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Intelligent computing technique 
based supervised learning 
for squeezing flow model
Maryam Mabrook Almalki1,2*, Eman Salem Alaidarous2, Dalal Adnan Maturi2, 
Muhammad Asif Zahoor Raja3 & Muhammad Shoaib4

In this study, the unsteady squeezing flow between circular parallel plates (USF-CPP) is investigated 
through the intelligent computing paradigm of Levenberg–Marquard backpropagation neural 
networks (LMBNN). Similarity transformation introduces the fluidic system of the governing partial 
differential equations into nonlinear ordinary differential equations. A dataset is generated based 
on squeezing fluid flow system USF-CPP for the LMBNN through the Runge–Kutta method by the 
suitable variations of Reynolds number and volume flow rate. To attain approximation solutions 
for USF-CPP to different scenarios and cases of LMBNN, the operations of training, testing, and 
validation are prepared and then the outcomes are compared with the reference data set to ensure the 
suggested model’s accuracy. The output of LMBNN is discussed by the mean square error, dynamics of 
state transition, analysis of error histograms, and regression illustrations.

Abbreviations
NN  Neural network
LMB  Levenberg–Marquard backpropagation
ρ  Fluid density
µ  Dynamic viscosity
w  Axial velocities
2ℓ(t)  Distance between the plates at any time t
Q  The volume flow rate
p  The pressure
η  Dimensionless variable
u  Radial velocities
ν  The velocity of the circular plates
Re  Reynolds number

In fluid dynamics, several areas inspire the researchers to further study and explore applicability and analysis. 
The flow of squeezing between two parallel circular walls is one of them because of its many valuable and varied 
applications in our current life reality. The primary vital application is the heart, where it pumps blood to the 
entire body through pressure. It also has industrial applications and engineering such that injection molding and 
polymer processing.  Stefan1 publication of a classical study of squeezing flow through the use of lubrication to 
generate a homogeneous compression provides an aspect to study squeezing flow system. This study is inspired 
by a series of studies on squeezing flow system investigated by many researchers. Ahmed et al.2 studied the 
unsteady squeezing flow considering the viscosity mainly affected by the temperature by applying the killer box 
method. Çelik et al.3 investigated the influence of heat transfer and velocity on squeezing flow by the Gegenbauer 
Wavelet Collocation Method. Sobamowo et al.4 used both methods of differential transformation and variation 
of parameters to study the effect of a magnetic field on Casson nanofluid’s squeezing flow through a porous 
medium. Çelik5 studied the effect of viscosity on squeezing flow in a magnetic field for a specific type of fluid 
known as Copper-water and Copper-kerosene. Noor et al.6 discussed the impact of Cattaneo–Christov heat and 
mass fluxes on nanofluid’s squeezing flow. Usman et al.7 introduced new improvements to the wavelets method 
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that helped to analyze the unsteady flow of nanofluid between two disks. Thumma et al.8 examined the influence 
of convection on the flow problem of electromagnetohydrodynamic radiative between two circular plates. Some 
other recent studies that have addressed squeezing flow can be seen in the  literature9–14.

In the previous research, squeezing flow has been studied using different numerical methods, but stochastic 
numerical computing that is dealing with artificial intelligence is utilized to analyze the fluidic systems recently.

The accurate results provided by stochastic numerical computing have been employed to provide new research 
in various fields such as fluid  mechanics15–17, biological  research18,19, business and finance  systems20,21, models 
of Panto-graph delay differential  systems22–24, plasma  science25,  thermodynamics26, magneto-hydrodynamics27, 
solid conductive  materials28, atomic  physics29 and other researches of interest.It is worth noting that artificial 
intelligence is also able to keep pace with modern problems that are emerging in the world in various fields, 
such as Covid  1930,31.

