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BACKGROUND: Although survival statistics in patients with glioblastoma multiforme
(GBM) are well-defined at the group level, predicting individual patient survival remains
challenging because of significant variation within strata.
OBJECTIVE: To compare statistical and machine learning algorithms in their ability to
predict survival in GBM patients and deploy the best performing model as an online
survival calculator.
METHODS: Patients undergoing an operation for a histopathologically confirmed GBM
were extracted from the Surveillance Epidemiology and End Results (SEER) database
(2005-2015) and split into a training and hold-out test set in an 80/20 ratio. Fifteen statis-
tical and machine learning algorithms were trained based on 13 demographic, socioeco-
nomic, clinical, and radiographic features to predict overall survival, 1-yr survival status, and
compute personalized survival curves.
RESULTS: In total, 20 821 patients met our inclusion criteria. The accelerated failure
time model demonstrated superior performance in terms of discrimination (concordance
index = 0.70), calibration, interpretability, predictive applicability, and computational
efficiency compared to Cox proportional hazards regression and other machine learning
algorithms. This model was deployed through a free, publicly available software interface
(https://cnoc-bwh.shinyapps.io/gbmsurvivalpredictor/).
CONCLUSION: The development and deployment of survival prediction tools require
a multimodal assessment rather than a single metric comparison. This study provides
a framework for the development of prediction tools in cancer patients, as well as an
online survival calculator for patients with GBM. Future efforts should improve the inter-
pretability, predictive applicability, and computational efficiency of existing machine
learning algorithms, increase the granularity of population-based registries, and externally
validate the proposed prediction tool.
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G lioblastoma multiforme (GBM) is the
most common primary malignant brain
tumor with almost 12 000 new cases

per year in the United States and a median
survival of only a year after diagnosis.1 Adequate
survival prognostication is essential for informing
clinical and personal decision-making. Although

ABBREVIATIONS: AFT, accelerated failure time; CI, confidence interval; CPHR, Cox proportional hazards
regression; GBM, glioblastomamultiforme; IDH1, isocitrate dehydrogenase 1; KPS, Karnofsky performance status;
MGMT, O6-methylguanine-DNA methyltransferase; MMSE, mini-mental state examination; SEER, Surveillance
Epidemiology and End Result
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survival statistics are well-defined at the group
level, predicting individual patient survival
remains challenging because of the heterogenous
nature of the disease and significant variation in
survival within strata.
In recent years, numerous statistical and

machine learning algorithms have emerged that
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can learn from examples to make patient-level predictions of
survival. These algorithms can be particularly useful for tailoring
clinical care to the needs of the individual GBM patient.
This study aims to compare the most commonly used statis-

tical and machine learning algorithms in their ability to predict
individual patient survival in GBM patients. In order to promote
the reproducibility of the current study and facilitate external
validation and implementation of the developed models, we
deployed the best performing model as an online calculator
that provides interactive, online, and graphical representations of
personalized survival estimates.

METHODS

Data and Study Population
The transparent reporting of a multivariable prediction model for

Individual Prognosis or Diagnosis (TRIPOD) statement was used for
the reporting of this study.2 Data were extracted from the Surveil-
lance Epidemiology and End Results (SEER) database (2005-2015).3
The SEER registry compiles cancer incidence and survival data of 18
registries and covers 28% of the United States population from academic
and nonacademic hospitals and, as such, is broadly representative of
the United States population as a whole.4 Patients who underwent
surgery for a histopathologically confirmed diagnosis of a GBM (Inter-
national Classification of Diseases for Oncology-Third Edition [ICD-
O-3] codes 9440, 9441, and 9442) were included in the analysis.
Patients were excluded from the analysis if they died in the direct
postoperative period (≤30 d after surgery). Our institutional review
board has exempted the SEER database from review and waived the
need for informed consent because of the retrospective nature of this
study.

