corresponding
to a model function Ψ. In the exact AC theory,49 the
correlation energy is given by the expression involving
integration along the adiabatic connection path

E W( ) dcorr
0

1
∫ α= + Δα α

(18)

The Wα integrand in the representation of the orthogonal
orbitals {p, q, r, s, ... } reads
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where ⟨pq|rs⟩ denotes two-electron integrals and a prime in the
first summation indicates that the correlation energy already
accounted for by the wave function Ψ is excluded.25 All α-
dependent quantities correspond to the adiabatic connection
Hamiltonian Ĥα

H H H H( )(0) (0)α̂ = ̂ + ̂ − ̂α
(20)

H Ê Ψ = Ψα
μ
α

μ
α

μ
α

(21)

By construction of H(0)̂ , one of the eigenstates of Ĥα
for the

coupling constant α = 0 corresponds to the reference wave
function

0∃ Ψ = Ψμ μ
α=

(22)

that is, there exists a state μ in the manifold of states of the AC
Hamiltonian which coincides with the chosen reference wave
function at α = 0 (see also ref 49). Transition density matrices
γα,ν, entering eq 19, defined as

a apq q p
,γ = ⟨Ψ | ̂ ̂ |Ψ ⟩α ν α

ν
α†

(23)

involve the state Ψμ
α for which the index μ has been dropped,

Ψ ≡ Ψμ
α α, and an arbitrary state Ψν

α. γ and γα denote one-
electron reduced density matrices

a apq q pγ = ⟨Ψ | ̂ ̂ |Ψ ⟩α α α†
(24)

a apq pq q p
0γ γ= = ⟨Ψ| ̂ ̂ |Ψ⟩α= †

(25)

Creation and annihilation operators, ap̂
†, and ap̂, respectively,

are in the representation of an arbitrary set of orthonormal
spinorbitals.
We assume that the multiconfigurational reference wave

function Ψ involves the partitioning of the orbitals pqrs into
subsets of inactive (doubly occupied), active, and virtual
(unoccupied) orbitals, and then the prime in eq 19 indicates
those terms for which all orbitals pqrs are active are excluded.
The Δα term in eq 18 originates from the mean field
interactions between orbitals in different sets and depends on
one-electron reduced density matrices (1-RDMs)21,49

( , )γ γΔ = Δα α α (26)

Consider a dimer in a nondegenerate state AIB0 defined by
eq 16 and a contribution from the correlation energy to the
pertinent supermolecular interaction energy

E A B E A B E A E B( ) ( ) ( ) ( ).I I Icorr,int 0 corr 0 corr corr 0= − −
(27)

To analyze the interaction energy at large intermonomer
separation RAB, assume the basis set given as an union of
orbitals p, q, r, s, ... and of a, b, c, d, ... completely localized in
subsystems AI and B0, respectively. Consequently, only the
matrix elements hpq{ }, hab{ }, and the two-electron integrals

pq rs{⟨ | ⟩}, ab cd{⟨ | ⟩}, and pa qb{⟨ | ⟩} do not vanish. Begin with
writing the AC Hamiltonian of a dimer as a sum of AC
monomer Hamiltonians and the intermonomer interaction
operator

H H H H H H H
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Notice that out of the intermonomer interaction operator

V V V( )int
(0)

int int
(0)α̂ + ̂ − ̂ components, only two-body (2b)

operators

V a a a a qb pa a a a a qb pab
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∈

† † † †

(29)

are relevant for the dispersion energy. Under the assumption
that the monomer B wave function is single-determinantal
(orbitals a, b are not active), the first term vanishes and in the
second term a prime symbol (indicating exclusion of terms for
which all orbitals pqrs belong to the active set) can be skipped;
that is,

V a a a a qb pab

pqab
q b a pint

2 ∑α̂ = ̂ ̂ ̂ ̂ ⟨ | ⟩† †

(30)

which implies that at α = 0 there is no two-body interaction
between monomers giving rise to the dispersion energy in the
supermolecular interaction energy uncorrected for correlation.
Employing the AC correlation energy formula, eq 18, for

both the dimer and the monomers in eq 27, and retaining only
terms giving rise to the dispersion energy in the dissociation
limit (notice that the Δα term depending only on one-particle
reduced density matrices does not contribute), results in the
AC dispersion interaction energy expression reading

E A B qa pb( ) dI
pqab

pq bacorr,int
AC

0
0

1
, ,∫∑ ∑ γ γ α= ⟨ | ⟩

ν μ

α ν α ν

≠ (31)
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where the notation ν ≠ μ means that terms connecting with
the reference at α = 0 limit, cf. eqs 22−23, are excluded by
construction. Notice that the AC dispersion energy in eq 31
includes terms higher than second-order in the interaction
operator, so it is different from the second-order RS
perturbation expression given in eq 15. In a special case
when both monomers are in their ground states and they are
described with single-determinantal wave functions, the AC
dispersion energy is equivalent to the intermonomer
correlation energy developed recently within the adiabatic
connection symmetry-adapted perturbation theory.50

In the zeroth-order of the expansion with respect to the
interaction operator, ν is a combined index describing states of
the monomer A and B, νA and νB, respectively. The products

pq ba
, ,γ γα ν α ν differ from zero only for νA = I and νB = 0, but such

terms are excluded from eq 31. The first nonzero term in Edisp
AC

is obtained by employing the expression for first-order
perturbation39 to a composite state I
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Unlike the AC dispersion energy in eq 31, the expression
shown in eq 33 is exact only in the second-order with respect
to the interaction potential. It employs transition properties
pertaining to isolated monomers in the AC formalism, that is,

a a( )pq
A

I
A

q p
A, , ,Iγ α = ⟨Ψ | ̂ ̂ |Ψ ⟩μ α
μ

α†
(34)

E E( )A A
I
A, ,Iω α = −μ μ

α α
(35)

where A ,Ψμ
α and EA ,

μ
α are eigenfunctions and eigenvalues of the

adiabatic connection Hamiltonian for the monomer A

H H H H( )A A A A
(0) (0)α̂ = ̂ + ̂ − ̂α

(36)

namely

H EA
A A A, , ,̂ Ψ = Ψα
μ

α
μ

α
μ

α
(37)

(analogous definitions hold for B). Using the integral identity,
eq 10, and density−density response functions of non-
interacting monomers [cf. eq 3] described with the AC
Hamiltonian HA

̂ α reading

ir r
r r

( , ; , ) 2
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I

A A A

A2 2
I

I I I

I
∑χ α ω

ω α ρ α ρ α

ω ω α
′ = −

′

+μ

μ μ μ

μ≠
(38)

