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Abstract

Motivation: Quantitative structure–activity relationship (QSAR) methods are increasingly used in assisting the pro-
cess of preclinical, small molecule drug discovery. Regression models are trained on data consisting of a finite-
dimensional representation of molecular structures and their corresponding target-specific activities. These super-
vised learning models can then be used to predict the activity of previously unmeasured novel compounds.

Results: This work provides methods that solve three problems in QSAR modelling: (i) a method for comparing the
information content between finite-dimensional representations of molecular structures (fingerprints) with respect
to the target of interest, (ii) a method that quantifies how the accuracy of the model prediction degrades as a function
of the distance between the testing and training data and (iii) a method to adjust for screening dependent selection
bias inherent in many training datasets. For example, in the most extreme cases, only compounds which pass an
activity-dependent screening threshold are reported. A semi-supervised learning framework combines (ii) and (iii)
and can make predictions, which take into account the similarity of the testing compounds to those in the training
data and adjust for the reporting selection bias. We illustrate the three methods using publicly available structure–
activity data for a large set of compounds reported by GlaxoSmithKline (the Tres Cantos AntiMalarial Set, TCAMS)
to inhibit asexual in vitro Plasmodium falciparum growth.

Availabilityand implementation: https://github.com/owatson/PenalizedPrediction.

Contact: owatson79@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput experiments allow for the characterization of the
target-specific activity of thousands to hundreds of thousands of
small molecules (Martis and Radhakrishnan, 2011; Phatak et al.,
2009). The structure–activity data generated from these experiments
can be used to fit supervised learning models with the aim of then
finding molecular structures that maximize an outcome of interest,
such as target activity, cytotoxicity or lipophilicity (Cherkasov et al.,
2014).

Three major methodological issues are apparent in this ap-
proach. First, it is necessary to represent small molecules using a
finite-dimensional vector representation, such as extended-
connectivity fingerprint (Rogers and Hahn, 2010), which loses
much of the information in the true underlying molecular structure

related to bioactivity. Many different fingerprint representations are
available, and thus methods that quantify relative information loss
between different fingerprint representations are necessary to make
an optimal choice. For instance, two molecules with uncorrelated
bioactivity profiles might be close in fingerprint space depending on
the fingerprint chosen (Muchmore et al., 2008). Second, the accur-
acy of the predictive model degrades as the distance between the
training and testing compounds increases (Netzeva et al., 2005;
Sheridan, 2015; Wallach and Heifets, 2018). The set of testing com-
pounds for which the predictive value of the model is high is known
as the applicability domain of the model (Netzeva et al., 2005). This
problem is sometimes taken into account by completely restricting
models to the domain of compounds similar to those in the training
set (Netzeva et al., 2005). For general predictive purposes, however,
it is desirable for the predictive model to properly account for this
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distance-dependent effect. Third, many structure–activity datasets
have an inherent bias in that only molecules with a certain minimal
target-specific activity are characterized and reported, e.g. Gamo
et al. (2010). A bias towards active molecules will result in overly
optimistic predictions of the activity values of new molecules,
whereas models trained on datasets mostly comprising inactive mol-
ecules might hamper the discovery of structurally novel active com-
pounds (Cortes-Ciriano et al., 2018; Norinder and Boyer, 2017; Sun
et al., 2017).

In this work, we consider each of these three issues and provide
methodological solutions. We use the Tanimoto distance as a metric
on molecular space, which has proved suitable in quantifying mo-
lecular similarity in multiple drug discovery applications (Bajusz
et al., 2015). We show how Tanimoto distance can be used for a sys-
tematic comparison between different fingerprint representations.
We show that it is possible to explicitly adjust model predictions for
both the activity-dependent selection bias, and for the distance-
dependent predictive degradation by accounting for the underlying
geometry of molecular space. The adjusted predictions are made
using a semi-supervised learning framework. This takes as input a
set of labelled compounds (structures with labelled activity values)
and a larger set of unlabelled compounds (only structures) which
provide an empirical representation of the overall distribution of
‘feasible’ small molecules, that is amenable to synthesis and display-
ing drug-like properties (Matter et al., 2012; Walters and Murcko,
2002). Semi-supervised learning refers to the set of methods devel-
oped in machine learning that use labelled (in this case structures
with corresponding activity values) and unlabelled data (no corre-
sponding activity values) to build predictive models, see for ex-
ample, the studies by Käll et al. (2007) and Shi and Zhang (2011).
The unlabelled data allow for a more accurate representation of the
set of ‘feasible’ compounds that could have been part of the (un-
known) screening process.

We illustrate this methodology on the Tres Cantos AntiMalarial
Set (TCAMS), an open access screening dataset generated by
GlaxoSmithKline based on the Plasmodium falciparum 3D7 asexual
assay (Gamo et al., 2010). We fit random forest and ridge regression
models to these data. We use held-out data to compare the perform-
ance of the semi-supervised framework—which uses the unlabelled
data and explicitly adjusts for Tanimoto distance between testing
and training data—against the standard fully supervised framework.

2 Materials and methods

2.1 Definitions and notation
We use the following notation throughout. Compounds (small mole-
cules) are denoted x 2 X , where X is the unknown space of all feas-
ible compounds. A compound x is represented by its ‘fingerprint’, a
binary vector of some fixed dimension p. This vector representation
of x is constructed via a ‘fingerprint mapping’, as described by
Rogers and Hahn (2010), which uses a mathematical hash function
to map the space of compounds into binary vectors of some finite di-
mension. Fingerprint mappings are not injective: two different com-
pounds can have the same fingerprint (Cortes-Ciriano et al., 2018;
Rogers and Hahn, 2010). Identifying compounds by their finger-
print representation (for a given fingerprint mapping) allows us to
define a metric over molecular space. We use the Tanimoto distance
(also known as the Jaccard distance), defined as one minus the
Tanimoto similarity (Bajusz et al., 2015). The Tanimoto similarity
of two compounds xi and xj is the number of substructures common
to both compounds, divided by the total number of substructures
that appear in at least one of the compounds (Bajusz et al., 2015)
[This is an approximation, since the hash mapping can map different
substructures to the same bit index, see Rogers and Hahn (2010).
Thus the presence of a ‘1’ in the same dimension for the fingerprints
of two compounds means that they are likely to share some common
substructure, but they do not conclusively do so.].

