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Hepatitis E Virus (HEV) follows waterborne or zoonotic/foodborne transmission. Genotype 3 HEV 
infections are worldwide spread, especially in swine populations, representing an emerging threat 
for human health, both for farm workers and pork meat consumers. Unfortunately, HEV in vitro 
culture and analysis are still difficult, resulting in a poor understanding of its biology and hampering 
the implementation of counteracting strategies. Indeed, HEV encodes for only one non-structural 
multifunctional and multidomain protein (ORF1), which might be a good candidate for anti-HEV 
drugging strategies. In this context, an in silico molecular modelling approach that consisted in 
homology modelling to derive the 3D model target, docking study to simulate the binding event, 
and molecular dynamics to check complex stability over time was used. This workflow succeeded 
to describe ORF1 RNA Helicase domain from a molecular standpoint allowing the identification 
of potential inhibitory compounds among natural plant-based flavagline-related molecules such 
as silvestrol, rocaglamide and derivatives thereof. In the context of scouting potential anti-viral 
compounds and relying on the outcomes presented, further dedicated investigations on silvestrol, 
rocaglamide and a promising oxidized derivative have been suggested. For the sake of data 
reproducibility, the 3D model of HEV RNA Helicase has been made publicly available.

Hepatitis E virus (HEV) is a small positive sense single stranded RNA virus member of the Hepiviridae family 
(Orthohepevirus genus). It is the causative agent of the infamous Hepatitis E. As reported by the World Health 
Organization1, there are 20 million HEV estimated infections per year and 3.3 million symptomatic cases of 
Hepatitis E worldwide. The fatality rate is usually relatively low, ranging from 0.2 to 4%, although it significantly 
increases for pregnant women2.

The virus spreads following several routes with differences between high- and low-income countries. In the 
formers it is strictly related to zoonotic and foodborne transmission3,4 while in the latter it commonly gives 
waterborne outbreaks5. There are eight genotypes described so far (HEV-1 to -8), differing for host preferences 
and ways of transmission. Particularly, HEV-3, which is globally spread, and HEV-4, which is mostly limited to 
Asia, follow zoonotic and foodborne transmission6,7. Reservoirs of HEV include deer, wild boars, cows, sheep, 
and goats with evidence of human infection reported to be caused by contaminated milk8–11. Despite the wide 
range of potential hosts, the main reservoirs are pigs, and the related meat-based products are a major source 
of infection12–14. HEV was detected also in the berry fruit and leafy green vegetables supply chain because of 
irrigation with contaminated water15,16.

Although this virus is widespread, in vitro culture and analysis are still difficult and consequently its molecular 
biology has not been fully understood yet17. One of the critical knowledge gaps concerns the HEV ORF1 gene, 
which encodes for a 185 kDa polyprotein with no cleavage sites reported18. ORF 1 is a multifunctional, multi-
domain and non-structural polyprotein with a crucial role in the viral diffusion and replication, which may be 
a possible druggable target to interfere with the viral mechanisms of infection19. However, its huge dimension 
and multi-domain architecture make its analysis challenging via canonical molecular biology and structural 
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approaches. In addition, the lack of available crystallographic and NMR structures hampers the identification and 
characterization of its druggable sites using canonical medicinal chemistry approaches. This lack of information 
ultimately prevents the structure-based identification of molecules targeting ORF1 domains for their possible 
implementation in anti-HEV strategies. In this context, in silico approaches can efficiently overcome the lack of 
structural data either to analyze proteins mechanics and druggability, or to provide a useful tool to study chemical 
and biological aspects of small molecules, including antiviral compounds20–23. For this reason, an in silico pro-
cedure has been developed and applied to target HEV ORF1. Based on previous studies showing the inhibitory 
activity of the natural plant secondary metabolite silvestrol (SLV; Fig. 1) against HEV-324–26, our study provided 
a reliable model to: I) investigate the underpinning mechanisms and viral target; and II) to estimate the activity 
of SLV analogues for further dedicated investigations. To do so, the HEV RNA Helicase domain was modelled 
and refined via a homology modelling approach based on an innovative, hybrid structure- and sequence-based 
big-data analysis targeting the whole set of crystallographic data available so far in the Protein Data Bank (nearly 
190.000 structures; last database access 28th February 2022). Then, the interaction of the model with the already 
known RNA Helicase inhibitor rocaglamide (RCG) and a set of 9 natural-related compounds27 was calculated 
through docking and molecular dynamics (MD) simulations.

