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Abstract: The vitamin E regulatory protein, the alpha-tocopherol transfer protein (Ttpa), is necessary
for zebrafish embryo development. To evaluate zebrafish embryo Ttpa function, we generated a
fluorescent-tagged zebrafish transgenic line using CRISPR-Cas9 technology. One-cell stage embryos
(from Casper (colorless) zebrafish adults) were injected the mScarlet coding sequence in combination
with cas9 protein complexed to single guide RNA molecule targeting 5′ of the ttpa genomic region.
Embryos were genotyped for proper insertion of the mScarlet coding sequence, raised to adulthood
and successively in-crossed to produce the homozygote RedEfish (mScarlet: GSG-T2A: Ttpa). Re-
dEfish were characterized by in vivo fluorescence detection at 1, 7 and 14 days post-fertilization
(dpf). Fluorescent color was detectable in RedEfish embryos at 1 dpf; it was distributed throughout
the developing brain, posterior tailbud and yolk sac. At 7 dpf, the RedEfish was identifiable by
fluorescence in olfactory pits, gill arches, pectoral fins, posterior tail region and residual yolk sac.
Subsequently (14 dpf), the mScarlet protein was found in olfactory pits, distributed throughout the
digestive tract, along the lateral line and especially in caudal vertebrae. No adverse morphological
outcomes or developmental delays were observed. The RedEfish will be a powerful model to study
Ttpa function during embryo development.

Keywords: vitamin E; alpha-tocopherol; alpha-tocopherol transfer protein (TTPA)

1. Introduction

Vitamin E (VitE, α-tocopherol) is necessary for embryonic development [1]. Low
maternal VitE in human serum and cord blood is linked to prematurity, low birth weight [2],
increased risk of miscarriage [3] and intrauterine growth restriction [4]. Preterm babies
were found with lower VitE relative to term babies of mothers with similar cord blood VitE
levels [5] and circulating VitE in women at early and late term was positively correlated to
fetal growth and decreased risk for low birth weight [6].

VitE deficiency in humans can be caused by genetic defects in the α-tocopherol transfer
protein (TTPA (Ttpa in zebrafish), note that human, mouse and rat proteins are indicated
by all capital letters, while zebrafish proteins are indicated by a capitalized first letter) [7,8].
TTPA is localized primarily in hepatocytes, where it facilitates VitE trafficking from recy-
cling endosomes to the membrane in exchange for inositol-triphosphate (Ins3P) [9], the
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transfer of VitE to nascent lipoproteins is then facilitated by ABCA1 [10], an ATP-dependent
transporter. In addition to the liver, TTPA is also expressed in the human yolk sac [11]
and in placental uterine lining at the site of implantation [12]. Limited information exists,
however, about the role of Ttpa in the developing embryo.

Zebrafish embryos are a frequently used model for developmental biology because
they develop externally are transparent, easy to maintain and are produced in large quan-
tities [13]. The zebrafish embryo has been used as a powerful tool to study numerous
human-health related conditions, including birth defects [14–19]. Importantly, early devel-
opment gene expression networks are highly conserved between zebrafish and humans [20],
especially the sequence for ttpa (64.3% protein sequence homology between zebrafish and
human). Zebrafish require both vitamins E and C, so are highly relevant for antioxidant
research [21,22]. Thus, the VitE-deficient zebrafish embryo model (E– embryos) allows us
to evaluate developmental dysregulation in a highly relevant model. Our research using E–
embryos has demonstrated that VitE prevents lipid peroxidative damage [23] and the ensu-
ing metabolic responses aimed to repair the damage [24]. We found that these metabolic
responses are detrimental because they deplete critical nutrients and waste limited energy
resources needed for embryo development [24–26]. Indeed, supplementation of the E–
embryos with VitE, or glucose, rescued the animals [24,25]. These metabolic abnormalities
were associated with dysregulation of gene networks under the control of mechanistic
target of rapamycin (mTORC1) [27]. Further, E– embryos show significant morphologic
abnormalities as early as 12 hpf [28]. VitE was necessary for brain (fore, mid and hind-
brain) development at 12 hpf and later (24 hpf) for the dorsal root ganglia and notochord
formations [28]. The ttpa gene is expressed in the zebrafish brain ventricle borders, eye and
tailbud at 24 h post-fertilization (hpf) [28,29]. Translation- and splice-blocking morpholinos
preventing Ttpa synthesis caused 100% lethality in zebrafish embryos by 24 hpf [29]. These
findings suggest that TTPA and VitE have important functions in the embryo separate
from placental implantation. During embryogenesis, TTPA could potentially function to (1)
transfer VitE from the yolk to the developing embryo, (2) facilitate VitE transport from the
placenta to the embryo and (3) regulate VitE trafficking in cells of the developing nervous
system in the embryo.