Written as Boolean operators on binary vectors, this is
jxi \ xjj=jxi [ xjj. The rationale for choosing this metric is that only
sharing a particular substructure provides information regarding

similarity, and two compounds that share no substructures are
thought of as being maximally different (for want of a better model
for representing molecules in a finite-dimensional space). We denote
the Tanimoto distance between compounds xi, xj as dðxi; xjÞ. For
notational simplicity, we do not include the dependency on the
underlying fingerprint mapping, though this mapping will in fact af-
fect the distance d. In addition we define the setwise Tanimoto dis-
tance between a compound x and a set of compounds S as
dðx;SÞ ¼ mins2Sdðx; sÞ. This is the Tanimoto distance between x
and its nearest neighbour in S. We note that for a finite dimension
p, the set of feasible pairwise distances is discrete.

Our semi-supervised structure–activity regression modelling
framework applies to the following set-up, whereby there are two
distinct sources of data. First, we have labelled structure–activity
data denoted Ln ¼ fxi; yig

n
i¼1 (L for labelled), comprising n com-

pounds, where yi is the response value for the compound xi. In our
setting, yi is the target-specific activity of the compound xi for some
pre-defined target of interest, but in general, it could represent other
outcomes of interest (e.g. in vitro cytotoxicity, or lipophilicity). The
response yi is a (unknown) function of xi and as such can be written
yi ¼ yðxiÞ.

We examine the case where the labelled data has the following
type of selection bias. The responses yi are all greater than a known
cutoff value Lmin. We denote as ‘actives’ the molecules with a re-
sponse value greater than Lmin, and as ‘inactives’ those less than
Lmin. The unknown set of all active molecules is denoted A. The
compounds xi in our structure–activity dataset Ln are therefore a
strict subset of A as they have been selected on the basis of observed
activities yi > Lmin. We assume that the set Ln was derived by
screening a larger set of compounds Ln0 (of known or unknown size
n0 > n), and then choosing the active compounds amongst them:
Ln ¼ Ln0 \ A. The critical point here is that the inactive compounds
in the larger set Ln0 are unknown or unavailable for analysis.

Second, we have unlabelled structure data of size N denoted UN

(U for unlabelled). By construction, there are no labelled compounds
in UN (UN \ Ln ¼1). In general, in this set-up, it is assumed that
n� N, which is that of many semi-supervised learning problems
whereby there is a smaller, well curated labelled dataset, and a much
larger unlabelled dataset.

The key assumption that guides the following methodology is
that the unlabelled data UN are sampled from the same data generat-
ing process as the unknown set of screened compounds Ln0 . We note
that this assumption is, in general untestable, however, we show
how specific deviations can be detected and corrected for. It is worth
noting that if we knew the inactive structures in Ln0 then much of
the framework developed here would be unnecessary, but in practice
the availability of large sets of active and inactive compounds for a
target of interest is rather limited, thus possibly biasing predictive
modelling applications in preclinical drug discovery.

2.2 Quantifying the utility of a fingerprint representation
The utility of a fingerprint mapping of small molecules in the con-
text of modelling a specific response (outcome) can be quantified by
characterizing the correlation between the responses yi (in our case
activity) as a function of distance (using Tanimoto distance) for
pairs of compounds. The following provides a non-parametric
method for estimating the distance-dependent covariance of the ac-
tivity of two compounds. This can be used as a general approach for
visualizing the quality of a given p-dimensional fingerprint mapping.

In general, for any two compounds xi, xj, the joint distribution

of their respective activities yi, yj can be estimated as ð y r
r y

Þ, where

y is the mean activity value, and r is the covariance. If the distance
metric over the fingerprint mapping of molecular space is a good
representation of the true distance between molecules (and there-
fore, the true average difference in activities), then this covariance r
will be a function of the distance dðxi; xjÞ and should be modelled
accordingly.

With this aim, we define Bd � Ln � Ln as the set of all distinct
pairs of active compounds for which the pairwise distance is exactly
d:
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Bd ¼ fx ¼ ðxi; xjÞ : dðxi;xjÞ ¼ d;xi 6¼ xjg: (1)

The set Bd can then be used to empirically estimate the distance-

dependent covariance function r2ðdÞ:

yðxiÞ � yðxjÞ � N½0;rðdÞ2�; x ¼ ðxi; xjÞ 2 Bd; (2)

where N is the normal distribution.
In practice, we can partition the range of observed distances

into K bins and compute Bdi
for each bin di. A bootstrap esti-

mate of the standard error around r̂ðdiÞ can be obtained by
bootstrapping with replacement the individual compounds within

Bdi
(bootstrapping at the compound level, not the pairwise dis-

tance level).

2.3 Semi-supervised prediction model
2.3.1 Prediction goal of semi-supervised framework

Using the two data sources Ln and UN, we wish estimate the prob-
ability that a new compound x� has an activity greater than some

pre-specified threshold of interest I (where I is significantly greater
than Lmin). For example, this threshold could represent an activity
high enough to warrant further experiments. We note that in general

a ranking based on tail probabilities (function of the mean and
higher moments of the distribution) will differ from a ranking based
on mean predicted values. We predict whether y� > I using a semi-

supervised framework, whereby we condition on the distance be-
tween x� and the training data Ln. First, the modelling framework

uses the labelled data Ln to fit a supervised predictive model of y
given x, using the fingerprint representation of x 2 Ln as a p-dimen-
sional predictive variable. Second, the predictions made by the

supervised model are adjusted using the additional information of
the distance between x� and the training data. These adjustments

also specifically account for selection bias in the training data, by
conditioning on whether x� is an active molecule or not. It is import-
ant to note the following:

1. By construction, all the responses yi 2 Ln have values greater

than Lmin. Therefore, by regression to the mean, a general re-

gression model will predict for any new compound a value

greater than Lmin, regardless of the overall frequency of active

compounds observed under the data generating process

(approximated by n=n0).

2. Using our metric d, we can observe whether the active com-

pounds Ln are closer together than compounds drawn from the

same data-generating process without selection bias. Assuming

that Ln was generated by taking the active compounds from a

much larger set of compounds generated from the same process

that generates the unlabelled data, we can use the inter-

compound distances of Ln, compared to inter-compound distan-

ces of compounds from UN to estimate the rate at which the

probability of being active varies as function of distance to the

training data under the metric d.