Outcome and Input Features
Althoughmachine learning provides a variety of predictive algorithms,

most of them are developed to accommodate binary or continuous
outcomes instead of censored survival outcomes (ie, time-to-event data).
To facilitate a vis-à-vis comparison between traditional statistical and
novel machine learning algorithms, we compared all algorithms in their
ability to predict one or more of the following survival outcomes:
(i) continuous: overall survival from diagnosis to death in months;
(ii) binary: 1-yr survival probability; and (iii) censored: subject-level
Kaplan-Meier survival curves. All demographic, socioeconomic, radio-
graphical, and therapeutic characteristics available at individual patient-
level in the SEER registry were included as input features. Continuous
variables included age at diagnosis (years) and maximal enhancing
tumor diameter in any dimension (millimeters). Categorical variables
included sex, race (White; Black; Asian; Other), ethnicity (Hispanic;
non-Hispanic), marital status (married; nonmarried), insurance status
(insured; uninsured/Medicaid), tumor laterality (left; right; midline),
tumor location (frontal; temporal; parietal; occipital; cerebellum;
brainstem; ventricles; overlapping lesion), tumor extension (confined to
primary location; ventricle involvement; midline crossing), surgery type
(biopsy; subtotal resection; gross-total resection), and administration of
any form of postoperative chemotherapy and/or radiotherapy. Data on
input features and survival outcomes were collected by independent,
trained data collectors.

Statistical Analysis
Missing data were multiple imputed by means of a random forest

algorithm.5 The total cohort was randomly split into a training and hold-
out test set based on an 80/20 ratio.

The Cox proportional hazards regression (CPHR) and the accel-
erated failure time (AFT) algorithms allow for inferential analysis on
censored survival data. Therefore, both approaches were also utilized
to provide insight into the independent association between covariates
and survival. Interactions between age, sex, surgery type, radiotherapy,
and chemotherapy were modeled in both approaches. The Benjamini-
Hochberg procedure based on 41 comparisons (26 parameters plus
15 two-way interactions) was used to adjust for multiple testing. The
proportional hazards assumption of the CPHR model was assessed by
means of the Schoenfeld Residuals Test, and the distribution assumption
of the AFT by means of a quantile-quantile plot. All covariates that were
statistically significantly associated with survival in the inferential analysis
were included in the predictive analysis.

For the predictive analysis, 15 machine learning and statistical
algorithms were trained including AFT, bagged decision trees, boosted
decision trees, boosted decision trees survival, CPHR, extreme boosted
decision trees, k-nearest neighbors, generalized linear models, lasso and
elastic-net regularized generalized linear models, multilayer perceptron,
naïve Bayes, random forests, random forest survival, recursive parti-
tioning, and support vector machines.6-8 Among these, only the AFT,
boosted decision trees survival, CPHR, random forest survival, and
recursive partitioning algorithms were capable of modeling time-to-event
data. Five-fold cross-validation was used on the training set for prepro-
cessing optimization and hyperparameter tuning. Hyperparameters were
model specific, such as the number of trees in a random forest model
and the number of layers or nodes per layer in a neural network. The
algorithms were subsequently trained with optimized hyperparameter
settings on the full training set and evaluated on the hold-out test set,
which has not been used for preprocessing and hyperparameter tuning
in any form.

Metrics of Predictive Performance
Discrimination and calibration were used as metrics for prediction

performance. Discrimination reflects the ability of a model to separate
observations, whereas calibration measures the agreement between
the observed and predicted outcomes.9 Discrimination was quantified
according to the concordance index (C-index). The C-index represents
the probability that for any 2 patients chosen at random, the patient who
had the event first is rated as being more at risk of the event according
to the model. Therefore, the C-index takes into account the occurrence
of the event, as well as the length of follow-up, and is particularly well-
suited for right-censored survival analysis.10 For the subject-level survival
curves produced by time-to-event models, the C-index was evaluated per
time point weighted according to the survival distribution in the test
set and integrated over time. The relationship between predicted 1-yr
survival probability and observed survival rate was graphically assessed in
a calibration plot.