We hypothesize that studies of Ttpa localization in the embryo will provide critical
information concerning its essential function to deliver VitE to target sites. To test this
hypothesis, we developed a transgenic zebrafish model containing a red fluorophore
tagged Ttpa. CRISPR-cas9 technology was used to knock-in a genomic mScarlet sequence 5′

upstream of the ttpa genomic sequence separated by a self-cleaving viral peptide sequence
(GSG-T2A). We used mScarlet because it is a powerful red fluorophore with more intensity
(0.54 quantum yield units) and longer lifetime (3.1 ns) than other known red fluorescent
proteins [30]. The mScarlet protein is not cytotoxic and has been shown previously to be
effective for creation of transgenic zebrafish lines [31]. We report herein the creation of the
RedEfish (mScarlet: GSG-T2A: Ttpa) transgenic line.

2. Materials and Methods
2.1. Zebrafish Husbandry and Strains

All experimental protocols and methods were carried out in accordance with the ani-
mal use and care protocol (# 5068) approved by the Institutional Animal Care and Use Com-
mittee at Oregon State University. 5D tropical strain and Tg zebrafish (Casper; mitfaw2/w2,
mpv17a9/a9) strain (hereafter called Casper) [32] and c269 (Tg(UAS-E1b:NfsBmCherry)c264/+)
strain (hereafter called c269) [33] were reared in Sinnhuber Aquatic Research Laboratory at
Oregon State University under standard laboratory conditions of 28 ◦C on a 14 h light/10 h
dark photoperiod according to standard zebrafish breeding protocols [34]. The 5D tropical
strain and the c269Tg reporter line zebrafish were used as additional negative and positive
controls for experiments, noted throughout.
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2.2. Construction of Donor Plasmid and Guide RNA Vectors for Knock-In

The donor plasmid containing homology arms to the ttpa genomic sequence (Gen-
Bank:BX248497, RefSeq:NM_199731), mScarlet sequence, Gly-Ser-Gly linker (GSG) se-
quence and 2A self-cleaving peptide (T2A) was constructed and supplied by In Vivo
Biosystems, Inc. (Eugene, OR, USA). Constructs were assembled by Gibson ligation and
confirmed by digest at restriction sites Pvul and Pvull, followed by sequencing. A single
guide RNA (sgRNA) sequence was designed with the custom designed short CRISPR RNA
(crRNA) sequence fused to the scaffold trans-activating CRISPR RNA (tracRNA) sequence
(Figure 1).
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Figure 1. Knock-in strategy and designed protein sequence. LHA refers to the left homology arm and RHA refers to the
right homology arm of the donor plasmid containing the mScarlet coding sequence. Amino acid sequences are denoted by
color to indicate protein: mScarlet (red), GSG-T2A linker site (green) and exon 1 of ttpa (blue).

2.3. Microinjection

sgRNA and cas9 protein were complexed and coinjected into one-cell stage zebrafish
embryos. Approximately 1 nL of injection mix (10.5 µM sgRNA, 500 ng/µL cas9, 50 ng/µL
donor plasmid and 50 µM NU7441 in 1% DMSO) was injected directly into each embryo.
Embryos were then placed on ice-cold 1.5% agarose for no more than 15 min. NU7441
and cold exposure after injection were used to improve knock-in efficiency of mScarlet
sequence by homology-directed repair mechanisms (HDR) [35]. NU7441 in 1% DMSO
(50 µM) injected at the levels described did not have deleterious effects on normal zebrafish
embryos, as assessed by morbidity, mortality and behavioral outcomes at 5 days post-
fertilization (dpf) [36]. Injected embryos were collected, staged, and incubated in standard
embryo media ((EM), 15 mM NaCl, 0.5 mM KCl, 1 mM MgSO4, 0.15 mM KH2PO4, 0.05 mM
Na2HPO4, 1 mM CaCl2 and NaHCO3 in fish system water).