Point 1 explains why it is necessary to adjust predictions with
the background frequency of active molecules; point 2 implies that a

metric on molecular space along with the unlabelled data UN pro-
vide key additional information as to whether a given molecule x� is
active or not. Specifically, we can use the information on the dis-

tance between x� and the training data Ln to inform the prediction
of y�.

The prediction goal is expressed as the estimation of:

P½y� 	 Ijdðx�;LnÞ�: (3)

By the law of total probability, conditioning on whether x� is ac-

tive (i.e. y� > Lmin):

P½y� 	 Ijdðx�;LnÞ� ¼ P½y� 	 Ijdðx�;LnÞ; x� 2 A�P½x� 2 Ajdðx�;LnÞ� :
(4)

The omitted second half of the sum

P½y� 	 Ijdðx�;LnÞ; x� 62 A� ¼ 0 (5)

is equal to 0 as, by definition, y� cannot be greater than I if x� is not
in A.

In the next sections, we outline (i) the estimation of the distance
dependent probability that x� is active: P½x� 2 Ajdðx�;LnÞ�; and (ii)

the estimation of the conditional probability that y� > I:
P½y� 	 Ijdðx�;LnÞ;x� 2 A�. We simplify the estimation of (ii) by
breaking it down into the predicted expected value of y�, and the

predicted uncertainty around this expected value. Assuming a given
parametric form for the predictive distribution of y�, we can esti-

mate P½y� 	 Ijdðx�;LnÞ; x� 2 A�. This can be done by fitting a pre-
dictive distribution (conditional on being active) using the active
data we have—as explained in a section below—and then re-

centring and re-scaling using the mean and variance estimates from
the predictive distribution.

2.3.2 Distance-dependent probability that x� is active

Applying Bayes rule:

P½x� 2 Ajdðx�;LnÞ� ¼
P½x� 2 A; dðx�;LnÞ�

P½dðx�;LnÞ�
(6)

¼ Pðx� 2 AÞP½dðx�;LnÞjx� 2 A�
P½dðx�;LnÞ�

: (7)

We estimate Equation (7) by estimating each of its three
components.

First, we estimate P½dðx�;LnÞjx� 2 A� using a v-fold ‘cross-pre-
diction’-type procedure. For example, taking v¼2, we randomly
partition Ln into 2 equally sized subsets L1

n=2;L2
n=2. This partition

gives a total of n setwise distances for each element of L1
n=2 to the set

L2
n=2, and vice versa. By repeating this procedure k times, we obtain

kn setwise distances which form an empirical distribution of
P½dðx�;Ln=2Þjx� 2 A�. For v¼2, this procedure estimates
P½dðx�;Ln=2Þjx� 2 Ln�. The choice of v corresponds to a bias-

variance trade-off. Taking v¼n (a leave-one-out procedure) results
in n datasets that are likely to be highly similar to one another,

resulting in an empirical distribution of P½dðx�;Ln�1Þjx� 2 A� with
high variance. Lower values of v (e.g. v¼2) de-correlate the sets
used to estimate these setwise distances and result in a lower vari-

ance but with increased bias due to the smaller sample sizes. The op-
timal choice of v can be determined from multiple runs with
different values of v, which allows for an assessment of the bias

introduced by the finite sample size.
Second, the denominator P½dðx�;LnÞ� can be estimated using the

empirical distribution of setwise distances dðx;LnÞ, where x 2 UN.
A sensitivity analysis with respect to the size of the set Ln can be

done by random samples of size n=2 elements from Ln.
Third, the marginal (prior) Pðx� 2 AÞ, which is the overall frac-

tion of active compounds in X , can be estimated in two possible
ways. If the number of compounds screened to generate the dataset
Ln is known, then n over the number of compounds screened

approximates the overall fraction of actives in X . Otherwise, it is
possible to use a limit argument. We assume that compounds very

close to an active compound are themselves active: formally this
means that limdðx� ;LnÞ!0 P½x� 2 Ajdðx�;LnÞ� ¼ 1. Therefore:

Pðx� 2 AÞ ¼ lim
dðx� ;LnÞ!0

P½dðx�;LnÞ�
P½dðx�;LnÞjx� 2 A�

: (8)

This relies on the ability to accurately estimate both terms in the

ratio in Equation (8). We discuss this in Section 2.5.1.
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2.3.3 Distance-dependent degradation of predictive accuracy

In this section, we show how to estimate the mean and variance of
the predicted value of y� as a function of the distance between x�

and Ln, conditional on x� 2 A. After fitting a model M to the
labelled data Ln, instead of using the ‘naive’ predicted expected
value Mðy�jLnÞ (and modelled uncertainty around this estimate), we
formally account for degradation in predictive accuracy as a func-
tion of the distance dðx�;LnÞ. By estimating this distance-dependent
decrease in model accuracy, we can correctly penalize model predic-
tions to obtain a calibrated estimate of P½y� 	 Ijdðx�;LnÞ; x� 2 A�.

For a given distance d 2 ½0;1�, we assess the ability of our pre-
dictive model M to extrapolate at a distance d from the training data
by doing the following:

• We standardize the response values yi so that the model M is fit

to approximately standard normal data.
• For each compound xi 2 Ln, we construct a subset of the labelled

data, defined as all compounds at least d units of distance from

xi. This is denoted Li;d ¼ fx 2 Ln : dðx;xiÞ 	 dg. This is the com-

plement of the d-ball centred around xi.
• We fit the model M to the data L i;d and compute the out-of-

sample prediction ŷMi;d
¼MðxijL i;dÞ.

Here, MðajBÞ denotes the prediction on compound a of the
model M fit to data B. The d-distance prediction ‘quality’ of the
model M can be assessed by the set of residuals fyi � ŷMi;d

gn

i¼1
. The

decrease in predictive ability as a function of the setwise distance to
the training data can be quantified by estimating smooth functionals
b̂ðdÞ; �̂ðdÞ, whereby:

yi � N
�
b̂ðdÞŷMi;d

; �̂ðdÞ2
�
: (9)

The estimated standard deviation �̂ðdÞ can be interpreted as 1
minus the distance-d R-squared of the model M. The conditional
predictive distribution of the response y� can then be estimated as:

y� � N
�
b̂½dðx�;LnÞ�Mðx�jLnÞ; �̂½dðx�;LnÞ�

�
: (10)

2.4 Data
To illustrate our predictive framework, we used the Tres Cantos
Antimalarial Set (TCAMS) (Gamo et al., 2010) as the labelled data
Ln. These data comprise 13 533 compounds, selected on the basis
that they inhibited the growth of P. falciparum 3D7 by at least 80%
at 2 lM concentration (in this context, this is the assay defining ‘ac-
tive’ compounds and the threshold Lmin). Subsequently, in this art-
icle, we will follow standard drug-discovery convention and refer to
the activity level of the active compounds in pIC50 units. In the con-
text of this assay, the active compounds have pIC50 values greater
than 5.7. This set of compounds was discovered by screening a li-
brary of 1 985 056 compounds (an active discovery rate equal to
0.68%) (Gamo et al., 2010). The structures for the inactive com-
pounds were not reported, and hence, the available structures cor-
respond to only active compounds.