Secondary Metrics
In addition to prediction performance, we evaluated additional

metrics that pose significant pragmatic challenges to the deployment
and implementation of prediction models in clinical care. These metrics
include model interpretability, predictive applicability, and computa-
tional efficiency. Lack of interpretability is an important concern for
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the implementation of many machine learning models, which are
typically referred to as “black-boxes” and sometimes cited as a weakness
compared to classical statistical methods. Inferential utility is a tradi-
tional hallmark of model interpretability and therefore included as a
model assessment measure. Predictive applicability refers to the type
of outcome classes to be predicted (binary, continuous, or time-to-
event), as well as the generated output of the fitted models (class
probability, numeric estimate, or subject-level survival curve, respec-
tively). Computational efficiency was measured in terms of model
size, loading time, and computation time to produce a prediction.
For models that do not provide natural prediction CI, model predic-
tions were bootstrapped 100 times with replacement to provide such
estimates.

We also developed an online, interactive, and graphical tool based on
the overall best performing model. Statistical analyses were conducted
using R (version 3.5.1, R Core Team, Vienna, Austria).11 All machine
learning modeling was performed using the Caret package,12 and the
application was built and deployed using the Shiny package and server.13

RESULTS

Patient Demographics and Clinical Characteristics
In total, 20 821 patients met our inclusion criteria. Missing

data were multiply imputed for insurance status (16.7%
missingness), tumor size (14.3%), tumor laterality (12.0%),
tumor location (6.6%), marital status (3.8%), tumor extension
(1.6%), surgery type (1.3%), and race (0.2%). Survival time
was censored for 3745 patients (18.0%). The estimated median
survival time in the total cohort was 13 mo (95% CI 12-13 mo).
The total cohort was split into a training and hold-out test set
of 16 656 and 4165 patients, respectively (Table, Supplemental
Digital Content 1).

Inferential Analysis
The Schoenfeld residuals test demonstrated that the

assumption of proportionality was violated for all variables
except sex and ethnicity in the CPHR model (all P < .006 and
global test P < .001; Table, Supplemental Digital Content
2). The quantile-quantile plot demonstrated a valid log-logistic
distribution assumption for the (AFT) model (Figure, Supple-
mental Digital Content 4). For these reasons, we present
the inferential results of the AFT model. The AFT allows
for uncomplicated interpretation, as it provides acceleration
factors (γ ), which represent the relative survival duration of a
strata compared to the reference group. For example, a γ of
1.5 reflects an expected survival duration that is 50% longer
compared to the reference group. Multivariable AFT analysis
identified older age (γ = 0.75 per 10 yr increase, P < .001),
male sex (γ = 0.93, P < .001), uninsured insurance status or
insurance by Medicaid (γ = 0.87, P < .001), midline tumors
(γ = 0.79, P = .004), tumors primarily located in the parietal
lobe (γ = 0.91, P < .001), brain stem (γ = 0.44, P < .001) or
multiple lobes (γ = 0.88, P < .001), tumors extending to the
ventricles (γ = 0.90, P < .001) or across the midline (γ = 0.73,
P< .001), and larger sized tumors (γ = 0.99 per cm, P< .001) as

independent predictors of shorter survival (Figure 1). Asian race
(γ = 1.14, P = .001), Hispanic ethnicity (γ = 1.08, P = .007),
married marital status (γ = 1.15, P < .001), gross-total resection
(γ = 1.19, P < .001), radiotherapy (γ = 1.27, P < .001),
and chemotherapy (γ = 1.49, P < .001) were identified as
independent predictors of longer survival.
The AFT model with interaction terms demonstrated that age

interacted with extent of resection (γ > 1.03 per 10 yr increase,
P < .02) as well as radiotherapy (γ = 1.04 per 10 yr increase,
P = .03) (Table, Supplemental Digital Content 3).

Predictive Analysis
The discriminatory performance on the hold-out test set as

measured by the C-index set ranged between 0.66 and 0.70
and between 0.67 and 0.70 across all models for predicting
overall survival and 1-yr survival status, respectively (Table 1).
Among the time-to-event models, the integrated C-index ranged
between 0.68 and 0.70 for predicting subject-level Kaplan-Meier
survival curves. The AFT model based on a log-logistic distri-
bution demonstrated the highest discriminatory performance
for computing personalized survival curves. Compared to all
continuous and binary models, the AFT model demonstrated
similar or better discrimination for predicting overall survival and
1-yr survival probability, respectively. Model calibration varied
significantly across all models (Figure, Supplemental Digital
Content 4). The traditional CPHR model systematically under-
estimated survival in the 1-yr survival probability range of 0.5 to
0.75, whereas the AFT model showed better calibration, partic-
ularly in this clinically relevant interval (Figure 2 and Figure,
Supplemental Digital Content 5).