(similarly for the monomer B), we are led to the formula for
the second-order dispersion energy obtained in the adiabatic
connection formalism:
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(40)

and the ir r( , ; , )A
1 1

Iχ α ω′+ function is a positive-transition-
energy component, using ν > I in eq 38, of the density−density
response function of the noninteracting subsystem A.
E A B( )Idisp 0

α is then the second-order dispersion energy as in
eq 15, but corresponding to the α-dependent adiabatic
connection Hamiltonian (cf. eq 28). At α = 0 the
E A B( )Idisp 0

α dispersion energy pertains to uncorrelated, that
is, described with the zeroth-order Hamiltonians, monomers.
Retaining the description of monomers at the uncorrelated [α
= 0 in eq 37] level, for each α in eq 40, leads to the uncoupled
(UC) approximation for the dispersion energy

E A B E A B E A B( ) 2 ( ) d ( )I I Idisp
UC

0
0

1

disp
0

0 disp
0

0∫ α α= =α α= =
(41)

used both in single reference38,51 and multireference52

molecular interaction theories. Integration along the adiabatic
connection path, see eq 39, of the α-dependent energy Edisp

α

builds up electron correlation for each monomer and recovers
the dispersion energy for the fully correlated interacting
subsystems. The second term in eq 40 can be viewed as a non-
Casimir-Polder term in the AC theory.
Notice that the AC dispersion energy presented in eq 40 is

only asymptotically, that is, in the zero-overlap limit, equal to
the expression derived from the perturbation theory, eq 15

E A B E A B( ) ( )I R Idisp
AC

0 disp
(2)

0
AB
=
→∞ (42)

In this sense, the second-order perturbation theory and the
adiabatic connection formalism are consistent in describing
second-order dispersion energy in excited-state systems with
localized exciton if the wave function describing interacting
monomers satisfies the condition given in eq 16. Notice that
when both monomers are described with MC wave functions,
that is, active orbitals are localized on both monomers, the AC-
based dispersion energy differs from its second-order counter-
part even asymptotically, since it accounts only for the residual
dispersion energy.48

Both AC and the second-order perturbation theories for
describing correlation interaction energy form a ground for
approximate methods dedicated to molecular interactions, as
shown below.

4. CORRECTING SUPERMOLECULAR INTERACTION
ENERGY FOR THE LONG-RANGE CORRELATION
ENERGY

Investigation of intermolecular interactions in excited-state
systems with wave function theory demands size-consistency of
the assumed multiconfigurational wave function model. In the
case of variational MCSCF methods, CASSCF in particular,
the wave function is constructed as an antisymmetrized
product of the Slater determinant, Φ, formed from the inactive
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orbitals, and the MC function, Ψact, constructed from the
active orbitals

AMC
actΨ = ̂[ΦΨ ] (43)

(the operator Â is an antisymmetrizer with the normalization
factor). If such an ansatz is used for a dimer, the size-
consistency condition implies that for each component Φ and
Ψact the following conditions hold

AAB
R

A B

AB
Φ = ̂[Φ Φ ]

→∞ (44)

AAB
R

A B
act act act

AB
Ψ = ̂[Ψ Ψ ]

→∞ (45)

where the monomers’ wave functions are

A .A B A B A B( ) ( )
act

( )Ψ = ̂[Φ Ψ ] (46)

Such a group-product size-consistency condition implies the
energy size-consistency.
As discussed in ref 48, the supermolecular interaction energy

expression obtained by employing the multiconfigurational
wave function captures only a marginal portion of the
dispersion energy. If only one monomer is described with a
MC wave function, then the dispersion energy is entirely
missing from the supermolecular interaction energy. Clearly,
accounting for the long-range correlation is crucial when
applying multiconfigurational models to noncovalent inter-
actions.
CAS+DISP. One of the possible solutions is a direct

addition of the missing dispersion energy, as proposed in ref
48. The CAS+DISP method48 employed in this work consists
of adding perturbation-theory-based dispersion energy, eq 2,
together with the dispersion-exchange component to the CAS
interaction energy

E A B E A B E A E B

E A B

( ) ( ) ( ) ( )

( )
I I I

I

int
CAS DISP

0
CAS

0
CAS CAS

0

DISP 0

= − −

+

+

(47)

where

E A B E A B E A B( ) ( ) ( )I I IDISP 0 disp
(2)

0 exch disp
(2)

0= + ‐ (48)

Response properties of the monomers entering the computa-

tion of both the Edisp
(2) and Eexch disp

(2)
‐ terms follow from solutions

of ERPA22,53 equations, as described in detail in our earlier
works.23,52

AC0-CAS. The adiabatic connection approach, see eq 18,
allows one, in principle, to recover the correlation energy for
CASSCF wave functions exactly.49 Approximate multiconfi-
gurational AC methods assume fixing the electron density
along the AC path.21,25,49,54−56 These approaches employ
ERPA equations22,53 for the computation of the linear
response for the AC Hamiltonian. As it has been shown in
ref 57, ERPA is size-consistent, which implies that the AC
methods combined with CAS are suitable for studying the
molecular interactions.
The most efficient variant of ERPA-based adiabatic

connection methods, referred to as AC0, is based on the
linear expansion of the AC integrand Wα, see eq 19, at α = 0

E W Wd
1
2corr

AC0

0

1

0
(1)

0
(1)∫ α α= =α α= = (49)

By comparing the explicit form of the W 0
(1)
α= expression given

in eq 46 in ref 25 with the formula for the dispersion energy in
the uncoupled approximation [see eq 26 in ref 52], it follows
immediately that the dispersion energy predicted by the AC0
method is described at the uncoupled level of theory, cf., eq 41

E A B E A E B

E A B E A B

lim ( ) ( ) ( )

( ) ( )

I I

I I

R
corr
AC0

0 corr
AC0

corr
AC0

0

disp
AC0

0 disp
UC

0

AB

{ − − }

= =

→∞

(50)

In the AC0-CAS method, the interaction energy is obtained by
computing AC0 correlation energy for a dimer and monomers
from pertinent CAS wave functions (in fact, only 1- and 2-
RDMs from CAS are needed); that is,

E A B E A B E A

E B

( ) ( ) ( )

( )
I I Iint

AC0 CAS
0

AC0 CAS
0

AC0 CAS

AC0 CAS
0

= −

−

‐ ‐ ‐

‐
(51)

where

E X E X E X( ) ( ) ( )AC0 CAS CAS
corr
AC0= +‐

(52)

lrAC0-CAS. The CAS interaction energy in the CAS+DISP
approach is corrected for the dynamic correlation only in the
long-range of electron−electron interaction and it inevitably
misses the short-range electron correlation. Although the AC0
correlation correction covers the entire range of electron
correlation, it involves random phase approximation. AC0-
CAS is thus expected to give a less accurate description of the
short-range correlation effects compared to density functional
approximations.58 To exploit this advantage of DFT over ab
initio methods, we have recently proposed to constrain the
range of the AC0 description by deriving its long-range variant,
and combining it with the short-range PBE exchange-
correlation functional Exc