In this study, the system of (USF-CPP) is performed by an intelligent computing paradigm of Levenberg-
Marquard backpropagation neural networks (LMBNN). The research proceeds in several steps that can be 
summarized as follows

• Levenberg-Marquard backpropagation neural networks (LMBNN) is developed to discuss the impact of 
different scenarios connected with the squeezing flow system (USF-CPP).

• The governing flow system (USF-CPP) based on partial differential equations (PDEs) is transformed into 
differential equations (ODEs) for better applicability of networks (LMBNN).

• Runge-Kutta method is used to generate a dataset for the USF-CPP problem, which is finally prepared for 
neural network infrastructure, i.e., LMBNN by variation of Reynolds number and volume flow rate.

• LMBNN processes that are testing, training, and validation applied on system presenting the squeezing flow 
model USF-CPP for various scenarios and cases.

• The mean square error discusses the results of LMBNN, dynamics of state transition, analysis of error histo-
grams, and regression illustrations.

The workflow overview of solving USF-CPP with the proposed model LMBNN is presented in (See Fig. 1). The 
Mathematical formulation of the USF-CPP model exposure in “Solution methodology” section. The present 
model solution Procedure has been displayed in “Results and discussion” section. The accuracy of the output, the 
proposed LMBNN, is showing in “Conclusions” section. The conclusion of the research is given in the last section.

Mathematical formulation
The geometry of the squeezing flow of an incompressible two-dimensional viscous fluid between two parallel 
plates shown in (See Fig. 2). The distance between the two circular plates at any time t is 2ℓ(t) . The speed at which 
the upper and lower plates move each other is v(t). Select the r-axis as the model’s central axis, and the z-axis 
is normal to it. For axisymmetric flow, assumed that the plates approach symmetrically with respect to r-axis.

The governing  system32 become in form

where

Subject to the boundary conditions

where η =
z

ℓ(t) , u radial velocity and w axial velocity.
To simplify the complex system of differential equations above and make it easier to find and analyze the 

results, we use similarity transformations and the following equation yields.

where both Re and Q are constant.
The circular plates diverge when Re 0 , while converges towards each other when Re < 0 and the squeezing 

flow are symmetrical with the velocity profiles, provided ℓ(t) 0 . As well if Q = −Re then Eq.(6) is reduced to
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where

With the following boundary conditions

(7)Re
[

(η − f )d3
η3
f + 3d2

η2
f
]

+ d2
η2
f = 0,

(8)dη =
d

dη
and d2

η2
=

d2

dη2
.

Figure 1.  The diagram of the proposed LMBNN for solving the USF-CPP model.
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Solution methodology
The Levenberg Marquardt (LM) training technique is an efficient technique in the field of intelligent computing. 
It is designed to calculate the second-order training fast, and it requires that the output of the neural network 
operation is a single neuron (See Fig. 3).

Implement the Levenberg Marquardt technique in MATLAB based on using the command of the neural 
network toolbox “nftool” to fit the problem. The total data for LMBNN is 1001 found between 0 and 1 by setting 
0.001 as steps, using the Runge-Kutta technique through the “NDSolve” built-in function for numerical solu-
tion in Mathematica. The dataset values for f (η) were randomly used for each of the training, validation, and 

(9)
f ′(1) = 0 and f (1) = 1, at η = 1

f ′′(0) = 0 and f (0) = 0. at η = 0

Figure 2.  System scheme of USF-CPP.

Figure 3.  A single neural model structure.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19597  | https://doi.org/10.1038/s41598-021-99108-z

www.nature.com/scientificreports/

testing with 70% , 15% , 15% , respectively. For accurate results, select 60 as the number of neurons. The LMBNN 
is a computational model with Double neural network coats (See Fig. 4).

Results and discussion
The numerical application based on LMBNN is presented here for the squeezing flow model obtained in Eqs. 
(6-9). The proposed LMBNN is implemented for six scenarios by variation of Re, Q, with three different cases 
for each scenarios, as shown in Table 1. Notice that the equation associated with value variation is used in each 
scenario.