SecondaryMetrics
Secondary metrics related to model deployment and clinical

implementation varied across all models (Table 2). AFT, CPHR,
and (regularized) generalized linear models were the only models
with inferential utility. AFT, CPHR, boosted decision trees
survival, recursive partitioning, and random forest survival were
the only models that can analyze time-to-event data and thus
compute subject-level survival curves. The application loading
time varied between 0.2 s and 45min. The 100-fold bootstrapped
prediction time varied between 1.9 s and 4 min on a single central
processing unit.

Deployment
Although the AFT model demonstrated similar to superior

performance in terms of discrimination and calibration, it
outperformed competing statistical and machine learning
algorithms in terms of interpretability, predictive applicability,
and computational efficiency. Therefore, it was selected as
backend for the online survival prediction tool (https://cnoc-
bwh.shinyapps.io/gbmsurvivalpredictor/). The estimated survival
profile for a hypothetical patient is shown in Figure 3.
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FIGURE 1. Forest plot for the accelerated failure time model characterizing the association between the individual predictors and survival. In
the inferential analysis, the estimates for age and tumor size were presented per 10-yr and 10-mm increase, respectively, to reflect the incremental
relative survival duration of clinically meaningful intervals. The P value was corrected for multiple testing by means of the Benjamini-Hochberg
procedure.

DISCUSSION

This manuscript and the accompanying online prediction tool
provide a framework for individualized survival modeling in
patients with GBM that is generalizable to other cancer and
neurosurgical patients. Although prior investigation in this area
tends to focus on metrics of prediction performance, we advocate
a multimodal assessment when constructing and implementing
clinical prediction models. The online prediction tool provides
interactive, online, and graphical representations of expected
survival in GBM patients.
Few other groups have developed an online survival prediction

tool for GBM patients.14-16 Gorlia et al14 developed multiple
nomograms based on a secondary analysis of trial data using age
at diagnosis, World Health Organization Performance Status
(WPS), extent of resection, Mini-Mental State Examination
(MMSE) score, and O6-methylguanine-DNA methyltransferase
(MGMT) methylation status as input features, thereby achieving

a maximum C-index of 0.66. Gittleman et al15 developed similar
nomograms including sex as an input feature and Karnofsky
Performance Status (KPS) score as a measure of functional status.
However, model discrimination remained similar (C-index 0.66).
Marko et al16 developed a model in which extent of resection
was modeled as a continuous covariate. This group also utilized
an AFT model to account for the violated proportional hazards
assumption and achieved a C-index of 0.69. Higher discrimi-
natory performance (C-index 0.63-0.77) was achieved in studies
that used machine learning algorithms to analyze complex,
high-dimensional data structures, such as genomic, imaging, and
health-related quality of life data.17-25 Although many machine
learning algorithms are ideally suited for superior prediction
performance by utilizing these high-dimensional data structures,
increasing model complexity may incur other costs in terms of
interpretability, ease of use, computation speed, and external
generalizability.
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TABLE 1. Discriminatory Performance for All Time-to-Event, Continuous, and Binary SurvivalModels According to the (Integrated) Concordance
Index

C-index (95% CI)

Overall survival 1 yr survival status Integrated C-index

Time-to-Event Models
Accelerated failure time 0.70 (0.70-0.70) 0.70 (0.70-0.70) 0.70 (0.70-0.70)
Cox proportional hazards regression 0.69 (0.69-0.70) 0.69 (0.69-0.70) 0.69 (0.69-0.70)
Boosted decision trees survival 0.69 (0.69-0.70) 0.69 (0.69-0.70) 0.69 (0.69-0.70)
Random forest survival 0.68 (0.68-0.68) 0.69 (0.69-0.69) 0.68 (0.68-0.68)
Recursive partitioning 0.68 (0.68-0.68) 0.68 (0.68-0.68) 0.68 (0.68-0.68)