Results and discussion
Building and refining the HEV RNA Helicase model.  The HEV RNA Helicase domain of the HEV 
ORF1 polyprotein was meant to be modelled via homology modelling (HM), as reported in the "Homology 
modelling" section, due to the absence of a crystallographic structure in the Protein Data Bank. This method 
allows the successful modelling of proteins whose 3D structure is missing and it is particularly useful when 
crystallographic investigations are challenging, as in the case of polyproteins28.

Figure 1.   Chemical structure of RCG, RCG analogues and SLV. (A) RCG scaffold with its chemical substituents 
ranging from R1 to R7. (B) SLV chemical structure. The red square surrounds the RCG scaffold while the yellow 
the typical SLV dioxane portion. The latter is replaced by a hydroxyl group (–OH) in S–Ag.
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Specifically, the HEV ORF1 domain’s coding sequence of HEV RNA Helicase was chosen based on the 
results reported by Karpe and Lole29 who succeeded to recombinantly express the putative HEV1 ORF1 RNA 
Helicase region (from amino acid 960 to 1204) proving its activity. The focus on HEV3 (UniProt AC Q6J8G2) 
was due to its prevalent foodborne/zoonotic transmission and its worldwide spread30. The localization of the 
RNA Helicase domain on the HEV3 ORF1 was achieved based on the alignment with the HEV1 RNA Helicase 
sequence proved as active by Karpe and Lole. Particularly, the target sequence (Tar-Seq) HEV3 ORF1 region 
ranging from amino acid 975–1219 shared 90.6% identity and 95.5% similarity with the HEV1 RNA Helicase 
domain (Fig. S3, Supplementary materials).

Concerning the template selection for HM, it is typically obtained identifying homologous sequences with 
available 3D structure via the BLAST UniProt web-interface, which is a gold benchmark standard in this kind 
of studies31. However, using the Tar-Seq as input for a canonical BLAST search gave no results. This was likely 
due to the nature of the BLAST heuristic algorithm that are likely to fail aligning polyprotein domains over their 
entire sequence. Indeed, the BLAST UniProt web-interface searches target sequences within the whole primary 
protein sequences associated with 3D data and not limiting the search to the actual sequence resolved in the 
crystal structure. However, in most of the medium/large proteins, such as polyproteins, the crystals related to 
the UniProt ACs partially cover the protein primary structure causing BLAST to fail in identifying homologs 
with known structures. To overcome this intrinsic weakness, a successful workflow was setup (see in "Sequence 
and template selection" section for further details). The modification in the search space used in this approach 
made it robust, reusable, and successful to find a useful template to build a model for a polyprotein domain. In 
more detail, all the entries having a 3D structure belonging to the Prokaryotic reign with E.C 3.6.4.13 (RNA 
Helicase activity, according to Brenda classification32) were downloaded from PDB. Then, 3D structure files 
were converted to FASTA files via an in-house script setting up a database which included the “crystallome” of 
the prokaryotic RNA Helicase available at the time of analysis. This database was finally searched for Tar-Seq 
homologous to identify a proper template for HM.

The best aligning protein among the 1940 PDB entries annotated as prokaryotic RNA Helicases at the time 
of analysis was chosen as template (see in the “Homology modelling” section for further details). It was the PDB 
entry having code 3WRY​33, which showed identity and similarity percentage to HEV RNA Helicase of 24.5% 
and 39.2%, respectively, and with alignment score and e-value of 63.5 bits and 1e-12, respectively. Of note, the 
identity percentage was high enough with respect to the alignment length to ensure a reliable modeling proce-
dure in agreement with previous evidence34. Such protein belongs to the Tomato mosaic virus (Tmv), a positive 
sense single stranded RNA virus belonging to the same HEV class. Before using it as template to model the HEV 
RNA Helicase domain, the last 160 N-terminal residues, which were organized in a self-standing sub-domain, 
were removed being not covered by our Tar-Seq. The model and its refinement process, reported in the "Model 
generation and refinement" section, allowed to obtain a reliable and stable model having 90% of the residues 
within the mostly favored regions, 10% in allowed regions and with no residues in generously or disallowed 
regions according to the Ramachandran plot (Fig. S4, Supplementary Materials). Furthermore, the model was 
also checked on the ProSA-web Server obtaining a Z-score of 6.14 which is within the range of scores typically 
found for native proteins of comparable size35 further confirming the model reliability. The last check was the 
comparison of the model with the one produced by the blind deep learning-based web resource trRosetta36: their 
structural alignment resulted in an RMSD lower than 2.6 Å, confirming the reliability of the entire procedure 
described above (Fig. S5, Supplementary materials).