2.4. Mutation Detection and Insertion Mapping

Genomic DNA (gDNA) was extracted from injected embryos (n = 32) at 5 dpf after
each trial, as described [37]. Embryos were euthanized with tricaine (MS222, ethyl 3-
aminobenzoate methanesulfonate salt (Sigma Aldrich, St. Louis, MO, USA)) in accordance
with animal care and use guidelines, placed in 50 µL 50 mM NaOH and incubated at 95 ◦C
for 15 min. DNA extraction was stopped with 10 µL 1M TRIS pH 8.0, and stored in 4 ◦C
until use.

PCR reactions were performed with primers designed to capture the complete inser-
tion region (Table 1). Target regions were amplified by PCR and sequenced by Sanger
Sequencing at the Center for Genome Research and Biocomputing (CGRB) at Oregon
State University. Adult zebrafish were fin clipped at 3 months, gDNA extracted and
PCR performed as described above. Identified insertion carriers were out-crossed with
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Casper zebrafish to produce F1 heterozygotes Tg(mScarlet:ttpa; mScarlet+/−, mitfaw2/w2,
mpv17a9/a9), which were then successively in-crossed to produce F2 heterozygotes and F3
homozygotes (hereafter called RedEfish).

Table 1. Primers designed for insertion mapping.

Primer Purpose Sequence (5′-3′) Product Size (bp)

Left homology arm F AGGCGTGTGTCTCTGTAAGG
418Left homology arm R GCCGTACATGAACTGAGGGG

Right homology arm F CGCTACCTGGCGGACTTC
309Right homology arm R AATCCGGGAGGAATCAACAGG

mScarlet cassette F CGCTCTGAGAACAACATGACAC 121 no insertion
879 insertionmScarlet cassette R GACAAATATGGTGCAATCCGGG

Primers designed for left and right homology arms were first utilized to identify germ-line transmission of the
mScarlet sequence. Successful insertion and validation of mScarlet expression determined with mScarlet cassette
primers. All primers designed with NCBI primer Blast. F = forward primer, R = reverse primer.

2.5. In Vivo Fluorescence Detection

Live embryo imaging was conducted using a Keyence BZ-x700 All-in-one microscope
with a 2× or 10× objective and 644 nm filter. Live embryos were mounted in 3% methylcel-
lulose at room temperature in 35 mm glass bottom MatTek dishes and covered in embryo
media and tricaine to anesthetize live embryos. Image adjustments, including cropping,
brightness and contrast were performed uniformly using Adobe Photoshop.

2.6. Egg Quality and Embryo Morphological Assessment

RedEfish embryos were collected, staged, and incubated in standard EM. Egg traits
were assessed by egg yolk diameter followed by egg volume estimated based on the
volume of an ellipsoid using the equation [38,39]:

Volume = (4/3)π × (small axis radius)× (large axis radius)2

At 24 hpf and 5 dpf, RedEfish and Casper embryos were assessed for morbidity
and mortality outcomes, as described [36,40]. RedEfish and Casper 5 dpf larval α- and
γ-tocopherol concentrations were determined using high-performance liquid chromatog-
raphy with electrochemical detection, as described with comparison to authentic stan-
dards [41].