Continuous and Binary Models
Boosted decision trees 0.70 (0.70-0.70) 0.70 (0.70-0.70) NA
Regularized generalized linear models 0.70 (0.70-0.70) 0.70 (0.70-0.70) NA
Generalized linear models 0.70 (0.70-0.70) 0.70 (0.70-0.70) NA
Support vector machines 0.70 (0.70-0.70) 0.69 (0.69-0.69) NA
Multilayer perceptron 0.61 (0.61-0.61) 0.69 (0.69-0.69) NA
Naïve Bayesa NA 0.69 (0.69-0.69) NA
Random forest 0.69 (0.69-0.69) 0.69 (0.69-0.69) NA
Extreme boosted decision trees 0.68 (0.68-0.68) 0.68 (0.68-0.68) NA
K-nearest neighbors 0.67 (0.67-0.67) 0.68 (0.67-0.68) NA
Bagged decision trees 0.67 (0.66-0.67) 0.66 (0.66-0.66) NA

Abbreviations: 1 yr, one year; C-index, concordance index; not available.
aNaïve Bayes fits to categorical data only.

FIGURE 2. Calibration plot demonstrating a systematic underestimation of
survival by the Cox proportional hazards regression model in the 1-yr survival
probability range of 0.5 to 0.75 and a well-calibrated accelerated failure time
model. Abbreviations: AFT, accelerated failure time; CPHR, Cox proportional
hazards regression.

Limitations
Due to the retrospective nature of the data acquisition,

it cannot be excluded that adjuvant therapy was adminis-
tered at outside hospitals and not corresponded back to the
reporting hospital. However, because of the short survival period
in this patient population, the percentage of patients with
complete survival follow-up is exceptionally high. Although
clinically essential features were included to mitigate the risk
of confounding, the possibility of influence from unmeasured
confounders cannot be excluded. Randomized data would be
ideal; however, it is practically and financially infeasible to
establish a cohort on this scale, and it has become ethically unjus-
tifiable to randomize newly diagnosed patients to a placebo arm
now that a proven, effective adjuvant treatment for GBM has
emerged.26 Predictive modeling on this scale remains therefore
bound to observational data, thereby highlighting the need for
exploring analytical approaches to mitigate confounding.
On average, 3.3% of all data points were missing in the total

data set, which was multiply imputed bymeans of a random forest
algorithm to mitigate the risk of systematic bias associated with
a complete-case analysis. Nonetheless, survival performance in
the current study is limited by the type and number of features
included in the SEER registry. As a result, KPS score, isoci-
trate dehydrogenase 1 (IDH1) mutation, 1p/19q codeletion, and
MGMT methylation status were not included in the current
iteration of the prediction model. Despite these limitations, the
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TABLE 2. SecondaryMetrics for Model Performance and Deployment

Interpretability Predictive applicability Computational efficiencya

Model Inference Prediction Binary Continuous Survival curves Size (Mb) Load time (s) Prediction time (s)

AFT X X X X X 20 0.9 1.9
Bagged decision trees – X X X – 16 380 1335 31.8
Boosted decision trees – X X X – 300 8.2 2.1
BDTS – X X X X 36 790 2455 234.3
CPHR X X X X X 37 1.7 7.5
GLM X X X X – 1 0.2 1.7
GLMnet X X X X – 109 6.7 2.3
K-nearest neighbors – X X X – 91 5.6 1.9
Multilayer perceptron – X X X – 45 1.4 17.4
Naïve Bayes – X X – – 82 2.9 13.0
Random forest – X X X – 1100 41.4 10.1
Random forest survival – X X X X 6350 65.7 139.0
Recursive partitioning – X X X X 490 52.1 3.4
Support vector machine – X X X – 111 4.8 4.4
X-boosted decision trees – X X X – 92 2.4 1.5

Abbreviations: AFT, accelerated failure time; BDTS, boosted decision trees survival; CPHR, Cox proportional hazards regression; GLM(net), (Lasso and elastic-net regularized) gener-
alized linear models; Mb, megabyte; s, seconds; TTE, time to event; X, extreme.
aBased on a 100-fold bootstrapped model.