The poly-purine RNA added via docking to the modelled protein to complete the HEV RNA Helicase com-
plex was derived from the PDB structure 6JIM37, an RNA Helicase of the Chikungunya virus, which is a species 
belonging to the Alsuviricetes class like HEV and Tmv38,39.

Docking ligands and analyzing complex stability.  For the sake of identifying compounds with 
potential anti-viral properties, the model was targeted with natural bioactive compounds belonging to the 
cyclopenta[b]benzofuran/flavagline class to identify promising candidates to test in further dedicated investiga-
tions. This class of compounds has been described to have a broad spectrum of activity including insecticidal, 
antifungal, anti-inflammatory and anticancer activities to cite but a few40. However, the mechanisms of action 
underpinning those activities still need to be clarified, though RCG and other flavagline analogues proved to 
target prohibitins and to exert inhibitory activity towards RNA Helicases27. SLV (Fig. 1B) was also included in 
the study as it was an already known inhibitor of HEV replication, although the underpinning mechanisms and 
molecular targets still need clarifications24–26. Moreover, silvestrol aglycone (S–Ag;CID 24178739, Fig. 1B) was 
analysed due to the chemical similarity with both RCG and SLV, along with two virtual decoys to assess the pro-
cedural performances (ZINC ID ZINC8584442 and ZINC8387186; further details are reported in the "Docking" 
section).

The position to dock the ligands within the ligand binding site was defined based on the PDB structure 5ZC9 
showing RCG engaged in a well-defined base–base stacking interaction (Fig. S2, Supplementary Materials).

As reported in Table 1, RCG showed the highest docking score followed by all its analogues. All of them 
clearly showed a stacking interaction except for RCG6 and the two decoys. Considering that the higher the score, 
the stronger the interaction, according to previous evidence41,42, this result suggested the preferred interaction, 
and possibly the higher inhibitory activity, of RCG compared to the other analogues. On the other hand, SLV 
obtained a higher docking score than virtual decoys but sensibly lower than both RCG and S–Ag. Of note, the 
inactive decoys served to validate the model. In particular, the lack of activity was imputable to their incapability 
to keep a stable stacking interaction resulting in an enzyme inhibition. Therefore, the fact that they both showed 
no stacking interactions corroborated the model reliability.
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Once obtained the docking pose for each ligand, 25 ns long MD simulations were run to investigate the evo-
lution of the built complexes. Based both on the 5ZC9 crystal structure and other evidence from the literature 
claiming the RCG stabilization of the protein-RNA complex43, the following geometrical rules were associated 
to ligands theoretically able to interact with and inhibit HEV RNA Helicase. Specifically, they should: I) keep the 
stacking interaction with the RNA stably; and II) preserve the stability of the RNA–protein complex avoiding 
RNA detachment.

RCG and SLV were both engaged in a base–base stacking interaction, also stabilizing the protein-RNA com-
plex with no appreciable RNA detachment (Fig. 2).

RCG1 did not show a proper stacking interaction and promoted the RNA detachment, pointing to its limited 
theoretical inhibitory activity against the viral RNA Helicase. Interestingly, this result is in line with the Pan 
et al. study reporting more than 500-fold activity decrease with respect to RCG against the human eIF4A1 ATP-
dependent RNA helicase27. RCG2 caused a self-collapse of the RNA, promoting its detachment from the protein, 
and no stacking interactions were observed. This also suggested a low inhibitory potential, in line with the inactiv-
ity reported by Pan et al.27 against human RNA Helicase eIF4A1. RCG3, a less cytotoxic RCG analogue27, showed 
a single base interaction, rather than a base–base stacking interaction, and promoted the RNA detachment. 
Therefore, it was not deemed an efficient inhibitor. RCG4 and RCG6 both favoured the RNA detachment, with 
the latter reported as less active than the former, although RCG4 was found in an RCG-like stacking interaction 
with the RNA. They were not considered able to appreciably inhibit the HEV RNA Helicase activity.