2.7. Immunolocalization and Western Blot Analysis

Distribution of mScarlet protein was assessed in embryos (3 dpf) using the polyclonal
antibody to red fluorescent protein (anti-RFP) (anti-rabbit RFP, 1:3000; abcam, ab62341
(Cambridge, MA, USA)). Monoclonal antibodies generated against acetylated tubulin
(mouse anti-goat, 1:4000; Sigma Aldrich (St. Louis, MO, USA)) were used to label axons in
the developing embryo as a positive control. Embryos (n = 15 per group) at the described
time points were fixed overnight in 4% paraformaldehyde (PFA) in phosphate-buffered
saline (PBS), washed in PBS the following morning and stored at 4 ◦C in PBS and 0.1%
sodium azide until use. Fixed embryos were washed in PBS + 0.1% Tween20 (PBST),
permeabilized with 0.005% trypsin in PBS on ice for 5 min, rinsed with PBST and post-fixed
in 4% PFA. Permeabilized embryos were blocked in 10% normal goat serum in PBS + 0.5%
Triton X-100 for an hour followed by incubation with the primary antibody overnight at
4 ◦C in 1% normal goat serum in PBS and 0.5% Triton X-100. Embryos were washed 4 times
for 30 min in PBST, incubated with secondary antibody (Alexa-488 goat anti-mouse, 1:1000;
ThermoFisher (Carlsbad, CA, USA)) for 2 h and washed 4 times for 30 min in PBST.

Distribution of Ttpa protein was assessed in zebrafish embryos (5 dpf) using the
polyclonal anti-TTPA antibody (rabbit anti-zebrafish Ttpa (L6308, Antibodies Inc., Davis,
CA, USA), 1:300). Embryos previously fixed in 4% PFA were washed in PBST and stored
in 100% methanol. Samples were rehydrated and treated with 10 mg/mL proteinase
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K in PBST. Samples were then blocked in 5% normal goat serum and 3 mg/mL bovine
serum albumin in PBST followed by incubation with the primary antibody. Embryos
were washed, incubated with secondary antibody (Alexa-594 goat anti-rabbit, 1:1000;
ThermoFisher (Carlsbad, CA, USA)), washed and visualized, as described [42].

All fixed embryo imaging was conducted using Keyence BZ-x700 All-in-one micro-
scope with a 2×, 10× or 20× objective and 470 nm or 694 nm filter, as described above.
Image adjustments, including cropping, brightness and contrast were performed uniformly
using Adobe Photoshop.

For Western blots, protein was extracted from pooled (n = 25) embryos (24 hpf) in
RIPA buffer supplemented with protease and protein phosphatase inhibitors (Calbiochem,
La Jolla, CA, USA). Rat liver extract and extracts of c269 embryos were used as positive
controls for Ttpa and RFP. Extracted protein (20 µg) was subjected to SDS-Page and pro-
cessed by immunoblotting. Antibodies used for Western blotting were anti-ATP synthase
F1 subunit α (1:1000, ab110273), anti-Ttpa (1:250, L6308), anti-RFP (1:1000, ab62341), goat
anti-rabbit IgG-HRP and goat anti-mouse IgG-HRP secondary antibodies (1:10,000). Non-
specific protein binding was blocked using Tris-buffered saline with 0.1% Tween 20 (TBST)
containing 5% nonfat dry milk. All antibodies were diluted in TBST containing 1% bovine
serum albumin. Proteins were visualized by SuperSignalTM West Femto Chemiluminescent
Substrate (ThermoFisher, Carlsbad, CA, USA) and quantified using the Bio-Rad Image
System (Hercules, CA, USA).

2.8. Statistical Methods

Statistical differences between groups were assessed using Student’s t-test (Prism
6.0, GraphPad, La Jolla, CA, USA). Statistical significance between differences was set at
p < 0.05. Differences between reproductive output and egg yolk volume in 3 hpf embryos
was assessed with t-tests between Casper and RedEfish. Similarly, the vitamin E contents
of the embryos are reported as comparisons between the two fish lines. Additionally,
tocopherol data were logarithmically transformed data for each fish line, then 2-factor
ANOVA was followed by Holm–Sidak’s multiple comparisons test to allow for comparison
between α- and γ-tocopherol concentrations in each fish line. Data are reported as means
± standard deviation.