SR PBE‐ .59 The resulting lrAC0-CAS
energy expression27

E E ElrAC0 CAS lrCAS lrAC0= +‐ (53)

where

E T V V

E E
ne ee

H xc

lrCAS CASSCF LR CASSCF

SR SR PBE
CASSCF CASSCFρ ρ

= ⟨Ψ | ̂ + ̂ + ̂ |Ψ ⟩

+ [ ] + [ ]Ψ
−

Ψ (54)

is employed in a post-CAS fashion; that is, the CASSCF wave
function ΨCASSCF and the electron density CASSCFρΨ follow from
CAS calculations with the Hamiltonian including the full-range
electron interaction operator. Range-separation of the electron
correlation into the long-range (LR) and short-range (SR)
parts is governed by a parameter μ, such that the AC0-CAS is a
limiting case of lrAC0-CAS if μ → ∞.27 In our calculations, μ
has been set to 0.5 bohr−1.

SAPT(MC). One of the methods suitable for studying
molecular interactions in the excited state is the recently
developed multiconfigurational symmetry adapted perturba-
tion theory, SAPT(MC).24 This approach has two advantages
over the supermolecular method. First, SAPT requires only
monomer properties, so there is no need to compute a dimer
wave function. For MC wave functions, the latter may be
problematic if size-consistency is to be preserved. The second
appealing feature of SAPT is that the interaction energy is
given as a sum of physically meaningful components which
provide insight into the character of the interaction.
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The SAPT(MC) formalism is dedicated to multireference
systems. It can be applied with any ab initio model that gives
access to 1- and 2-RDMs of monomers. The method predicts
the interaction energy up to the second-order terms in the
interaction operator

E E E E E E

E

SAPT(MC)
elst
(1)

exch
(1)

ind
(2)

exch ind
(2)

disp
(2)

exch disp
(2)

= + + + +

+

‐

‐ (55)

Both first- and second-order exchange terms employ the S2

approximation,60 while the density response functions that
enter the second-order terms are described at the ERPA level
of theory. For a general expression for the dispersion energy
used in SAPT see eq 2.
SAPT(MC) combined with CASSCF description of the

monomers leads to the method called SAPT(CAS). To
improve SAPT(CAS) accuracy for systems with large polar-
ization effects, one needs to account for higher-order induction
terms. For monomers in their ground states, these terms can be
approximated at the Hartree−Fock (HF) level of theory61,62

and represented as the δHF correction

E E E E E( )HF int
HF

elst
(10)

exch
(10)

ind,resp
(20)

exch ind,resp
(20)δ = − + + + ‐

(56)

where Eint
HF corresponds to the supermolecular HF interaction

energy and the double (ij) superscript refers to the ith order in
the intermolecular perturbation and the jth order in the
intramolecular perturbation. When considering monomers in
their excited states, there is no trivial way to obtain the
equivalent of the δHF correction. To circumvent this problem,
we assume that a shift in higher-than-second-order induction
terms following generation of an exciton is proportional to a
corresponding change of the second-order induction and
propose a δCAS analogue of the δHF term calculated as

E

E

(ES)

(GS)
CAS

IND
(2)

IND
(2) HFδ δ=

(57)

where E E EIND
(2)

ind
(2)

exch ind
(2)= + ‐ and ES/GS denote dimers in

excited and ground states, respectively. We have applied the
δCAS correction in all SAPT(CAS) calculations for interactions
involving excited states.
Nonlocal Density Correlation Functional: reVV10. The

approximate methods discussed thus far rely on the dispersion
energy computed from one- and two-electron reduced density
matrices of monomers. In DFT, the dispersion energy should
be attainable using only electron densities or Kohn−Sham
orbitals and orbital energies of monomers. The latter quantities
are used in SAPT(DFT),63,64 which provides accurate
predictions for the second-order dispersion energy. The
method is not applicable, however, to singlet excited systems,
studied in this work. A viable alternative within the Kohn−
Sham framework are nonlocal correlation energy density
functionals, capable of describing long-range correlation.65,66

They were designed to cure the deficiencies of the local and
semilocal functionals in describing van der Waals systems. In
particular, the VV10 correlation energy functional28 introduced
by Vydrov and van Voorhis has gained popularity in
applications to noncovalently bound molecular complexes
due to its simple form, afforded accuracy, and the possibility to
couple it with different density functional approximations. The
excellent performance of the VV10 model combined with

various exchange-correlation functionals (see e.g., refs 67 and
68) has motivated us to adapt it to the dispersion-free
CASSCF method in order to describe molecular interactions.
This required reparameterizing VV10, so that the functional
would capture only the missing part of the long-range
correlation in the supermolecular CAS, that is, the dispersion
energy. A similar idea to design a functional reproducing the
second-order dispersion has recently been explored by Shahbaz
and Szalewicz.69 Their functional achieves good accuracy, but
its applicability is limited to systems with a clear separation
into weakly interacting monomers. Employment of the VV10
correlation functional for describing dispersion energy is free of
this limitation.
The VV10 expression for the nonlocal correlation energy

written in atomic units reads

E r r r r

r r r r

r r r r

3
4

d d ( ) ( )r

( ) ( )r ( ) ( )r

( ) ( ) ( ( ) ( ))r

c
VV10

1 2 1 2 12
6

0 1 1 12
2 1

0 2 2 12
2 1

0 1 0 2 1 2 12
2 1

∫ ∫ ρ ρ

ω κ ω κ

ω ω κ κ

= −

× [ + ] [ + ]

× [ + + + ]

−

− − − −

− −

(58)

(notice that a constraint of vanishing VV10 for uniform
densities is not imposed), where the local excitation frequency
ω0(r) is defined as

Cr
r

r
r

( )
( )

( )
4 ( )

30

4

ω ρ
ρ

πρ= ∇ +
(59)

An adjustable parameter C governs the behavior of the
integrand in eq 58 in the r12 → ∞ limit. The κ(r) function

br
r

( )
3 ( )

2

2/3 5/6 1/6

κ π ρ=
(60)

playing a dominant role in the short-range interelectron
distance regions, includes a parameter b. The aim of combining
VV10 with CASSCF is to correct for the missing dispersion
energy in the latter. For this purpose the parameters C and b
must be tuned, so that the VV10 nonlocal correlation
interaction energy, Ecorr,int