S–Ag did not interact at all with the RNA. Shortly after the beginning of the MD simulation it slipped out the 
RNA chain and kept a likely unspecific surface interaction with a near protein portion (Fig. 2). This was prob-
ably due to the presence of the hydrophilic hydroxyl group in position R6 (Fig. 1), which prevented a proper a 
stacking interaction, which requires hydrophobic interactions, and to the absence of the SLV dioxane portion. 
Indeed, this part participates in the SLV stacking interaction confirming the Cencic and co-workers’ hypothesis 
claiming its crucial role for the SLV activity44. Concerning the two decoys, they both promoted RNA detaching, 
particularly ZINC8584442. This, along the lack of base–base stacking, was expected for inactive compounds and 
confirmed the procedural performances.

Lastly, a novel RCG analogue, i.e. RCG5, was rationally designed and evaluated based on the calculated pose 
of other RCG analogues included in this study. Particularly, starting from docking poses it was noticed there 
was a hydrogen bond between the hydroxyl group in position R4 of RCG2 and an RNA base (Fig. 3). Moreover, 
looking at the progression of RCG2 MD simulation, the starting H-bond was not kept over time but a new one 
between the hydroxyl group in R4 and the RNA backbone was formed. This interaction was thought as favorably 
stabilizing the complex and theoretically able to enhance the activity of the compound. Therefore, in RCG5, the 
R4 of RCG4 (i.e., –H) was replaced with a hydroxyl group. RCG5 showed a stable stacking interaction while 
keeping the RNA–protein complex stable, steadily forming an H-bond with a phosphate group of the RNA 
backbone (Fig. 3). This newly designed compound needs further investigation and experimental evaluation to 
validate its HEV RNA Helicase inhibitory activity.

Conclusion
Keeping in mind the intrinsic issues in running experimental trials on HEV related to its biology and to the 
shortage of a robust cell-culture system supporting its life cycle45, in silico approaches may ensure a useful frame-
work of analysis to advance HEV understanding and design counteracting strategies. In this context, the present 
work provided a useful prioritization of compounds, most of which are not commercially available, supporting 
a knowledge-based and informed selection either for their synthesis or purification in future dedicated works. 
Overall, this study: (i) presented mechanistic insights on HEV RNA Helicases and its SLV/RCG-dependent inhi-
bition; (ii) expanded the current understanding of the structure–activity relationship for SLV and RCG-related 
compounds; (iii) provided a blueprint for further analysis targeting HEV RNA Helicases. Moreover, this study 
described for the first time the inhibition of HEV RNA Helicase as a plausible mechanism of action of SLV, which 
was already described reducing HEV capability to penetrate cells. This ancillary mechanism, which deserves 

Table 1.   Docking PLP score obtained running GOLD. The highest the score the more likely the docking pose 
is optimal.

Ligand PLP score

RCG​ 256.075

RCG1 224.929

RCG2 246.042

RCG3 224.077

RCG4 231.621

RCG5 228.042

RCG6 169.175

SLV 184.600

S–Ag 236.039

ZINC8584442 178.539

ZINC8387186 150.527
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further investigation with high priority, was found plausible also for other RCG/SLV-like compounds and may 
complement the already reported activity of this HEV impairing agents on host RNA Helicases. Furthermore, 
there are evidence reporting SLV as well-tolerated in animals40 making it an interesting candidate as a feed 
additive. The described methodology, starting from the template selection moving to the actual modelling and 
testing, succeeded to build a reliable model able to qualitatively discriminate several ligands. In addition to this, 
the pipeline is highly versatile, flexible and it can be replicated on other HEV ORF1 domains, such as the RNA 
Dependent RNA Polymerase which has already been proved as a suitable target to inhibit virus replication41.

As a general remark, the high identity percentage among the HEV RNA Helicases of genotypes 1 to 4 (all 
above 88%; see Fig. S6, Supporting material), which are those available in the manually curated section of UniProt 
database (last accessed 3rd August 2022), might suggest a broad inter-genotype activity for RCG, SLV and RCG6.