We constructed (see Section 2.5.1) unlabelled datasets UN with
publicly available data from the Molport database after having
removed all compounds with recorded activities in TCAMS (there
were 2044 compounds in Molport with canonical fingerprints equal
to compounds in TCAMS, which we count as identical in this case).
This gave a total of N¼7 228 997 compounds with no activity val-
ues (unlabelled). We treat this dataset as representative of ‘accessible
chemical space’—and thus sampling a compound randomly chosen
from this set as a ‘random compound’.

The key assumption used in the estimation of Equation (7) is
that the set UN is sampled from the same data-generating process as
the unknown set Ln0 . This allows us to use UN to adjust for the in-
herent selection bias when training a supervised regression model on
Ln.

The set of unlabelled data UN was provided with a certain order-
ing (a set of numbered files, each with approximately 500 000 com-
pounds). This ordering was strongly correlated with the setwise
distance to the 13 533 compounds in the TCAMS dataset (labelled
data). The MolPort company could not provide a reason for this
particular ordering of their data. It would seem likely that the data-
base was compiled over time, and thus the earlier compounds in the
list are those that are simpler to synthesize and thus more likely to
appear in other high compound collections.

We standardized all chemical structures in all datasets described
above to a common representation scheme using the python module
standardizer (https://github.com/flatkinson/standardiser). Inorganic
molecules were removed, and the largest fragment was kept to filter
out counterions (Fourches et al., 2010). To represent molecules for
subsequent model generation, we computed circular Morgan finger-
prints (Rogers and Hahn, 2010) for all compounds using RDkit (re-
lease version 2013.03.02) (Landrum, 2017). Specifically, we
computed hashed Morgan fingerprints in binary format using the
RDkit function GetMorganFingerprintAsBitVect, to return values in
f0;1g128.

We decided to use Morgan fingerprints as compound descriptors
given the higher retrieval rates obtained with this descriptor type in
comparative virtual screening studies (Koutsoukas et al., 2014). The
radius was set to 2, and we used two fingerprint lengths of 128 and
1024.

2.5 Statistical methods
2.5.1 Distance-dependent probability of being active

The estimation of P½x� 2 Ajdðx�;LnÞ� is critical for the performance
of the predictive model, see Equation (4). This probability is propor-
tional to the functional:

fn;NðdÞ ¼
P½dðx;LnÞ ¼ djx 2 A�

P½dðx;LnÞ ¼ d� ; (11)

where d 2 ½0; 1�. An estimate f̂ n;NðdÞ of this functional should satisfy
two properties:

1. For d ¼ 0:

f̂ n;Nð0Þ ¼
1� �

Pðx� 2 AÞ

, where �� 1 and depends on the granularity
of the metric over molecular space.
2. f̂ n;NðdÞ is monotonically decreasing in d 2 ½0;1�.

To estimate f̂ n;NðdÞ: (i) we generate random samples from the
distribution P½dðx;LnÞ ¼ djx 2 A� (the numerator); (ii) we generate
random samples from the distribution P½dðx;LnÞ ¼ d� (the denomin-
ator); (iii) we use these two sets of random samples to determine a
smooth estimate of the ratio as a function of d, such that the two
properties specified above are satisfied. In this procedure, c is the
bandwidth parameter of the Gaussian kernel density used to esti-
mate both probability densities for every value of d (from the library
sklearn, the function KernelDensity with default parameters).

The optimal value of c is chosen as follows. First, we use the v-
fold cross-prediction method to sample from P½dðx;LnÞ ¼ djx 2 A�
with v¼2 and k¼5, giving a total of 66 635 samples (input to the
numerator estimation). Second, we choose ten equally spaced dis-
tances d in the range ½0::0:45�. For each of these distances d, we
choose 10 samples of 100 000 points from the MolPort database
using a specific sampling strategy explained below. We then use bin-
ary search to find the optimal bandwidth c such that the estimated
f̂ n satisfies the property f̂ nð0Þ ¼ 1:. A sensitivity analysis to the
choice v¼2 (see Supplementary Fig. S1 in Supplementary Materials)
showed that the bias introduced by estimating P½dðx�;LnÞjx� 2 A�
using P½dðx�;Ln=2Þjx� 2 A� does not affect the kernel density estima-
tion (Supplementary Fig. S2 in Supplementary Materials).

This results in one hundred values for c, and we take the median
estimate ĉ. We then use this ĉ to choose a value of d such that

Semi-supervised learning for QSAR 345

https://github.com/flatkinson/standardiser
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa711#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa711#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa711#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa711#supplementary-data


samples chosen using this probability weighting, when smoothed
with bandwidth c, have fnð0Þ ¼ 1. This gives us values (rounded) of
c (bandwidth) ¼ 0.09 and d (for use in our sampling strategy) ¼
0.15.

The structure of the Molport data UN, whereby compounds
early on in the numbering are much more likely to be close to
the TCAMS dataset than those further on in the numbering
motivates the following important sampling-type approach to
choosing an appropriate subset of the data to use in fitting our
estimate of P½dðx;LnÞ ¼ d�. We generate sets of unlabelled data
from UN, whereby the sampling probability decays as a function
of the index of the unlabelled data using the following crude ap-
proach. The Molport data are divided into 15 files, in increasing
order (with 500 000 compounds per file, apart from the last
which only has half this amount). For a given distance value d,
our sampling strategy goes as follows. We calculate the number
of compounds with minimum distance d to the TCAMS dataset,
giving us nd;i for i 2 ½0::14�. We sample from file i (without re-
placement) with probability nðd; iÞ=

P
jðnd;jÞ.

We used the python library scikit-learn (Pedregosa et al., 2011)
version 0.19.1 and functions with default parameter settings except
where stated otherwise.