VV10

E E AB E A E Bc c ccorr,int
VV10 VV10 VV10 VV10= [ ] − [ ] − [ ] (61)

matches the sum of the second-order dispersion and exchange-
dispersion. In this work, we reparameterized VV10 to minimize
the error of counterpoise-corrected VV10 correlation inter-
action energy, see eq 61, for the training set consisting of
argon, water, and ethanol dimers (cf., Supporting Information
for details). The SAPT(DFT) dispersion and exchange-
dispersion energies taken from ref 69 are used as benchmarks
in training the functional. We found the optimal values of C =
0.013 and b = 2.84 to be compared with C = 0.0093 and b =
5.9 obtained in ref 28 for VV10 combined with the rPW8670

exchange and PBE71 correlation functionals. The smaller b
value in the dispersion-optimized functional than that in the
original work means that correlation interaction energies
following from reparameterized VV10 are more binding. This
is understandable, since VV10 combined with rPW86-PBE
must account for only a fraction of the long-range correlation
energy when densities of the interacting fragments overlap, the
rest is recovered by the exchange-correlation density func-
tional.
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The optimized VV10 has been tested on a set consisting of 8
molecular dimers (Ar−HF, nitromethane, methylformate,
benzene−methane, benzene−water, imidazole, nitrobenzene,
and ethylenedinitramine dimers) and 60 data points, achieving
mean absolute percentage error and mean error of 14% and
−0.13 kcal·mol−1, respectively. The details of the calculations
are presented in the Supporting Information. The reparame-
terized VV10 correlation functional will be referred to as
reVV10, and the CASSCF interaction energy corrected for the
long-range correlation obtained as shown in eq 61 will be
denoted as CAS-reVV10.
On a final note, since reVV10 is parametrized explicitly for

the dispersion energy, it can be combined with any
“dispersion-free” model, such as the supermolecular Har-
tree−Fock interaction energy or dispersionless DFT ap-
proaches.72,73

5. NONCOVALENT INTERACTIONS IN π → π* AND
n → π* EXCITED SYSTEMS

5.1. Computational Details. For this study, we selected
eight complexes from the S66 benchmark data set74,75 of
Hobza and co-workers: benzene−water, benzene−MeOH,
benzene−MeNH2, pyridine−water, pyridine−MeOH, pyri-
dine−MeNH2, peptide−water, peptide−MeNH2 (peptide
corresponds to N-methyl-acetamide), shown in Figure 1.
Both ground- and excited-state calculations employed the
original S66 geometries optimized for the ground state at the
MP2/cc-pVTZ level of theory. The Boys−Bernardi counter-
poise correction was applied to eliminate the basis set
superposition error (BSSE).76 The excitons in excited states
calculations were localized on benzene (π → π*), pyridine (π
→ π*), and peptide (n → π*) molecules. As a benchmark for
the interaction energy in ground state dimers we adopted the
CCSD(T) results extrapolated to the complete basis set limit
(CBS) from ref 74. Reference values of the interaction energy
in complexes involving excited states were taken from ref 20.
They were obtained by combining the CCSD(T)/CBS

description of the ground state with excitation energies
calculated at the EOM-CCSD77 level of theory using the 6-
31++G(d,p) basis set.78−80

All CASSCF computations employed the aug-cc-pVTZ basis
set81 and were performed in the Molpro82 program. The MP2
orbitals were used as a starting guess for CASSCF. The active
space composition was identical for ground- and excited-states.
Benzene active space involved six active electrons on six
orbitals, the three π bonding and the three π* antibonding
MOs, labeled as CAS(6,6).83 The active space for pyridine
included the three π bonding and three π* antibonding orbitals
of the pyridine ring along with one nitrogen’s lone pair,
CAS(8,7).84 N-methyl-acetamide (peptide) active space was
composed of σCO, πCO, COπ* and COσ* orbitals, and two lone pair
orbitals located on oxygen nO.

85 To obtain the ground- and
excited-state wave functions of both the dimer and one of the
monomers, we carried out two-state state-averaged CAS
computations.
Note that orbital rotations are usually required to maintain

size-consistency in CASSCF, even when MP2 or CI natural
orbitals are employed as the initial guess. To ensure size-
consistency, we first converged a CASSCF dimer wave
function with monomers separated by 100 Å, confirming that
the supermolecular interaction energy vanishes. The resulting
orbitals served as the initial guess for equilibrium geometry
dimer calculations.
All CAS+DISP, AC0-CAS, lrAC0-CAS, CAS+reVV10, and

SAPT(CAS) calculations were performed in the GAMMCOR

program.86 The required electron integrals, 1- and 2-RDMs for
CASSCF wave functions were obtained in the locally modified
Molpro package. The latter program was also used to carry out
CASPT287 calculations.
As previously discussed, see eq 15, the dispersion energy for

excited-state systems includes non-Casimir-Polder terms
resulting from negative transitions. For the lowest excited
states considered there is one negative excitation 1 → 0.

Figure 1. Structures of eight complexes in their ground state geometries. Interaction energies in the lowest π−π* (benzene and pyridine
complexes) and n−π* (peptide complexes) excited states are studied in this work.
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Consequently, the sum of the aforementioned terms reads [set
I = 1 and J = 0 in eq 6]

W A B

1, 0
disp
1 01 0∑ ε≡

μ ν
μν

< >

→

(62)

The procedure proposed in ref 24, implemented in GAMMCOR,
was used to compute the non-Casimir-Polder disp

1 0ε → term for
each dimer.
5.2. Insights from a SAPT(CAS) Analysis. Let us first

examine the SAPT(CAS) results and analyze the changes in
interaction energy components induced by vertical excitations.
Beginning with the complexes of benzene interacting with
H2O, MeOH, and MeNH2 molecules, we note that in the
ground state all complexes are bound due to an X−H···π
interaction, which is of a mixed electrostatic and dispersion

character. The Edisp
(2) to Eelst

(1) ratio computed for the ground state
amounts to 1.1, 1.6, and 2.2 for benzene−H2O, −MeOH, and
−MeNH2 complexes, respectively (see Table S2 in the
Supporting Information). Evidently, the methylamine complex
can be considered dispersion-dominated, in agreement with
data reported in ref 74. When the benzene-localized exciton is
generated, the dispersion to electrostatic energy ratios increase
to 1.6, 2.2, 2.8 (see Table 1) and the interaction is more
dispersion-driven than in ground states. At the same time,
inspection of the SAPT(CAS) results reported in Table 1
shows that the X−H···π interaction is destabilized by the π−π*
excitation on benzene in all three complexes (in agreement
with the benchmark values, see below). Analysis of the shifts in
values of the SAPT(CAS) energy components triggered by the
excitation provides an insight into the mechanisms behind the
destabilization. Namely, electron density redistribution from π
to π* orbitals decreases the electrostatic attraction by 0.88,
0.98, and 0.54 kcal·mol−1. This drop is paralleled by a lowered
exchange repulsion, but the latter effect is not sufficient to
compensate for the decrease in electrostatics. Another source
of destabilization of the benzene complexes in the excited state
is the reduction of the dispersion interaction by 0.17, 0.24, and
0.22 kcal·mol−1. This may seem counterintuitive, as it is a