3. Results

Mosaicism in the founder generation was not immediately apparent by fluorescent
imaging. PCR genotyping was utilized to identify sequence expressing fish. About 7.5%
(n = 19 of 254) of 3 months old (mo) adults screened were identified as transgenic; one
screened adult (male) retained the mScarlet:T2A construct. Success was defined as integra-
tion of the mScarlet sequence 5′ of ttpa without erroneous insertions or deletions (INDELs),
as determined by Sanger Sequencing. The mosaic founder male was outcrossed with female
Casper zebrafish (mitfaw2/w2, mpv17a9/a9) to produce F1 embryos. F1 embryos were raised
to 3 months for further in-crossing with the F0 mosaic founder. This in-cross produced
F2 heterozygotes, as identified by PCR and sequencing. In vivo fluorescence of heterozy-
gotes was apparent by 5 dpf, however, the yolk sac remnants were a significant source of
autofluorescence. F3 in-crosses were performed to generate homozygotes. Sequencing
of heterozygote embryos indicated two gene products, one containing the mScarlet:ttpa
construct and the other containing the unmodified ttpa exon 1 (Supplementary Figure S1).
Sequencing about the targeted region show no INDELs either in the 5′ region of mScarlet
or in the 5′ region of ttpa exon1 (Supplementary Figure S1).

Fluorescent color was detectable in RedEfish embryos at 1 dpf; it was distributed
throughout the developing brain, posterior tailbud and largely in the yolk sac (data not
shown). In vivo fluorescence was more readily detected during the early larval stage
(7 dpf). RedEfish express mScarlet in the olfactory pits (Figure 2A), throughout the liver
and digestive tract (Figure 2B,C), and express punctate signals throughout the tail fin and
fin edges. By 14 dpf, RedEfish express mScarlet throughout the digestive tract. Most
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striking, mScarlet expression was found in the caudal vein plexus, caudal vertebrae, and
tail fin. The red fluorescence in the vertebrae is localized to dorsal root ganglia (Figure 2E).
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Figure 2. In vivo fluorescence detected in 7 and 14 days post-fertilization RedEfish. (A) mScarlet ex-
pression was unique to the olfactory pits (op) found in the RedEfish; however, some autofluorescence
was detected in the pigment cells surrounding the eyes (e) in all embryos. (B) mScarlet expression was
identified in the digestive tract, specifically the liver (as indicated by *). (C) More punctate expression
was observed in the anterior gut region (ventral embryo positioning). (D) Punctate expression was
observed also in the tail fin (as indicated by *). (E) By 14 dpf, mScarlet expression was identified in
the caudal vertebrae and dorsal root ganglia (drg) and was detected in the caudal vein plexus (cpv).
Some autofluorescence was noted in both RedEfish and Casper larvae.

Whole mount immunolocalization was performed to validate the presence of mScarlet
and TTPA. GSG-T2A linker sites are not 100% efficient peptide cleavage sites, which
can cause either (1) mScarlet fused to exon 1 of Ttpa, which may potentially produce
fluorescent but nonfunctional protein, or (2) skipped and decrease the production of Ttpa.
This phenomenon has been described [43]. RedEfish embryos were fixed in 4% PFA
and subjected to antibody staining with an anti-RFP antibody. Casper embryos were
used as a negative control, while the c269 allelic variant embryo was used as a positive
control; antiacetylated tubulin is used as a control antibody. All embryos are 3 dpf. Rfp
was expressed in RedEfish brain, trunk, yolk syncytium and pectoral fins. Rfp was not
detected in Casper embryos, but was detected in the brain of positive control c269 embryos
(Supplementary Figure S2).