FIGURE 3. Estimated survival profile of a hypothetical patient (male, 50-yr old, white, non-Hispanic, married, insured, left-sided, frontal lobe, confined to
its primary location, 50 mm in size, gross-total resection), plotted per adjuvant treatment strategy. Personalized estimates of overall survival in months (left),
1-yr survival probability (middle), and 5-yr survival curves (right) as predicted by the accelerated failure time model. The boxes and whiskers in the boxplots
represent the 50% and 95% CI, respectively. The ribbons in the survival curves represent the 95% CI. Abbreviations: Rx, radiotherapy; Cx, chemotherapy.

performance of the current proposed prediction tool exceeds that
of the currently available prediction tools and even approximates
the performance of many complex radiogenomic models,17-25
yet with the ease, speed, accessibility, interpretability, and gener-
alizability of clinical prediction tools. Furthermore, this study
presents a framework that can be updated and reiterated when
novel variables are added to the SEER registry or when novel

large-scale multicenter glioblastoma registries are assembled.
Because these models are trained on data from thousands of
patients from numerous hospitals across the U.S., we expect
the fitted models to be less prone to overfitting of data from
a single institution and plausibly more generalizable to patients
from diverse geographic regions undergoing a variety of clinical
treatments.
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Implications
Survival prognostication is critical for clinical and personal

decision-making in GBM patients. Although our current
prediction tool provides an interactive interface for survival
modeling with potential clinical utility, it is designed as a research
tool and should not be implemented in clinical practice prior to
prospective validation on multiple heterogenous cohorts. Using
a population-based registry might be more representative of the
typical glioblastoma patient in the United States; however, testing
the current model on single institutional or multicenter data
might be essential to confirm its prognostic value at point of
care. Furthermore, predictive models should inform rather than
direct clinical decision-making. We advocate a multidimensional
approach for survival prognostication, in which model predic-
tions are adjusted and balanced against complementary infor-
mation that is available including clinical experience, neuropsy-
chological testing, imaging data, and genomic information.
Many statistical and machine learning algorithms allow for

the analysis of historical patient cohorts to predict survival in
new patients. However, prediction performance, interpretability,
clinical utility, computational efficiency, and their associated
limitations vary widely across different models because of their
mathematical underpinnings. CPHR has emerged as the corner-
stone of survival analysis but is limited by the assumption of
proportionality, which assumes that the relationship between
covariate and outcome is constant over time. In the real world,
this association is often dynamic, and the assumption of propor-
tionality is effectively violated. The AFT model does allow for
increasing or decreasing covariate risk contribution over time,
which is particularly useful in individualizing survival predictions.
The AFT model has been shown to be a valuable alternative to
CPHR in simulation studies,27 as well as survival studies on GBM
patients.16
Molecular markers (eg, IDH1 mutation, 1p19q codeletion,

and MGMT methylation status), as well as functional status (eg,
KPS and MMSE), have been demonstrated to impact survival
in glioblastoma patients and are commonly used for stratifying
patient cohorts in clinical decision-making. However, they have
not yet been included in large-scale, multicenter registries. Their
eventual inclusion could improve individual patient survival
modeling. Furthermore, granular information with regards to the
healthcare setting (eg, academic vs nonacademic) and provided
clinical care (eg, volumetric measurements of tumor size and
extent of resection, as well as the timing, type, dose, and sequence
of adjuvant treatment) would be valuable to further improve
model performance. If addition of any of these variables improves
model performance only slightly, however, it may be preferable
to exclude some predictors for ease of use at the point of care.
Another method to overcome the lack of large-scale granular
datasets could be to explore the concept of transfer learning, a
common machine learning approach of updating a pretrained
model on novel data sources or even different outcomes.28 In
the context of glioblastoma survival prediction, this could mean
developing a base model on population-based data, which is