common understanding that the dispersion attraction should
increase in excited states due to the increased static
polarizability, see the discussion in ref 20. One concludes
that in the π−π* state the X−H···π interaction is weakened
compared to the ground state. Although it remains dominated
by both electrostatic and dispersion energy contributions, the
electrostatic component is substantially smaller than in ground
states.
In hydrogen-bonded peptide−water and peptide−methyl-

amine dimers, the interaction energy also decreases upon the
n−π* excitation. The SAPT(CAS) explanation is the same as
in the case of benzene complexes, namely the hydrogen bond
formed by peptide is weakened as a result of the decreased
electrostatic attraction. The latter lowers by 0.71 kcal·mol−1 for
both complexes (see Table 1). This is expected, since the
n−π* excitation reduces the electron density on the nitrogen
atom of the peptide, which serves as a hydrogen-bond
acceptor. The change in the dispersion energy is negligible in
the complex with water. For the peptide−methylamine dimer
the dispersion increase is visible, yet it is only a minor effect of

0.10 kcal·mol−1 (below 2% of the Edisp
(2) ). Therefore, SAPT

identifies destabilization of the hydrogen bonded systems upon
the vertical n−π* excitation as a mainly electrostatic effect.
This remains in agreement with the energy decomposition
analysis study of Head-Gordon and co-workers.32

The last group of excited complexes investigated in this work
comprises pyridine interacting with water, methanol, and
methylamine molecules. The first two complexes are hydrogen-
bonded,74 which is confirmed by the low dispersion to
electrostatic energies ratio, amounting to 0.4 in the ground
state (see Table S2 in the Supporting Information). For the
pyridine−methylamine dimer the magnitude of the dispersion
energy is of the order of the electrostatic term (compare −5.17
vs −4.06 kcal·mol−1), and the character of the interaction is
therefore mixed. The considered π−π* interaction does not
involve nitrogen lone pair electrons of pyridine, so that H-
bonded complexes are practically unaffected by the excitation.
Indeed, differences in SAPT(CAS) energy components

Table 1. Upper part of the Table Presents Interaction Energy Components of SAPT(CAS), their Sums (Eint
SAPT), and non-

Casimir-Polder Terms (εdisp
1→0) for Excited State Complexes. Differences of SAPT(CAS) Energies between Excited (e.s.) and

Ground States (g.s.), ΔEx = Ex(e.s.) − Ex(g.s.), are Shown in the Lower Part of the Table. All Values Are Reported in kcal·
mol−1

Eelst
(1) Eexch

(1) Eind
(2) Eexch‑ind

(2) Edisp
(2) Eexch‑disp

(2) Eint
SAPT εdisp

1→0

benzene−water −1.85 2.82 −1.23 0.65 −2.88 0.33 −2.16 −0.04
benzene−MeOH −2.10 4.07 −1.57 0.96 −4.63 0.52 −2.76 −0.06
benzene−MeNH2 −1.68 3.73 −1.12 0.88 −4.62 0.54 −2.28 −0.02
pyridine−water −11.23 10.66 −5.17 2.96 −4.05 0.84 −5.99 −0.07
pyridine−MeOH −11.79 11.79 −5.92 3.53 −4.95 0.99 −6.37 −0.08
pyridine−MeNH2 −3.89 5.46 −1.79 1.30 −5.01 0.66 −3.27 −0.08
peptide−water −5.99 5.33 −1.95 1.01 −2.93 0.46 −4.09 0.00
peptide−MeNH2 −9.84 10.91 −5.04 3.35 −5.78 1.10 −5.30 0.00

ΔEelst
(1) ΔEexch

(1) ΔEind(2) ΔEexch‑ind
(2) ΔEdisp(2) ΔEexch‑disp

(2) ΔEint
SAPT

benzene−water 0.88 −0.35 0.11 −0.05 0.17 −0.05 0.72
benzene−MeOH 0.98 −0.45 0.15 −0.08 0.24 −0.07 0.77
benzene−MeNH2 0.54 −0.25 0.08 −0.03 0.22 −0.05 0.50
pyridine−water −0.04 0.02 0.02 0.01 0.02 0.00 0.03
pyridine−MeOH −0.03 0.02 0.02 0.01 0.04 0.00 0.04
pyridine−MeNH2 0.17 −0.15 0.04 −0.04 0.15 −0.03 0.14
peptide−water 0.71 −0.03 0.12 −0.03 −0.01 0.01 0.77
peptide−MeNH2 0.71 0.05 −0.12 0.32 −0.10 0.05 0.91
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between ground and excited states for H-bonded pyridine−
water and pyridine−methanol complexes do not exceed 0.04
kcal·mol−1. For the methylamine complex one observes a
positive shift in the interaction energy by 0.14 kcal·mol−1. It
results from decreased electrostatic and dispersion attractive
interactions. The magnitudes of these two energy components
are lowered by, respectively, 0.17 and 0.15 kcal·mol−1. These
changes are not compensated by a negative shift of the
exchange energy, which in the excited state is by 0.15 kcal·
mol−1 lower than in the ground state.
5.3. Assessment of Correlation-Energy-Corrected

CASSCF-Based Methods. In Table 2 we show contributions

to the interaction energies in excited-state dimers from the
intermonomer electron correlation computed as Ecorr(AB) −
Ecorr(A) − Ecorr(B), where Ecorr denotes AC0, lrAC0, and
reVV10. For comparison, we have also included the dispersion
energy obtained within the local response dispersion model,
LRD, proposed by Nakai et al. for ground and excited
states.20,88 The LRD energy values reported in Table 2 have
been taken from ref 20. The correlation interaction energies
presented in Table 2 are confronted with the dispersion energy
EDISP combining the second-order dispersion and the
exchange-dispersion terms, cf. eq 48. Since in our calculations
CAS interaction energy misses entirely the dispersion energy
contribution,48 the prime role of the correlation interaction
energy added to CAS is to compensate for the lack of the
dispersion energy not only in the long intermolecular distance,

but also when electron densities of interacting fragments
overlap.
It is evident from Table 2, that the AC0 correlation

interaction energies are systematically smaller in magnitude
than EDISP. Recall that AC0 accounts for the uncoupled
dispersion energy only in the asymptotic regime, eq 50.
Clearly, this is not fulfilled when monomer densities overlap
(see also Table S3 in the Supporting Information for
comparison with uncoupled dispersion terms).
Employing the range-separation of electron interaction

operator and constraining the AC0 correction to the long-
range, as it is done in the lrAC0 approach, removes the
systematic underestimation and relative deviations from EDISP
fall in the 1−15% range.
The VV10 functional, reparameterized in this work to