Figure 2.   Protein-RNA-ligand complex and evolution over time of RCG, SLV and S–Ag with respect to the 
RNA bases. The protein is represented as a white cartoon, the RNA as an orange/green/blue cartoon while the 
two bases involved in the interaction with the ligand as green sticks. The yellow sphere represents the ligand 
docking-site. Under the time bar, starting from the top and moving to the bottom we can alternatively see the 
time-step sticks representation of both the RNA bases and RCG, SLV and S–Ag trajectories.
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For the sake of data reproducibility and to support further studies, the 3D model of HEV RNA Helicases used 
in this work has been made publicly available (https://​github.​com/​FC-​MMLAB-​UniPr/​HEV3_​Helic​ase_​Model).

Materials and methods
Homology modelling.  Sequence and template selection.  The primary protein sequence used to model the 
3D structure of HEV RNA Helicase was stored in the UniProt database (release 2021_04) with the Accession 
Code (AC) Q6J8G246. As no crystallographic structures of HEV RNA Helicase were available in the Protein 
DataBank (PDB) at the time of analysis (last database access January 2022) a HEV RNA Helicase model was 
obtained via HM. T47To do so, a hybrid structure- and sequence-based strategy was developed as the search of 
publicly available PDB structures via the webserver BLAST interface (basic local alignment search tool, https://​
blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi)43, which is a goldstandard in this kind of study, did not gave useful structures 
for HM. Specifically, a set of non-eukaryotic proteins annotated as RNA Helicases (E.C 3.6.4.13, according to 
Brenda classification32) with available 3D structure in the Protein Data Bank was collected (228 entries at the 
time of analysis). To retrieve the 3D structure of this set of proteins, their UniProt ACs were downloaded and 
mapped towards the Protein Data Bank using the “Retrieve/ID Mapping” tool available on UniProt. Starting 

Figure 3.   RCG2 is represented as green sticks, RCG4 as magenta sticks, RCG5 as pale-blue sticks. RNA bases 
involved in the interaction are represented as white sticks while the RNA backbone as orange cartoon. The 
yellow dashed lines represent the Hydrogen bond occurring between the R4 of both RCG5 and RCG2, and the 
RNA base. The time-step representation of the RCG5/RNA-bases trajectories is reported under the time bar. The 
black dashed lines represent both the starting Hydrogen bond and the final one.

https://github.com/FC-MMLAB-UniPr/HEV3_Helicase_Model
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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from their PDB IDs their 3D structures were iteratively downloaded(1940 at the time of analysis) in the .pdb 
format using a PyMol script developed in-house (available upon request). Each chain belonging to a .pdb file 
was converted to a fasta formatted file using an ad hoc script developed in-house (available upon request) and 
subsequentially concatenated in a unique multi.fasta file. This multi.fasta file was converted into a local database 
of sequences via the makeblastdb command set with default parameters (ncbi-blast+ suite; version 2.11.0 +)47 
selecting the tabular output format. The best hit in terms of alignment score, e-value and identity percentage was 
considered to develop the homology model of HEV RNA Helicase.

Model generation and refinement.  Modeller version 10.0 interfaced to Chimera (version 1.15)48 was used to 
generate the model of HEV RNA Helicase. The chosen template was the crystallographic structure with PDB 
code 3WRY (only the residues aligning the RNA Helicase domain were considered). Fifty models were gen-
erated, setting the inclusion of non-water heteroatoms, using a thorough optimization and choosing the best 
scored model according to zDOPE for subsequent analysis.

After computing a tentative model and checking its Ramachandran Plot with PROCHECK v3.549, regions 
with improper dihedrals (namely, residues 30–33; 101–103, 111–113 and 97–99) were stepwise refined with the 
Modeller loop-refinement tool (version 10.0 interfaced to Chimera50 version 1.15) using the DOPE modelling 
protocol, generating 5 models and carrying forth to the analysis the best model according to the zDOPE scoring.

Before using the model, a final assessment was performed by re-building its Ramachandran Plot and checking 
its Z-score on the ProSa-web Server35 to verify the proper topology.

Building the model‑RNA complex.  The HEV RNA Helicase-RNA complex was obtained docking the RNA 
sequence to the previously built RNA Helicase model via ClusPro 2.038 set with default parameters. The input 
RNA structure was chosen based on the following protocol. First, all the structures of RNA Helicase contain-
ing RNA were download from Protein Data Bank and aligned to the model previously obtained. The RNA of 
the structure with the most similar organization (i.e., with the lowest RMSD value calculated in PyMol using 
the super command) was chosen (PDB ID 6JIM). In the last step, the RNA of 6JIM and the HEV RNA Helicase 
model were uploaded on ClusPro 2.038. Out of the obtained complexes the analysis of one of the mostly hydro-
phobic-favoured poses, showing the RNA molecules arranged in the same area as 6JIM structure, was carried 
forth. The sequence was than edited to a poly-purine fragment in agreement with previous studies reporting its 
suitability to interact with SLV-related compounds51.