2.5.2 Degradation of predictive accuracy

To calculate the distance-dependent degradation functions b̂ðdÞ; �̂ðdÞ
(Equation 9), we choose a uniform grid of 10 values of d spanning
the interval [0,1]. For each d value on this grid, we calculated
b̂ðdÞ; �̂ðdÞ as per Equation (9) where the underlying regression mod-
els were random forests (RF) and ridge regression, respectively. We
then used these ten estimates to interpolate smooth functions b̂ðdÞ
and �̂ðdÞ by minimizing least squares deviation. The function is of
the form gðdÞ ¼ a=ð1þ e�bdc Þ. This function g is continuous, strictly
decreasing and non-negative over the interval ½0; 1�, with three free
parameters (a, b, c).

2.5.3 Testing of predictive models

To benchmark the performance of the proposed predictive frame-
work with respect to simpler alternatives, we designed testing
experiments. Training and testing data were selected on the basis of
quantiles of the distribution of the activity values (Watson et al.,
2019). In this set-up, all labelled data with activity values below a
chosen activity quantile qtrain are used as training data, and all
labelled data with activity values above a chosen activity quantile
qtest are used as part of the testing data. In particular, qtrain 
 qtest.
The complete testing set is then composed of these labelled data in
addition to a set of 500 000 compounds randomly chosen from the
unlabelled dataset (MolPort).

The thresholds used were qtrain ¼ f7:0; 7:5g, and
qtest ¼ f7:5; 8:0g. In the TCAMS dataset, there are 237 compounds
with activity 	 7:5, and 170 compounds with activity 	 8:0. We de-
note Xqtrain

as the training data defined by the cut-off qtrain. We de-
note M̂ð�jXqtrain

Þ as the predictive model (in our analyses, random
forests or ridge regression) fit to the training data Xqtrain

.
Each compound x� in the testing data is ranked according to the

following four scores:

1. S0ðx�Þ ¼ M̂ðx�jXqtrain
Þ. This is the predicted mean value of y�.

This is the unadjusted base model.

2. S1ðx�Þ ¼ b̂½dðx�;Xqtrain
�S0ðx�Þ. This is the predicted mean value

of y� scaled by the distance-dependent penalty factor b̂ðdÞ,
where d is the setwise distance of x� from the training data.

3. S2ðx�Þ ¼ P½x� 2 Ajdðx�;Xqtrain
Þ�S1ðx�Þ. This score uses the add-

itional reduction factor which is the probability that x� is active

given its distance from the training data.

4. S3ðx�Þ ¼ F½S2ðx�Þ; r2
�

dðx�;Xqtrain
Þ
�
�P½x� 2 Ajdðx�;Xqtrain

Þ�,
where Fðl; r; kÞ is the predicted cumulative distribution function

of y� with mean l and variance r2. This is the full model as

specified in Equation (4).

Figure 1Ashows the observed distribution of activities, which
has a heavier tail than a Gaussian distribution. A Gaussian approxi-
mation of the observed activities gives a mean value of 6.25 and a
standard deviation of 0.4, which implies that the expected number
of compounds in the TCAMS dataset with activity 	 8 is 0.08,
whereas in fact, there are 170 such compounds.

For the cumulative distribution function F in S3, we choose a
mixture model which is a combination of a normal and a student-t
distribution (shown in Fig. 1A as the orange line). We use the stand-
ard scikit-learn functions to fit a normal distribution to the activity
data, and a student-t distribution to that same data. Our mixture
model is then simply the average of these two distributions (This is
an extremely crude way of fitting a normal and student-t mixture
distribution, but as shown in the figure it suffices to capture the fact
that activity distribution has a long right tail, while also capturing
the bulk of the distribution.). We use this same distribution, but
with the new values of l and r to do our calculations for S3. We
implemented this fit using the inbuilt scipy fit functions, which fit
distribution parameters to data. We took as our model the average
of the Normal fit to the activity data and the student t-distribution
fit to the data.

Finally, we choose our unlabelled data in one of two ways: ‘well-
specified’ and ‘mis-specified’. This corresponding to choosing a set
of unlabelled compounds using the sampling method described
above, which are closer or further to the TCAMS data, respectively.
In each case, we choose 500,000 unlabelled compounds. We use the
same methodology as that used in calculating the fraction of actives

Fig. 1. Visual representation of the activity data in TCAMS and overview of the

model ingredients used for score S3. (A) Histogram of the distribution of the nega-

tive log (base 10) IC50 of the compounds in the TCAMs data (n¼13 533) with the

y-axis on a logarithmic scale, with the estimated mixture distribution used in the

prediction procedure overlaid (average of a normal and a student-t distribution); (B)

histogram of the distribution of pairwise Tanimoto distances between molecules in

the TCAMs dataset under a 128-bit fingerprint representation (blue) and a 1024-bit

representation (orange); (C) non-parametric estimation of the Tanimoto distance-

dependent activity covariance for both fingerprint representations (Equation 10).

(D) The estimate of the fraction of compounds, which are active as a function of the

minimum distance to a known active (baseline probability shown in red). (E) b̂ðdÞ
for Random Forests (Equation 9) and Ridge Regression. (F) Plot of the contour lines

of the log probability of finding a target compound of activity Z at distance d from

a starting compound of activity W
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to select the ’near’ dataset (recall, this consists in choosing from
each file according to the number of compounds with minimum dis-
tance 0.19 from the TCAMS dataset). The ‘far’ dataset is chosen in
the same way, but the fraction chosen from each file is the inverse of
the number of compounds at that distance. This selection method-
ology aims to thus test the sensitivity of our results to the type of un-
labelled data that the algorithm is searching over.

We then assess the performance of our selection methodologies
S0::S3 in two ways. The first is an informal visual one. Given a selec-
tion methodology Si; ði 2 ½0 . . . 3�, we order the compounds in the
complete testing set in decreasing order by their Si scores. We then
plot the curve of the cumulative sum of the fraction of desired com-
pounds found as we go through our ordered testing set. The ‘best’
method will give the curve that climbs highest fastest (since all
curves start at 0 and end at 1), and we could formalize this if we
wished by attaching a measure to each curve (e.g. the area under it).
These plots summarize the more traditional metrics of ‘enrichment
factors’ (EFs). Given a scoring system, the associated enrichment
factor EF(p) for some threshold 0 < p < 1 is the number of desired
compounds obtained by choosing the top scoring fraction p of the
available data, divided by the number obtained when choosing the
same fraction of the data at random. The maximal enrichment fac-
tor is just the maximum EF for any p. In our Supplementary
Materials, we show the EFs for the standard thresholds (1% of data,
5% of data and the maximal EF).