Figures 5, 6, 7 shows that performance, states, and error histograms for all six scenarios in case 2 for USF-CPP, 
respectively. Studies of regression are given (See Fig. 8). The fitting of solution respective six scenarios of case 2 
is presented (See Fig. 9). Also, LMBNN outcomes are comparing with the standard outcomes (See Figs. 10, 11).

The mean squared error (MSE) for all three operations is given (See Fig. 5) to validate all different scenarios. 
Epochs performance clearly Check in 408, 109, 4, 325, 214, 3 while MSE is around ( 10−12 to 10−13 , 10−11 to 10−12 , 
10−06 to 10−07 , 10−10 to 10−11 , 10−12 to 10−13 , 10−05 to 10−06 ) respectively (See Fig. 5).

The gradient of case 2 for all six scenarios respectively around ( 4.95× 10−09 , 9.72× 10−08 , 
2.66× 10−05 , 5.48× 10−08 , 9.98× 10−08 , 9.11× 10−06 ) and the backpropagation measures is around 
( 10−13, 10−14, 10−10, 10−11, 10−14, 10−07 ) (See Fig. 6). Analyze of the varition error histograms for differents 
points is presented (See Fig. 7). The zero axes along with the error box of reference for all six scenarios in case 
2 is around ( 5.33× 10−09 , 1.49× 10−07 , 1.79× 10−05 , −1.3× 10−06 , −9.1× 10−08 , −6.4× 10−05 ). (See Fig. 8) 
the value of R rotates statically about one , where it is the value concerned to judge the quality of the operations.

The performance result of the LMBNN is thouhtful with the standard numerical result presented from the 
Runge-Kutta technique along with the input error dynamics between 0 and 1 with step-size 0.001 has come 

Figure 4.  Installation of neural network.

Table 1.  Scenarios and cases distribution for USF-CPP model.

Scenarios(S) Cases

The 
physical 
parameters 
under 
study

Re Q

(1) 1 2 –

Q = −Re
2 3 –

3 0.2 –

(2) 1 0.2 –

Q = −Re
2 2 –

3 3 –

(3) 1 −6 –

Q = −Re
2 −15 –

3 −0.9 –

(4) 1 −6 –

Q = −Re
2 −15 –

3 −0.9 –

(5) 1 1 0.2

Q  = −Re
2 1 6

3 1 15

(6) 1 1 0.2

Q  = −Re
2 1 6

3 1 15
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(a) MSE Result of USF-CPP for S1 (b) MSE Result of USF-CPP for S2

(c) MSE Result of USF-CPP for S3 (d) MSE Result of USF-CPP for S4

(e) MSE Result of USF-CPP for S5 (f) MSE Result of USF-CPP for S6

Figure 5.  LMBNN Performance based on MSE for USF-CPP (Case 2).
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(a) The transition state of USF-CPP for S1 (b) The transition state of USF-CPP for S2

(c) The transition state of USF-CPP for S3 (d) The transition state of USF-CPP for S4

(e) The transition state of USF-CPP for S5 (f) The transition state of USF-CPP for S6

Figure 6.  LMBNN Performance based on Gradient, Mu, and validation for USF-CPP (Case 2).
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(a) Error histogram of USF-CPP for S1 (b) Error histogram of USF-CPP for S2

(c) Error histogram of USF-CPP for S3 (d) Error histogram of USF-CPP for S4

(e) Error histogram of USF-CPP for S5 (f) Error histogram of USF-CPP for S6

Figure 7.  LMBNN studies based on error histogram for USF-CPP (Case 2).
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(a) The regression of USF-CPP for S1 (b) The regression of USF-CPP for S2

(c) The regression of USF-CPP for S3 (d) The regression of USF-CPP for S4

(e) The regression of USF-CPP for S5 (f) The regression of USF-CPP for S6

Figure 8.  LMBNN studies based on regression for USF-CPP (Case 2).
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(a) The fitness function of USF-CPP for S1 (b) The fitness function of USF-CPP for S2