Immunolocalization with anti-TTPA validated that Ttpa is expressed in the zebrafish
embryos (5 dpf) in olfactory pits, gill arches and digestive tract lining (Figure 3A). Western
blot analysis was also used to evaluate the success of protein expression in RedEfish. As
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expected, Ttpa was detected at approximately 32 KDa in RedEfish, Casper and the c269
lines (24 hpf) (Figure 3B). If the mScarlet-Ttpa construct was produced but not hydrolyzed,
we anticipated a protein band at ~60 kDa (sum of mScarlet (26.4 kDa) and Ttpa (32.7 kDa)).
No band for a larger protein at approximately 60 kDa was observed. An antibody to Rfp
was also used to determine if mScarlet protein is expressed in the RedEfish line, although
this antibody has not previously been used with mScarlet. The anti-RFP antibody used for
immunolocalization detected RFP in the RedEfish embryos, however, did not detect RFP in
the c269 embryos.
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Figure 3. Immunolocalization and Western blot of Ttpa protein in rat liver and zebrafish embryos
(c269, RedEfsh and Casper). (A) The 5D strain fish expressed Ttpa in olfactory pits, gill arches and
gut lining at 5 dpf. Anti-Ttpa was used to detect and validate Ttpa protein expression in 5D embryos
initially to determine regionalization followed by in vivo observation. Figure A panels were gener-
ated with the BZ-x700 microscope, processed with BZ-X Analyzer Software with image adjustments
equally applied across all images in Adobe Photoshop. All images are taken at 2×magnification
at the same exposure protocol. This figure was created with Adobe Photoshop, v21.2.1. (B) The
same anti-Ttp antibody, used in a Western blot, confirmed that Ttpa expression is not affected by the
insertion of the mScarlet coding sequence in RedEfish relative to Casper or the c269 transgenic lines.
This antibody reacts poorly with rat liver protein. RFP was also detected in the RedEfish embryos,
although not detected by blot in the rat liver, c269 or Casper zebrafish embryos. (C) Shown are α-
and γ-tocopherol concentrations (mean ± standard deviation, pmol/embryo, * = Student’s t-test,
p = 0.002 and p = 0.001, respectively) in 5 day old Casper (hatched bars) and RedEfish (red solid
bars) embryos (n = 5 homogenate pools per group, n = 15 embryos per pool). Both RedEfish and
Casper embryos contained lower mean γ- as compared with α-tocopherol concentrations; the com-
parison of logarithmically transformed data for each fish line was significantly different (p < 0.0001,
Holm-Sidak’s multiple comparisons test).
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Embryo Morphology and Egg Quality Assessment

Egg quality was assessed in F3 RedEfish and Casper embryos at 6 hpf (gastrulation),
when ttpa is first expressed in zebrafish [28,29]. Egg volume was not significantly different
between RedEfish (0.220 ± 0.024 mm3) and Casper (0.205 ± 0.023 mm3) embryos (p = 0.18,
n = 10 per group). Morbidity and mortality outcomes at 5 dpf were also similar with fewer
than 5% of a given clutch experiencing a developmental deformity (n = 100 embryos each
in 3 independent spawning events). Finally, because of potential modification to Ttpa by
insertion of the mScarlet coding sequence, VitE status was assessed in RedEfish and Casper
embryos at 5 dpf. Both α- and γ-tocopherol concentrations were significantly lower in
RedEfish relative to Casper strain embryos (Figure 3C). Importantly, the RedEfish had
lower mean γ- as compared with α-tocopherol concentrations (p < 0.0001, Holm–Sidak’s
multiple comparisons test), emphasizing that the Ttpa discriminatory capability in the
RedEfish remained functional.

4. Discussion

We present the RedEfish, a new model for studying Ttpa localization and trafficking.
This zebrafish embryo model will be useful to study vertebrate development and as the
zebrafish grows to identify the specific tissue and cellular expression of Ttpa. Based on
the concept that mScarlet accumulates in cells that synthesize Ttpa, we provide further
support that Ttpa is associated with numerous developing embryonic structures, especially
throughout the nervous system, circulatory system and digestive tract based on Ttpa pres-
ence established via expression of mScarlet. These data also suggest that VitE is required
during development by these specific cells in these systems because in humans [44,45]
and mice [46–48] TTPA’s known function is to traffic α-tocopherol. Measurements of α-
and γ-tocopherol concentrations in the RedEfish documented that these fish discriminate
between these tocopherols (Figure 3C), as expected for functional Ttpa [49].