2.5.4 Limitations of methodology

A major limitation in the currently described methodology is that
there is no propagation of uncertainty between the independent esti-
mates. Further work would put this process into a fully Bayesian
framework with uncertainty propagation. In addition, the solution
to the estimation of the ratio fn;NðdÞ is only approximate and could
possibly be improved.

3 Results

3.1 Methodological results
3.1.1 Comparing combinations of fingerprints and metrics

A fingerprint mapping over compounds, together with a metric on
the space of image of the map, induces a metric over molecular
space. We provide a simple approach to compare the information
content between different combinations of fingerprints and metrics.
This can be used as a visual assessment of the quality of the induced
metric on molecular space for the purpose of modelling a given tar-
get of interest. We note that the best combination of fingerprint and
metric could be target dependent. The method consists of character-
izing the distance-dependent covariance of the target between pairs
of compounds. A metric over molecular space that does not preserve
any information relating to the target activity would imply that the
covariance between the activities of two compounds is independent
of the distance between the two compounds. In reverse, if the
expected covariance in target value between two compounds that
are close together is much smaller than the expected covariance be-
tween random compounds we should see that the distance-
dependent covariance is an increasing function (at least for small dis-
tance values) and the steeper the rate of increase, the more informa-
tion the metric provides about values of the target. This also
suggests a bootstrap approach to quantify the information content
in a given metric over molecular space.

As illustration, we consider two related fingerprints, both
extended-connectivity fingerprints of either 128 or 1024 features
(bits). We use Tanimoto distance to construct an induced metric
over molecular space. Figure 1C shows the distance-dependent co-
variance of the inhibition of asexual forms of P.falciparum in the
TCAMs data. Because the units of distance for the two induced met-
rics on molecular space are different (as shown by Fig. 1B), we com-
pare the covariance in terms of quantiles of distance, rather than
absolute distance. This procedure generalizes to any fingerprint and
metric pair, and tells us how the covariance of a given target changes

as compounds move further away in molecular space in the metric
under consideration.

This procedure can be used in two ways. First—simply to valid-
ate a choice of fingerprint, together with the Tanimoto metric, as a
reasonable finite-dimensional representation for our purposes.
Second, as a simple model to estimate the function r̂ðdÞ. For a new
compound x�, the value r̂ðdx� Þ, where dx� is the Tanimoto distance
between x� and the nearest known compound, estimates the stand-
ard deviation around the predicted activity of x�. We use this esti-
mate in our score S3, as described in the Section 2.

3.1.2 Distance-dependent degradation of predictions

For a given metric on molecular space that explains some of the vari-
ance of the target of interest (as discussed in the previous section),
predictions of activity for a new compound x� should be informed
by the distance between x� and the training data. The approach out-
lined in Section 2.3.3 provides a simple (although computationally
expensive) procedure to incorporate this information into a model.
The assumption is that for compounds sufficiently far away from
the training data, the model should not provide any additional infor-
mation for the target activities. Therefore, the output prediction
should be the baseline value. The approach is to construct training
sets that specifically test the ability of the supervised learning model
to predict activity at a given distance d. This allows us to test the as-
sumption that predictive ability degrades as a function of the dis-
tance between compounds and to assess this degradation in
predictive accuracy.

In the context of this article, we look at the degradation of pre-
dictive accuracy for models of the activity level (of active com-
pounds) against P.falciparum. In Figure 1E, we show the estimates
of the value b̂ðdÞ that encodes this degradation for random forest
and ridge regression models of the target value for a set of values of
d, together with our smoothed estimates derived from these.

The underlying intuition however (that regression models of any
kind perform worse on compounds far away from the training set) is
however quite general. In our Supplementary Results section, we
show plots similar to Figure 1E in Supplementary Materials plot for
24 other protein targets (and ridge regression models). In all cases,
we see approximately the same behaviour—the model predictions
degrade as points become further away (Note that these plots do not
correct for the degradation due to smaller numbers of data points in
the fitted models.).

3.1.3 Selection bias correction

We provide a method to correct for selection bias in training data.
To correct for this bias in the training data, we need two extra sour-
ces of information:

• A set of unlabelled (no corresponding activity measurements)

compounds which are assumed to have been sampled under the

same data-generating process as the labelled compounds, but

without activity-dependent reporting bias.
• An estimate of the background frequency of the discovery of ac-

tive compounds under the data-generating process.

Given these two extra sources of information, we can use the
Bayes rule to estimate the probability that a random compound is
active, as a function of its minimum distance to a known active com-
pound. In Figure 1D, we show our estimate of the probability of a
random compound being active as a function of its distance to the
nearest known active compound, together with the background rate
for comparison.

The intuition behind the approach can be understood through
the following analogy. Suppose we have a map where the observed
activity value for a given point on the map is the altitude above sea
level. Suppose we want to estimate how ‘jagged’ the terrain is, where
jagged measures how quickly altitude changes between neighbour-
ing points. Suppose further that many observations have been made
uniformly at random across the map, but only those with an altitude
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greater than a given threshold were recorded. If the recorded points
are clustered together, this implies that the terrain is divided into
low and high regions; in other words, altitude varies smoothly. If on
the other hand, the recorded points are not distinguishable from a
set of points chosen uniformly at randomly on the map, this would
indicate extremely jagged terrain. In our context, the Tanimoto dis-
tance puts all compounds onto a finite-dimensional space corre-
sponding to this map. The unlabelled compounds are used to
estimate the data-generating process, i.e. an estimate of how com-
pounds are sampled across the ‘map’. This sampling procedure is
very different from a uniform distribution. By comparing the pair-
wise distances between the active compounds (recorded points) to
the pairwise distances between ‘random’ compounds (unlabelled
data), we can estimate how smoothly the activity varies as a function
of distance to the active compounds.

3.1.4 Creating the selection score S3

Our framework does the following:

1. We determine the probability of being active as a function of the

distance to the training data, as given by Equation (7).

2. We determine how the predictive accuracy of the model

degrades as a function of the distance to the training data

(Equation 9).

3. Determine how the covariance of the activity of two active ele-

ments varies as a function of the distance between them.