further trained on institutional data to fit institutional patterns
and include relevant institutional parameters not available in
population-based registries.
Although many machine learning algorithms show great

predictive performance, their utility is often limited to continuous
and binary models, which merely provide point estimates of
overall survival and 1-yr survival probability at a given point
in time, respectively. Transferring the predictive power of these
algorithms to time-to-event models allows for the computation
of subject-level survival curves, thereby enabling more granular
insight into expected survival. Furthermore, time-to-eventmodels
can be trained on patients with either complete or incom-
plete follow-up, which mitigates the systematic bias associated
with exclusion of the latter group. Although many machine
learning models demonstrate high performance in the academic
realm,29 lack of interpretability and computational inefficiency
hinders their deployment in the clinical realm. When evalu-
ating models for clinical deployment, we recommend evaluating
fitted models on several criteria rather than a singular focus on
prediction performance because factors unrelated to prediction
performance (such as interpretability or applicability) can exclude
high-performing models from clinical deployment. Although the
AFT model was selected because of its high overall performance,
the difference in prediction performance was not always clini-
cally meaningful, thereby emphasizing the importance of taking
into account these secondary metrics as well. Furthermore, the
prediction performance can change as the number and nature of
the input features change. For example, the assembly of multi-
modal data including radiogenomics data might call for alter-
native analytical approaches in the near future.
Prognostication is and always has been aimed at amoving target

and future factors impacting clinical course cannot be modeled,
most importantly advances in clinical care. Prediction perfor-
mance therefore remains an asymptotic ideal for which perfection
will never be reached. Future research should focus on devel-
oping clinically meaningful and interpretable prediction tools.
Improving the end-user transparency regarding the underlying
predictive mechanisms and the inherent limitations allows for a
safe and reliable implementation of survival prediction tools in
clinical care.

CONCLUSION

This study provides a framework for the development of
survival prediction tools in cancer patients, as well as an online
calculator for predicting survival in GBM patients. Future efforts
should focus on developing additional algorithms that can train
on right-censored survival data, improve the granularity of
population-based registries, and externally validate the proposed
prediction tool.
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T he authors have performed a comprehensive survival modeling study
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population database (SEER) to predict survival in GBM patients using
solid and valid statistical methods. Additionally, they present an online
prediction tool that provides interactive and graphical representation
of survival in these patients with an easy to use interface. For the
analysis they have incorporated variables such as socioeconomics, clinical
and radiographic features with a total of 20 281 patients meeting the
inclusion criteria. The current work provides a framework for the devel-
opment of a prediction tool that could potentially be utilized in clinical
practice to predict survival not only in GBM but also in other cancer
types. Such tool could potentially be incorporated into a mobile app to
further facilitate its use. There are obvious and inherent limitations of the
proposed predictive model (data obtained from a public database) related
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to the lack of factors that may improve the survival modeling such as
molecular markers, IDH mutations, MGMT methylation, facility type,
accurate extent of resection, KPS, etc. Despite these limitations, the
current study provides a model to be further tested in single or multi-
center institutional databases to further validate and implement its use
in the clinical setting.
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T his is a very interesting and timely article. The online calculator
described will be useful for individual patient prognostication. As

with any machine learning process the most important step is data acqui-
sition. The quality and quantity of this data is the determinant of how
good any predictive model can be. The model uses SEER data from
2005–2015, just at the time of emergence of the Stupp protocol until
WHO 2016.

This area of AI may well provide the basis for future endeavor in this
area and also provide a useful means to assess the impact of new and
emerging therapies for GBM. I agree that the AFTmodel is a good choice
for predicting survival however it may be inferior with interpreting hazard
ratios.

The authors acknowledge several limitations with their study in that
KPS, IDH1 mutation, 1p/19q co-deletion, and MGMT methylation
status were not included in the current iteration of the prediction model.
The authors have shared their insights into developing a more useful and
accurate model for the future and call for the development new large-
scale multicenter GBM registries.

The online calculator described will hopefully be (in the future when
fully developed to include KPS score and molecular data) useful for
individual patient prognostication.
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