Lecithotrophic animals, those that rely on maternal deposited yolk, are an important
model for lipid and lipid-soluble vitamin metabolism during yolk utilization. The zebrafish
embryo develops separately from its yolk [50,51], which is bound by the yolk syncytial
layer (YSL) that secretes nutrients from the yolk into the developing organism. The YSL
expresses many of the genes needed for lipid and lipid-soluble vitamin transport [52–54]
likely facilitating the transfer of VitE from the yolk to the embryo. Zebrafish express the
microsomal triglyceride transfer protein (Mttp) immediately after the gastrulation in the
YSL, which facilitates apolipoprotein B (apoB) secretion to increase neutral lipid secretion
and accumulation throughout the embryo until the yolk depletes [55,56]. Mice similarly
require mttp to export triglyceride in apoB-containing lipoproteins and mttp-null mice
die midgestation [57,58]. Defects in mttp causing abetalipoproteinemia in humans also
cause VitE deficiency [59]. Thus, VitE transport from the yolk likely depends on the lipid
metabolic machinery of the YSL. The ttpa mRNA was found in zebrafish embryo YSL and
early neural structures including the eye, brain and posterior tailbud [28,29]. We report
mScarlet fluorescence is detected in the YSL in the zebrafish embryo throughout yolk
depletion and is found as punctate expression throughout the larval digestive tract until
at least 14 dpf. Ttpa may be involved in retrieving VitE from yolk stores and from the
enterocytes upon first feeding at 5 dpf, although this suggestion has not been observed in
other embryonic models. We previously reported that VitE-deficiency adversely impacts
neural crest cells expressing sox10 [28], which are known precursors of the enteric nervous
system. These data suggest that VitE may be important during enteric neuron maturation.

Ttpa, a cytosolic protein, localizes to recycling endosome, which is also marked by
expression of Niemann-Pick C1 and C2 (Npc1 and 2). Both Npc1 and Npc2 are expressed
specifically in the zebrafish embryo YSL [60], a metabolically active organ that exists
up to 9 dpf [61]. Npc1-/- zebrafish mutants have increased unesterified cholesterol in
trunk neuromasts indicating localization of impaired recycling endosomal metabolism and
possible colocalization of Ttpa [62], supported by early embryonic mScarlet expression
in our line. Indeed, NPC1-/- mice experience negatively impacted hepatic and cortical
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VitE levels [63], with accumulation of VitE in lysosomal compartments [64]. Additionally,
NPC1-like 1 mediates tocopherol uptake by human [65] and mouse [66] intestinal epithelial
cells. Our model supports previous findings that Ttpa and Npc likely localize to the same
cell or tissue types involving endosomal recycling and cholesterol trafficking, including
neuromasts, the lateral line and the intestinal tract especially in 7 dpf embryos.

The mScarlet fluorescence signal was not immediately apparent in the mosaic founder
zebrafish nor in the early embryonic stages up to 5 dpf in the heterozygote or homozygote
RedEfish. Although some fluorescence was detected during this developmental window,
successful transgenesis required molecular validation because of the yolk autofluores-
cence [67]. The bright yolk sac may be indicative of Ttpa and simultaneous mScarlet
expression, however, that outcome is currently unclear. We hypothesized that the presence
of VitE separate from yolk-derived transport may stimulate embryonic tissue expression of
Ttpa and mScarlet. VitE supplementation increases Ttpa mRNA expression in isolated rat
liver after food deprivation [68]. In addition, VitE supplementation stabilizes and prevents
degradation of TTPA in HepG2 cells [69]. Punctate protein expression may also be achieved
by VitE supplementation because TTPA colocalizes to lysosomes, as indicated in isolated
mouse hepatocytes by LAMP1 and fluorescent tocopherol upon supplementation [70].
Feeding 5 dpf embryos induced red fluorescence detected at 7- and 14-dpf, the signal was,
however, primarily localized to the gut and digestive tract lining rather than the liver, as
expected. Larval zebrafish “guts” remain highly autofluorescent [71], possibly as a result
of their microbiome [72]. Further investigation of the RedEfish model should exclude
examination of the auto-fluorescent yolk and digestive tract, although these structures are
still critical for dissecting the functions of VitE and Ttpa in embryonic development.