(c) The fitness function of USF-CPP for S3 (d) The fitness function of USF-CPP for S4

(e) The fitness function of USF-CPP for S5 (f) The fitness function of USF-CPP for S6

Figure 9.  LMBNN analyses based on fitness function for USF-CPP (Case 2).
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(a) Behavior of Re (b) Illustration of AE

(c) Behavior of Re (d) Illustration of AE

(e) Behavior of Re (f) Illustration of AE

Figure 10.  LMBNN Result and numerical reference results of USF-CPP for S1 to S3.
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(a) Behavior of Re (b) Illustration of AE

(c) Behavior of Q (d) Illustration of AE

(e) Behavior of Q (f) Illustration of AE

Figure 11.  LMBNN Result and numerical reference results of USF-CPP for S4 to S6.
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(See Fig. 9). The maximum error achieved for a data operations are less than ( 1× 10−06 , 1× 10−05 , 2× 10−03 , 
4× 10−05 , 5× 10−06 , 4× 10−02 ) respectively.

Moreover, the LMBNN results are clarified for the ( f (η) , f ′(η) ) for different scenarios of squeezing flow 
model which is shown (See Figs. 10a, c, e, 11a, c, e) respectively. And it corresponds with the given results from 
the Runge-Kutta numerical solution in impact scenarios and cases. In (Figs. 10a, c, e, 11a) offer the effect of 
the positive and negative cases of the Reynolds number Re on the each of the profiles f (η) , f ′(η) , and since it 
is clear that an increase in the value of Re leads to an increase in the value of profiles. While, in (Fig. 11c, e), we 
note that an increase in the value of the volume flow rate Q leads to a decrease in the value of both profiles f (η) , 
f ′(η) . But in the Fig. 10c the velocity profile is increasing function of Re for η less than 0.4 and reverse trend is 
observed when η is greater than 0.4. The absolute error for different scenarios is calculated from standard solu-
tions (See Figs. 10b, d, f, 11b, d, f), respectively. indicate that AE is about ( 10−07 to 10−06 , 10−07 to 10−03 , 10−07 
to 10−03 , 10−07 to 10−05 , 10−08 to 10−04 , 10−07 to 10−03 ) for scenarios respectively.

Finally, the solution processes appeared while, running LMBNN, such as MSE, performance, gradient, Mu, 
epochs, and the time each of the three cases is listed in Table 2. The performance of LMBNN in Table 2 is around 
( 10−14 to 10−13 , 10−12 to 10−06 , 10−12 to 10−07 , 10−12 to 10−07 , 10−13 to 10−07 , 10−12 to 10−06 ) respectively. These 
graphical and tables results presented above discern the accuracy of using LMBNN computing to solve the vari-
ants of USF-CPP.

Conclusions
In this paper, the intelligent computing paradigm of Levenberg-Marquard backpropagation neural networks 
(LMBNN) offered a numerical solution of USF-CPP by simplified the system into an equivalent nonlinear 
ordinary differential equation with suitable transformation. The Runge-Kutta method is implemented for the 
USF-CPP dataset by variation of Reynolds number and volume flow rate. The 70% , 15% , and 15% of points are 
determined for training, testing, and validation for various scenarios of LMBNN. The best agreement of both 
proposed and reference results along with the level is 10−06 to 10−14 . Also, The velocity profile f ′(η) is directly 
proportional to the increase of Reynolds number Re and inversely proportional to the volume flow rate Q. 
Moreover, verifying the scheme accuracy results is achieved through graphs and tables illustrations such as mean 
square error, state transition dynamics, analysis of error histograms, and regression.

In the future, it will introduce mechanics through new platforms based on artificial intelligence to provide 
more accurate and efficient  results33–36.
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