4. Given some model for the full distribution of activity values of

the active compounds (as a function of variance and expected ac-

tivity level)—put the above three steps together to compute, for

any unknown compound, the full posterior distribution of its

activity.

Figure 1F merges these components and illustrates how the fully
adjusted model (score S3) works. We confine our attention to the
random forest model. Rather than trying to plot the full predictive
distribution as a function of d for some compound (which would
thus be a surface), we plot probability contour lines. Given some un-
known compound x, at distance d to the active training set, suppose
that S0ðxÞð¼ M̂ðx�jXqtrain

ÞÞ is the simple estimate from the random
forest model (without any adjustment of any kind) for the activity of
x. We call this value the ‘start point’. Given some target level of ac-
tivity T, we wish to plot the log probability that yðxÞ >¼ T as a
function of d. We compute the probability that x 2 A as a function
of d. Then, assuming x 2 A, we compute the distribution of y(x).
For this, we require three items:

1. The mean predicted value lðdÞ :¼ E½yðxÞjx 2 A�. This is the

score S1ðxÞ, which is S0ðxÞ adjusted towards the mean activity

level as a function of d.

2. The variance of the predicted value r2ðdÞ :¼ E½ðyðxÞ � yðaÞÞ2�
where a 2 A is the closest compound to x. We obtain this from

the potency covariance plot (bottom left in Fig. 1) as a function

of d.

3. The distribution of yðxÞjx 2 A as a function of the mean lðdÞ
and the variance r2ðdÞ. Here, we use the mixture distribution as

shown in panel A of Figure 1, but with our new estimates of lðdÞ
and rðdÞ. Once we have the distribution, we can compute the

probability mass that lies above T.

3.2 Application to P. falciparum screening data
We analysed structure activity data on 13 533 compounds that were
selected on the basis of inhibiting P. falciparum 3D7 asexual growth
by more than 80% at 2 lM (Gamo et al., 2010). To assess the bene-
fit of the semi-supervised framework, we compared the predictive
performance between the derived semi-supervised predictive model
(score S3) and the standard fully supervised predictive model that
does not use the unlabelled data (score S0). Scores S1 and S2 are

intermediate versions of the semi-supervised framework. The com-
parison between predictive frameworks (i.e. scores) was done using
quantile-activity splitting (Watson et al., 2019). This uses all com-
pounds with activity below a certain threshold as training data, and
all compounds with activity above a certain threshold as testing
data.

We fit random forests and ridge regression models to two separ-
ate training sets: all compounds with activity less than 7 pIC50 and
all compounds with activity less than 7.5 pIC50. Two separate

Fig. 2. Comparison of predictive scores whereby random forests is the underlying

predictive model. Here, the y-axis is the percentage of desired compounds found

within the first x compounds ordered by the selection methodology. For methods S0

and S3, we include bootstrap 95% error thresholds from multiple data samples

Fig. 3. Comparison of predictive scores whereby ridge regression is the underlying

predictive model. Here, the y-axis is the percentage of desired compounds found

within the first x compounds ordered by the selection methodology. For methods S0

and S3, we include bootstrap 95% error thresholds from multiple data samples—

though these are barely visible
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testing sets were used: all compounds with activity greater than 7.5
pIC50 (n¼237), and all compounds with activity greater than 8
pIC50 (n¼170). The predictive performance of each fitted model
was then assessed under four different predictive frameworks (scores
S0 to S3, see Section 2.5.3).

A comparison of these four predictive frameworks is shown in
Figure 2 for random forests and in Figure 3 for ridge regression. For
simplicity, we show the results when training on compounds with
activity (all in pIC50 units) less than 7 and testing on compounds
greater than 8 (upper panels); and when training on compounds
with activity less than 7.5 and testing on compounds with activity
greater than 7.5 (lower panels). Each panel shows the percentage of
true compounds (compounds in the TCAMS data not used in the
model training stage and known to have activity above the desired
threshold) discovered as a function of the number of compounds
chosen from the testing set (500 000 compounds in total). In
Supplementary Materials, we show the enrichment factor (the num-
ber of desired compounds found for a given selection methodology,
divided by the number of desired compounds found if selecting at
random) at various thresholds (1% of data, 5% of data and max-
imum enrichment factor achieved at any point). For a choice of
1000 compounds—a reasonable size for a drug discovery project—
the naive model (score S0) performs consistently worse across all
experiments that the full predictive framework (score S3). For ex-
ample, in the most difficult testing scenario, where the training data
are all compounds with activity less than 7, and the testing com-
pounds are those with activity greater than 8, then S3 has much
higher enrichment factors (particularly maximum enrichment factor,
and particularly for ridge regression).

4 Discussion

The goal of this work was to provide methodological advances that
lead to two improvements in the predictive ability of general quanti-
tative structure–activity relationship regression models. First, for
any given testing compound, the predicted activity should be ‘sens-
ible’. By sensible we mean a distance-dependent regression to the
mean response value. This implies that the model should predict the
background expected response value for compounds whose struc-
tures are entirely different to the training compounds. This leads to
having a model whose predictions are partly based on the back-
ground discovery rate of ‘active’ compounds (which is context spe-
cific) and the mean activity of these ‘active’ compounds. Second, the
model predictions should be ‘useful’. By useful we mean that the
adjusted model should outperform a ‘naive’ model at distinguishing
‘good’ compounds. We use a quantile-activity split approach to set
up model testing experiments.

We investigate these two goals in the context of the TCAMS
dataset. These two goals appear to be well aligned but they are not
easy to jointly satisfy. For instance, the non-adjusted (‘naive’) ran-
dom forest model (score S0), only using the labelled data, performs
almost as well as the fully adjusted model (score S3) in identifying
high-activity compounds in the testing data (Fig. 2). However, the
non-adjusted model does not make sensible predictions overall,
since it predicts a non-negligible asexual activity against
P.falciparum 3D7 for any input compound (no distance-dependent
regression to the mean). Method S2 does make sensible predictions
by correctly predicting the average activity values for all compounds
(due to the distance-dependent adjustment), but under-performs
with respect to S0 substantially in three out of four testing
experiments.

We show that these two goals can be achieved by explicitly mod-
elling the full distribution of our prediction, rather than just the
mean value, and taking this distribution into account in the opti-
mization process. The method that does this (S3 in Figs 2 and 3) is
the top performing method for choosing compounds overall. It is the
top performing method in four of the eight tests performed, and no
other method consistently dominates it (the closest is method S1,
which, like S0, does not make sensible predictions overall).