Importantly, VitE is associated with nervous system development. Chronically VitE
deficient mice [73] and zebrafish [74] experience cognitive dysfunction resulting from
brain specific lipid peroxidation. In addition, blocking translation of Ttpa prevented
formation of the eye and brain of 24 hpf zebrafish embryos [29]. Ttpa is found in the
cerebellum of adult rats [75] and in mice with VitE deficiency caused by deletion of Ttpa
exhibit lipofuscin accumulation as a result of oxidative damage specifically in the dorsal
root ganglia (DRG) [76]. DRG from Ttpa-/- mice have increased apoptosis [77], causing
reduced mechanosensitivity and excitability prevented only by very high levels of VitE
supplementation [78]. Additionally, we found that the DRG was disrupted in VitE deficient
zebrafish embryos [28]. Knowing this information, we anticipated mScarlet expression as a
proxy for Ttpa expression in the DRG of adult zebrafish (Figure 1E). Thus, the mScarlet
expression in the DRG of the RedEfish was expected. Nonetheless, we cannot rule out
autofluorescence; however, it is unclear what would produce this punctate effect in 21 dpf
zebrafish embryos.

mScarlet can be visualized using a fluorescence microscope with an absorbance and
emission spectra of 569 nm and 594 nm, respectively. Guide RNA (gRNA) sequences were
selected for a region 5′ of the first ttpa exon to create a polycistronic 2A construct encoding
mScarlet and ttpa in tandem. The T2A self-cleaving peptide has the highest cleavage
efficiency of the 2A peptides and has been used to produce independent fluorophore and
target proteins in immortalized cell lines, and zebrafish embryos [43]. We were able to
confirm, using anti-TTPA that Ttpa is expressed in the RedEfish at 24 hpf, and in other
transgenic fish lines (c269 and Casper, Figure 3B). We also confirm Rfp by Western blot
analysis in the RedEfish (Figure 3B) and by whole mount immunolocalization with the
anti-RFP; note that the c269 expresses RFP specifically in the brain [33] (Supplementary
Figure S2). With regards to the construct used, the T2A site was chosen due to high
“cleavage” efficiency for a 2A self-cleaving peptide sequence in zebrafish [43]. However, 2A
sites present a technical challenge as some bi-cistronic proteins remain uncleaved because
of ribosomal read-through or even falling-off [79]. Since VitE levels were found to be
somewhat lower in RedEfish relative to the Casper line, it appears that some ribosomal
skipping may be occurring to produce reduced Ttpa levels and thus reduced VitE levels
in the embryo. Western blot analysis did not indicate reduced Ttpa expression nor did it



Antioxidants 2021, 10, 965 10 of 13

show a larger unhydrolyzed protein consistent with an unhydrolyzed mScarlet and Ttpa.
An additional potential mechanism for the observed lower embryonic VitE, is less VitE
added to the developing egg by the adult female fish, as has been shown for chickens [80].

In summary, the RedEfish is a new model to study VitE trafficking in early embryonic
development in a model organism suitable for further genetic modification and easy ob-
servation by external development. To confirm that the reporter construct was effectively
integrated and coexpressed with ttpa, sequencing of the genomic region, Western blot
analysis and immunolocalization was performed. Confirmation that the reporter construct
does not impair Ttpa function was also performed by morphologic assessment of 6 hpf
embryos and VitE status of 5 dpf embryos. Thus, we provide ample supporting evidence
of the proper germ-line transmission of the mScarlet coding sequence 5′ of the first exon
of ttpa. We report herein a fluorescent tagged Ttpa model to track VitE-dependent and
Ttpa-dependent cells at the onset of development in the zebrafish embryo. This model
will provide a powerful tool to evaluate the effect of VitE status, as we have previously
shown [24–28,81,82] with in vivo detection and fluorescent presentation of the VitE defi-
cient phenotype.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10060965/s1, Figure S1: Genotyping confirmation indicates successful genomic inte-
gration in heterozygote RedEfish, Figure S2: RFP expression confirmation in 3 days post-fertilization
(dpf) c269, Casper and RedEfish.
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