reproduce the pure dispersion energy (EDISP) in super-
molecular calculations for ground states, deviates from the
true EDISP by more than 0.5 kcal·mol−1 (11−33% deviations in
terms of relative errors). The correlation energy from the LRD
model of Nakai et al.19,88 does not match the dispersion
energy, the LRD energy being 2−3 times smaller than EDISP.
This implies that LRD recovers only a part of the long-range
correlation (dispersion) interaction energy and the remaining
(middle-range) correlation is captured by the correlation
energy functional with which LRD is paired. A good level of
accuracy of LRD combined with the long-range corrected LC-
BOP functional and the pertinent TD-DFT excitation energies,
see Table 4, is achieved due to the tuning of both the range-
separation parameter in the exchange functional and
parameters in the LRD correction. Notice that the
recommended values of the range-separation parameter for
the LC-BOP functional combined with LRD are different for
ground and the excited states (0.47 and 0.33 au,
respectively).20

Tables 3 and 4 and Figure 2 present the interaction energies
for ground and excited states obtained with uncorrected
CASSCF, correlation-energy-corrected CASSCF methods, and
SAPT(CAS) supplemented with δHF (ground states) and δCAS
terms (excited states). For comparison, LC-BOP-LRD
interaction energies from ref 20 have been included.
The CASSCF interaction energies are, as expected, severely

underestimated for both ground and excited states, as a
consequence of CASSCF missing entirely the dispersion
interaction.48 This deficiency is most striking in the case of
dispersion-dominated excited benzene complexes (Table 1),
which are predicted as unbound by CASSCF. A significant

Table 2. AC0, lrAC0, reVV10, and LRD Correlation Energy
Contributions to Interaction Energies for π−π* (Benzene
and Pyridine Complexes) and n−π* (Peptide Complexes)
Excited State Systems Confronted with the Sum of the
Dispersion and Exchange-Dispersion Energy EDISP (see eq
48). Values Are Reported in kcal·mol−1

EDISP AC0 lrAC0 reVV10 LRD

benzene−water −2.55 −2.50 −2.93 −3.04 −1.07
benzene−MeOH −4.11 −3.58 −4.70 −4.99 −1.84
benzene−MeNH2 −4.08 −3.91 −4.51 −4.97 −1.95
pyridine−water −3.21 −2.41 −3.14 −2.16 −0.56
pyridine−MeOH −3.96 −2.71 −3.90 −2.97 −0.92
pyridine−MeNH2 −4.34 −4.04 −4.72 −4.85 −1.71
peptide−water −2.47 −2.00 −2.29 −2.07 −0.53
peptide−MeNH2 −4.69 −4.10 −4.74 −4.15 −1.30

Table 3. Ground State Interaction Energies in kcal·mol−1a

CAS CAS+DISP AC0-CAS lrAC0-CAS CASPT2 CAS-reVV10 SAPT LC-BOP+LRD ref.

benzene−water −0.53 −3.20 −2.99 −3.45 −3.13 −3.58 −3.27 −3.33 −3.29
benzene−MeOH 0.30 −3.98 −3.74 −4.42 −4.14 −4.71 −4.08 −3.91 −4.17
benzene−MeNH2 1.14 −3.10 −2.91 −3.46 −3.29 −3.85 −3.18 −2.92 −3.20
pyridine−water −4.20 −7.43 −6.21 −7.27 −5.44 −6.37 −6.95 −7.17 −6.97
pyridine−MeOH −4.00 −8.00 −6.73 −7.85 −7.22 −6.98 −7.49 −7.50 −7.51
pyridine−MeNH2 0.59 −3.87 −3.56 −4.17 −4.02 −4.28 −3.96 −3.55 −3.97
peptide−water −3.03 −5.49 −4.79 −5.18 −4.94 −5.11 −5.15 −5.09 −5.20
peptide−MeNH2 −3.01 −7.65 −6.85 −7.50 −7.37 −7.20 −7.45 −7.16 −7.56
MUE 3.64 0.23 0.51 0.20 0.33 0.42 0.04 0.22
MA%E 78.75 4.10 9.67 4.25 5.37 9.03 0.83 4.65

aCCSD(T)/CBS results from ref 74 are given as reference in the last column. The SAPT acronym refers to SAPT(CAS) results including the δHF
correction [see eq 56]. Mean unsigned errors (MUE) and mean absolute percentage errors (MA%E) are computed with respect to the reference.
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improvement is achieved for all systems when the dispersion
correction is added to supermolecular CASSCF energies, as
shown in eq 47. The mean unsigned error (MUE) of 0.2 kcal·
mol−1 is achieved by the CAS+DISP methods before and after
generation of the exciton in the considered systems. This
translates into mean absolute percentage errors (MA%E) of
4% and 6% for ground- and excited states, respectively. Since
supermolecular CASSCF misses the majority of intramonomer
correlation effects, the good performance of CAS+DISP should
be, to some extent, attributed to error cancellation.
Using the approximate adiabatic connection correlation

correction for CAS, as it is done in the AC0-CAS method,
leads to interaction energies that are systematically under-
estimated. The MUE and MA%E values corresponding to
AC0-CAS amount to 0.61 kcal·mol−1 and 13%, respectively,
for the excited complexes (Table 3). This places the AC0-CAS
method as the least accurate (except for uncorrected CASSCF)
of all the considered approximations.
Out of the two sources of electron interaction inaccuracies

obtained with AC0-CAS, the insufficient electron correlation at
middle-ranges due to the underlying extended RPA and
description of the dispersion energy at the uncoupled level, the
former seems to be of prime importance. This is corroborated

by lrAC0-CAS results, for which the short- and middle-range
correlation is described efficiently within DFT. As shown in
Tables 3 and 4, lrAC0-CAS yields interaction energies of an
excellent accuracy with the mean errors of 0.20 kcal·mol−1 for
ground states and 0.15 kcal·mol−1 for localized-exciton systems
(corresponding to a MA%E value of 4% in both cases). The
spread of errors is small, and the maximum deviation from the
reference amounts to 0.25 kcal·mol−1. In fact, lrAC0-CAS
offers the highest accuracy of all the considered approaches.
The excellent performance of lrAC0-CAS is achieved by a
balanced description of the electron correlation at short,
middle, and long-range regimes by a density-functional and the
adiabatic-connection correlation. This feature is missing in the
CASPT2 method, where correlation energy results from the
second-order perturbation correction. The averaged CASPT2
error for excited-state complexes is rather large, amounting to
0.40 kcal·mol−1, and the method tends to overestimate the
interaction energy of the excited systems by as much as 0.75
kcal·mol−1 for the pyridine−water complex. Ground state
(closed shell) interaction energies predicted by CASPT2 are
mostly underestimated (Table 3) and the MUE of 0.33 kcal·
mol−1 is lower than after excitation.