The utility of having a general predictive model framework
that satisfies both of these goals is that it opens up new

questions for quantitative analysis, and in particular optimiza-
tion. For optimization algorithms to converge, they need not
only to produce accurate answers on the domain of interest
(what we call a ‘useful’ model), but they also need to provide at
least approximately correct answers outside that domain (what
we call a ‘sensible’ model). In our testing experiments, all the
methods tested (S0 to S3) provide rankings of all compounds.
However, the fully adjusted model (score S3) has an additional
advantage. The rank it provides for a given compound is derived
from the probability that the compound will have an activity
above a threshold of interest. Thus given three compounds
x0;x1; x2, with S3ðx0Þ > S3ðx1Þ > S3ðx2Þ, we can ask the ques-
tion ‘would we have a higher chance of finding at least one
compound with an activity above the threshold of interest if we
tested x1 and x2, rather than just x0?’ This question cannot be
answered by the other model adjustments, and this example can
of course be extensively generalized. Most of the practical ques-
tions that face researchers in this area can be phrased in terms
of trade-offs, e.g. ‘how many compounds should we make in
one batch?’; ‘how similar should they be?’; ‘is it worth making
one expensive compound that is predicted to be highly active, or
testing ten cheap ones that are not predicted to be quite as
good?’ (Huggins et al., 2011; Valler and Green, 2000). We hope
that this approach will make predictive models substantially
more useful to practitioners.

Acknowledgement

The authors thank MolPort for making their proprietary screening library

available to us for our research.

Author contributions
O.W. designed the study and analysed the data. I.C.-C. curated the
dataset. J.A.W. wrote the mathematical framework for the model.
O.W. and J.A.W. interpreted the results, and wrote the article. All
authors read and approved the final manuscript.

Funding

This project has received funding from the European Union’s
Framework Programme For Research and Innovation Horizon 2020
(2014-2020) under the Marie Sklodowska-Curie Grant Agreement
No. 703543 (I.C.C.).
Financial Support: none declared.

Conflict of Interest: Oliver Watson is the founder and Director of
the company Evariste Technologies which develops software to as-
sist in small molecule drug discovery.

References

Bajusz,D. et al. (2015) Why is Tanimoto index an appropriate choice for

fingerprint-based similarity calculations? J. Cheminf., 7, 20.

Cherkasov,A. et al. (2014) QSAR modeling: where have you been? Where are

you going to? J. Med. Chem., 57, 4977–5010.

Cortes-Ciriano,I. et al. (2018) Discovering highly potent molecules from an

initial set of inactives using iterative screening. J. Chem. Inf. Model., 58,

2000–2014.

Fourches,D. et al. (2010) Trust, but verify: on the importance of chemical

structure curation in cheminformatics and QSAR modeling research. J.

Chem. Inf. Model., 50, 1189–1204.

Gamo,F.J. et al. (2010) Thousands of chemical starting points for antimalarial

lead identification. Nature, 465, 305–310.

Huggins,D.J. et al. (2011) Rational methods for the selection of diverse screen-

ing compounds. In: ACS Chemical Biology, Vol. 6. American Chemical

Society, Washington, DC, pp. 208–217.

Käll,L. et al. (2007) Semi-supervised learning for peptide identification from

shotgun proteomics datasets. Nat. Methods, 4, 923–925.

Semi-supervised learning for QSAR 349

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa711#supplementary-data


Koutsoukas,A. et al. (2014) How diverse are diversity assessment methods? A

comparative analysis and benchmarking of molecular descriptor space. J.

Chem. Inf. Model., 54, 230–242.

Landrum,G. (2017) RDKit: Open-source cheminformatics. https://www.rdkit.

org/ (12 January 2017, date last accessed).

Martis,E.A. and Radhakrishnan,R. (2011) High-throughput screening: the

hits and leads of drug discovery – an overview. J. Appl. Pharm. Sci., 01,

2–10.

Matter,H. et al. (2012) Computational approaches towards the rational design

of drug-like compound libraries. Comb. Chem. High Throughput Screen.,

4, 453–475.

Muchmore,S.W. et al. (2008) Application of belief theory to similarity data fu-

sion for use in analog searching and lead hopping. J. Chem. Inf. Model., 48,

941–948.

Netzeva,T.I. et al. (2005) Current status of methods for defining the applic-

ability domain of (quantitative) structure-activity relationships: the report

and recommendations of ECVAM workshop 52. Alternatives Lab. Anim.,

33, 155–173.

Norinder,U. and Boyer,S. (2017) Binary classification of imbalanced datasets

using conformal prediction. J. Mol. Graph. Model., 72, 256–265.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach.

Learn. Res., 12, 2825–2830.

Phatak,S.S. et al. (2009) High-throughput and in silico screenings in drug dis-

covery. Exp. Opin. Drug Disc., 4, 947–959.

Rogers,D. and Hahn,M. (2010) Extended-connectivity fingerprints. J. Chem.

Inf. Model., 50, 742–754.

Sheridan,R.P. (2015) The relative importance of domain applicability metrics

for estimating prediction errors in QSAR varies with training set diversity. J.

Chem. Inf. Model., 55, 1098–1107.

Shi,M. and Zhang,B. (2011) Semi-supervised learning improves gene

expression-based prediction of cancer recurrence. Bioinformatics, 27,

3017–3023.

Sun,J. et al. (2017) Applying mondrian cross-conformal prediction to estimate

prediction confidence on large imbalanced bioactivity data sets. J. Chem.

Inf. Model., 57, 1591–1598.

Valler,M.J. and Green,D. (2000) Diversity Screening versus Focussed

Screening in Drug Discovery, Vol. 5. Elsevier, Bethesda, MD.

Wallach,I. and Heifets,A. (2018) Most ligand-based classification benchmarks

reward memorization rather than generalization. J. Chem. Inf. Model., 58,

916–932.

Walters,W.P. and Murcko,M.A. (2002) Prediction of ‘drug-likeness’. Adv.

Drug Deliv. Rev., 54, 255–271.

Watson,O.P. et al. (2019) A decision-theoretic approach to the evaluation of machine

learning algorithms in computational drug discovery. Bioinformatics, 35,

4656–4663. .

350 O.Watson et al.

https://www.rdkit.org/
https://www.rdkit.org/

	l
	l
	l
	l
	l