Docking.  Docking studies were performed with GOLD (Genetic Optimization for Ligand Docking; ver-
sion 2021.3)52 to provide a plausible binding architecture for a set of flavagline compounds. The 3D structure 
of RCG (Fig. 1A), SLV (Fig. 1B) and S–Ag (Fig. 1B) were downloaded from PubChem (https://​pubch​em.​ncbi.​
nlm.​nih.​gov/; CID 331783, CID 11787114 and CID 24178739, respectively)53 in the .sdf format. The other RCG 
analogues (Fig. 1A) were generated editing the RCG structure using the PyMol Builder tool (version 2.3.0) and 
further optimized using Chimera (version 1.15)50 with the Minimize Structure tool (5000 steepest descent steps 
and 100 conjugate gradient steps).

The RNA Helicase model was used as input structure and the space to arrange ligands was set based on 
the architecture of binding of the RCG in the human eIF4A1 ATP-dependent RNA helicase having PDB code 
5CZ9. The structure was visually aligned to the HEV RNA Helicase model, and the binding site was defined in 
a 10 Å-radius sphere around the centroid of the inter-bases space occupied by RCG in 5CZ9 structure (Fig. S1, 
Supplementary Materials). RCG was docked first generating 100 poses with no positioning constraints, setting 
the ligand fully flexible and allowing polar protein hydrogens free to rotate. The best scored pose according to 
PLP Scoring function (256 units; the higher the score, the more probable and favoured the ligand interaction) 
showed a comparable binding architecture to the crystallographic binding pose of RCG. Such pose was then 
used as a position restraint setting the similarity option with shape overlap (weight constraint 200). This helped 
docking SLV and other analogues facilitating their proper arrangement into the binding site.

Virtual decoys were also generated to test procedure performances via the DUD-E database Generate tool 
(http://​dude.​docki​ng.​org/)54. The 50 decoys generated were ranked according to chemical similarities to SLV 
using LiSiCA algorithm55 and the two extremes (the most similar and the most dissimilar compound; ZINC ID 
ZINC8584442 and ZINC8387186, respectively) (Fig. S2 Supplementary materials) were docked for the sake of 
procedure validation (see in the “Docking ligands and analyzing complex stability” section for further details).

Molecular dynamics.  Molecular dynamics (MD) simulations were performed to investigate the overall 
geometrical stability of HEV RNA Helicase-ligands complexes over time. The adopted software was GROMACS 
(version 2019.4)56 with CHARMM27 all-atom force field parameters support57. All the ligands have been pro-
cessed and parameterized with CHARMM27 all-atom force field using the SwissParam tool (http://​www.​swiss​
param.​ch)58. Input structures were solvated with SPC/E waters in a rhombic dodecahedron periodic bound-
ary condition, and counter ions (Na+ or Cl−) were added to neutralize the system. Prior to perform molecular 
dynamic simulations, the systems were energetically minimized to avoid steric clashes and to correct improper 
geometries using the steepest descent algorithm with a maximum of 50,000 steps. Afterwards, all the systems 
underwent isothermal (300 K, coupling time 0.1 ps) and isobaric (1 bar, coupling time 2 ps) 100 ps simulations 
before running a 25 ns MD simulation.

Multiple sequence alignment.  A multiple sequence alignment has been performed to infer the activ-
ity of RCG, SLV and RCG6 over the HEV RNA Helicases of different HEV genotypes. The analysis focused on 
genotypes 1 to 4 as they were those publicly available on the manually curated and reviewed section of UniProt 

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://dude.docking.org/
http://www.swissparam.ch
http://www.swissparam.ch
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database (last accessed 3rd August 2022). We performed the analysis using Clustal Omega Web Server (https://​
www.​ebi.​ac.​uk/​Tools/​msa/​clust​alo/) with default parameters59.

Data availability
Data are available upon a formal request to the corresponding author. The HEV RNA Helicase model used in 
this study is available at https://​github.​com/​FC-​MMLAB-​UniPr/​HEV3_​Helic​ase_​Model.
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