Table 4. Interaction Energies in kcal·mol−1 for π−π* (Benzene and Pyridine Complexes) and n−π* (Peptide Complexes)
Excited Statesa

CAS CAS+DISP AC0-CAS lrAC0-CAS CASPT2 CAS-reVV10 SAPT LC-BOP+LRD ref

benzene−water 0.11 −2.43 −2.39 −2.82 −3.12 −2.93 −2.51 −2.88 −2.67
benzene−MeOH 0.96 −3.15 −2.62 −3.74 −3.42 −4.03 −3.25 −3.55 −3.49
benzene−MeNH2 1.51 −2.57 −2.40 −3.00 −3.24 −3.46 −2.62 −2.74 −2.80
pyridine−water −4.20 −7.41 −6.61 −7.34 −7.90 −6.37 −6.91 −7.96 −7.15
pyridine−MeOH −4.01 −7.97 −6.72 −7.91 −7.21 −6.98 −7.44 −8.37 −7.70
pyridine−MeNH2 0.61 −3.73 −3.43 −4.11 −3.96 −4.24 −3.82 −4.06 −4.19
peptide−water −2.23 −4.70 −4.23 −4.52 −4.92 −4.29 −4.36 −4.81 −4.63
peptide−MeNH2 −2.08 −6.76 −6.18 −6.82 −7.28 −6.23 −6.40 −6.97 −6.82
MUE 3.77 0.24 0.61 0.15 0.40 0.49 0.23 0.28 -
MA%E 88.83 5.93 13.27 3.70 8.74 10.77 4.85 5.12 -

aThe SAPT acronym refers to SAPT(CAS) results including the δCAS correction [see eq 57]. The Est. EOM-CCSD(T) values from ref 20 are given
as reference in the last column. Mean unsigned errors (MUE) and mean absolute percentage errors (MA%E) are computed with respect to the
reference.

Figure 2. Correlation plots for interaction energies for complexes in ground (panel a) and excited (panel b) states.
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It is worthwhile to compare the performance of methods
that employ density functionals to recover the long-range
correlation, that is, CAS-reVV10 and LC-BOP+LRD. In spite
of the fact that both approaches rely on parameters obtained
for ground states, they retain a similar level of accuracy for
excited-state complexes. The CAS-reVV10 method deviates
from the CC benchmark by 9% and 11% for ground states and
excited states, respectively. Taking into consideration that
CAS-reVV10 is of the lowest computational cost of all the
considered approximations, the MUE of 0.49 kcal·mol−1 is
considered acceptable. LC-BOP+LRD has an average error of
half of that of CAS-reVV10. Notice, however, that the
computational cost of the LRD correction for excited states
is higher than that for reVV10, as it requires solving the TD-
DFT equations. Both methods miss the contribution of the
non-Casimir-Polder terms to dispersion, which will be a
problem when these terms play a decisive role.24

SAPT(CAS) supplemented with the δCAS correction affords
a similar level of accuracy as the CAS+DISP model for excited-
state systems, with MA%E values amounting to 6% in both
cases. Since the considered systems are either H-bonded or of
a mixed character, polarization effects cannot be neglected:89

for excited states the δCAS terms reduce the mean unsigned
error of SAPT(CAS) from 0.90 kcal·mol−1 to 0.23 kcal·mol−1.
Further reduction of MUE to 0.18 kcal·mol−1 follows after
adding the non-Casimir-Polder terms shown in Table 1. The
excellent results obtained for ground-state complexes (MA%E
of 1%) should be attributed to a systematic error cancellation
between attractive and repulsive terms, which had also been
observed in a previous SAPT(CAS) study.24

6. SUMMARY AND CONCLUSIONS
This work has addressed the problem of intermolecular
interaction energy calculations in molecular complexes with
localized excitons. Our aim has been to provide a relevant
theoretical description of the dispersion energy. We have
derived a generalized Casimir-Polder formula involving terms
that result from negative electron transitions and are specific
for excited states. While these terms are negative for systems
with single excitons, they become positive for multiple excitons
localized on both monomers.
Apart from the perturbation-based expression, we have

derived the AC formula for the dispersion energy and its
lowest-order-expansion with respect to the interaction
potential. This approach recovers the dispersion interaction
through integration of the coupling parameter-dependent
dispersion energy corresponding to the AC Hamiltonian.
A numerical demonstration was carried out for a few dimers

from the S66 data set. The excitons in the studied systems
were localized on benzene, pyridine, and peptide molecules
forming complexes with water, methanol, and methylamine.
To examine interactions driven by the creation of a local

exciton, we have performed a SAPT(CAS) analysis. In linear
hydrogen-bonded peptide complexes the decrease in the
interaction strength upon n−π* excitation was attributed to
the decline in the electrostatic attraction. In on-top X−H···π
structures of benzene and pyridine dimers the diminished
electrostatic energy upon π−π* excitation remains the
dominant effect, yet substantially compensated by first-order
exchange. Importantly, in on-top complexes the change in
second-order termsdispersion and inductionis smaller
compared to that in first-order, but cannot be neglected. When
corrected for the induction energy terms beyond the second

order, SAPT(CAS) yielded mean errors of 0.2 kcal·mol−1 (5%
in terms of mean relative percentage errors).
SAPT(CAS) has also been employed for the evaluation of

the extended Casimir-Polder formula proposed in this work.
The non-Casimir-Polder terms computed for the lowest
valence excitations did not exceed −0.1 kcal·mol−1. In general,
however, non-Casimir-Polder contributions can be larger, see,
for example, ref 24. For such cases, methods neglecting the
negative excitations in dispersion for excited states are bound
to fail.
Next to perturbation-based and AC treatments of the

dispersion energy, we adapted a VV10 nonlocal correlation
density functional to the dispersionless CAS wave function.
The parameters in the functional have been trained on
benchmark dispersion energies. CAS-reVV10 interaction
energies yield errors averaging around 0.5 kcal·mol−1 for
excited state complexes. Taking into account the low
computational cost of the reVV10 correction, CAS-reVV10
may prove useful for large systems with localized excitons, for
which non-Casimir-Polder terms are negligible.
We examined approximate methods which correct CASSCF

for the missing electron correlation. A direct addition of the
second-order dispersion energy to the CASSCF interaction
energy (CAS+DISP) proved a viable approach, with the
averaged error of 0.24 kcal·mol−1. As expected, AC0
correlation energy, which employs the extended random
phase approximation, leads to a systematic underbinding.
Greatly improved results are obtained when a density
correlation functional is used for short-ranged electron
correlation, and the AC0 is limited to long-range. This
strategy, implemented in the lrAC0-CAS method, has reduced
the mean error of AC0-CAS from 0.61 kcal·mol−1 to 0.15 kcal·
mol−1 on the set of excited complexes. The range-separated
lrAC0-CAS model ranks as the most accurate approach for
studying interaction energies in excited state complexes.
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range-corrected multiconfiguration density functional with the on-top
pair density. J. Chem. Phys. 2020, 152, 094102.
(28) Vydrov, O. A.; Van Voorhis, T. Nonlocal van der Waals density
functional: The simpler the better. J. Chem. Phys. 2010, 133, 244103.
(29) Klessinger, M.; Michl, J. Excited States and Photochemistry of
Organic Molecules; VCH, 1995.
(30) Robb, M. A.; Garavelli, M.; Olivucci, M.; Bernardi, F. A
Computational Strategy for Organic Photochemistry. Rev. Comput.
Chem. 2000, 87−146.
(31) Reimers, J. R.; Cai, Z.-L. Hydrogen bonding and reactivity of
water to azines in their S1 (n, π*) electronic excited states in the gas
phase and in solution. Phys. Chem. Chem. Phys. 2012, 14, 8791−8802.
(32) Ge, Q.; Mao, Y.; Head-Gordon, M. Energy decomposition
analysis for exciplexes using absolutely localized molecular orbitals. J.
Chem. Phys. 2018, 148, 064105.
(33) Xu, Y.; Friedman, R.; Wu, W.; Su, P. Understanding
intermolecular interactions of large systems in ground state and
excited state by using density functional based tight binding methods.
J. Chem. Phys. 2021, 154, 194106.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00221
J. Chem. Theory Comput. 2022, 18, 3497−3511

3509

https://orcid.org/0000-0001-7423-3198
https://orcid.org/0000-0001-7423-3198
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ewa+Pastorczak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5046-1476
https://orcid.org/0000-0002-5046-1476
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00221?ref=pdf
https://doi.org/10.1021/cr040084k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr040084k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr040084k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev.physchem.54.011002.103746
https://doi.org/10.1146/annurev.physchem.54.011002.103746
https://doi.org/10.1021/acs.chemrev.5b00263?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.5b00263?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ccr.2019.213107
https://doi.org/10.1016/j.ccr.2019.213107
https://doi.org/10.1021/jacs.5b05586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b05586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b03316?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b03316?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b03316?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/adma.201601652
https://doi.org/10.1021/ar3001734?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar3001734?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.6b10075?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.6b10075?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c04066?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c04066?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.7b00601?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct1003803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct1003803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz200947j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.8b00244?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.8b00244?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cplett.2009.09.088
https://doi.org/10.1016/j.cplett.2009.09.088
https://doi.org/10.1021/ct200101x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200101x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/wcms.1094
https://doi.org/10.1002/wcms.1094
https://doi.org/10.1039/C3CP55361B
https://doi.org/10.1039/C3CP55361B
https://doi.org/10.1063/1.3269802
https://doi.org/10.1063/1.3269802
https://doi.org/10.1063/1.3269802
https://doi.org/10.1063/1.4754508
https://doi.org/10.1063/1.4754508
https://doi.org/10.1063/1.4754508
https://doi.org/10.1103/PhysRevLett.120.013001
https://doi.org/10.1103/PhysRevLett.120.013001
https://doi.org/10.1063/1.4766934
https://doi.org/10.1063/1.4766934
https://doi.org/10.1063/1.4766934
https://doi.org/10.1021/acs.jctc.9b00925?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00925?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00925?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00344?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00344?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00344?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00213?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00213?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00213?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b02391?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b02391?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b02391?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5138980
https://doi.org/10.1063/1.5138980
https://doi.org/10.1063/1.5138980
https://doi.org/10.1063/1.3521275
https://doi.org/10.1063/1.3521275
https://doi.org/10.1002/9780470125922.ch2
https://doi.org/10.1002/9780470125922.ch2
https://doi.org/10.1039/c2cp24040h
https://doi.org/10.1039/c2cp24040h
https://doi.org/10.1039/c2cp24040h
https://doi.org/10.1063/1.5017510
https://doi.org/10.1063/1.5017510
https://doi.org/10.1063/5.0052060
https://doi.org/10.1063/5.0052060
https://doi.org/10.1063/5.0052060
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00221?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(34) Ikabata, Y.; Nakai, H. Extension of local response dispersion
method to excited-state calculation based on time-dependent density
functional theory. J. Chem. Phys. 2012, 137, 124106.
(35) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and
accurate ab initio parametrization of density functional dispersion
correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010,
132, 154104.
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(89) Taylor, D. E.; Ángyán, J. G.; Galli, G.; Zhang, C.; Gygi, F.;
Hirao, K.; Song, J. W.; Rahul, K.; Anatole von Lilienfeld, O.;
Podeszwa, R.; Bulik, I. W.; Henderson, T. M.; Scuseria, G. E.;
Toulouse, J.; Peverati, R.; Truhlar, D. G.; Szalewicz, K. Blind test of
density-functional-based methods on intermolecular interaction
energies. J. Chem. Phys. 2016, 145, 124105.

■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was originally published ASAP on May 19, 2022,
with an error in eq 4. The corrected version was reposted on
May 24, 2022.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00221
J. Chem. Theory Comput. 2022, 18, 3497−3511

3511

https://doi.org/10.1080/00268977000101561
https://doi.org/10.1080/00268977000101561
https://doi.org/10.1080/00268977000101561
https://doi.org/10.1002/qua.560120850
https://doi.org/10.1002/qua.560120850
https://doi.org/10.1063/1.438955
https://doi.org/10.1063/1.438955
https://doi.org/10.1063/1.438955
https://doi.org/10.1002/jcc.540040303
https://doi.org/10.1002/jcc.540040303
https://doi.org/10.1063/1.447079
https://doi.org/10.1063/1.447079
https://doi.org/10.1063/1.447079
https://doi.org/10.1063/1.462569
https://doi.org/10.1063/1.462569
https://doi.org/10.1063/1.462569
https://doi.org/10.1002/wcms.82
https://doi.org/10.1002/wcms.82?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b03277?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b03277?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b03277?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/BF01134214
https://doi.org/10.1007/BF01134214
https://doi.org/10.1021/jp982645f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp982645f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp982645f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/pernalk/GAMMCOR
https://github.com/pernalk/GAMMCOR
https://doi.org/10.1063/1.481132
https://doi.org/10.1063/1.481132
https://doi.org/10.1002/qua.24786
https://doi.org/10.1002/qua.24786
https://doi.org/10.1063/1.4961095
https://doi.org/10.1063/1.4961095
https://doi.org/10.1063/1.4961095
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00221?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

