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Gene expression databases contain a wealth of information, but current data mining tools are limited in their speed and effectiveness
in extracting meaningful biological knowledge from them. Online analytical processing (OLAP) can be used as a supplement to
cluster analysis for fast and effective data mining of gene expression databases. We used Analysis Services 2000, a product that
ships with SQLServer2000, to construct an OLAP cube that was used to mine a time series experiment designed to identify genes
associated with resistance of soybean to the soybean cyst nematode, a devastating pest of soybean. The data for these experiments
is stored in the soybean genomics and microarray database (SGMD). A number of candidate resistance genes and pathways were
found. Compared to traditional cluster analysis of gene expression data, OLAP was more effective and faster in finding biologically
meaningful information. OLAP is available from a number of vendors and can work with any relational database management

system through OLE DB.

INTRODUCTION

Until recently, data mining required expensive and
cumbersome data mining software or a database expert
who could accurately translate a request for informa-
tion into a functional, preferably efficient, query. Database
warehouses and online analytical processing (OLAP) offer
an attractive and readily available alternative.

As compared to a database, a data warehouse has faster
retrieval time, internally consistent data, and a construc-
tion that allows users to slice and dice (ie, extract a single
item (slice) and compare items in a cross-tabulated table
(dice)). The primary difference between a data warehouse
and a traditional transaction database lies in the volatil-
ity of the data. The information in a transaction database
is constantly changing, whereas data in a data warehouse
is stable; its information is updated at standard intervals
(monthly or weekly). A perfect data warehouse would be
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updated to add values for the new time period only, with-
out changing values previously stored in the warehouse.
Thus, microarray databases can be data warehouses, be-
cause the data in them is consistent and stable. Gene ex-
pression values in any given experiment remain the same
and usually only new data from new experiments is added.
Data warehousing software is incorporated in most of the
major relational database management systems such as
SQLServer2000 and Oracle 9i.

OLAP represents a class of software that enables deci-
sion support and reporting based upon a data warehouse
[1]. A schematic view of how OLAP software interacts
with the data warehouse is shown in Figure 1. OLAP al-
lows for the fast analysis of shared multidimensional in-
formation. It is fast because most system responses to
users are delivered within 5 seconds, with the simplest
analysis taking no more than 1 second and very few tak-
ing more than 20 seconds. However, speeds vary by OLAP
vendor and system hardware. The key feature of OLAP is
that it provides a multidimensional, conceptual view of
the data, including full support for hierarchies and multi-
ple hierarchies.

OLAP’s underlying structure is the cube [2]. A cube
is defined by any number of data dimensions; it is not
limited to three; and sometimes an OLAP cube may have
fewer than three dimensions. The data dimensions de-
scribe an OLAP cube just as width, height, and depth
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FiGure 1. OLAP, cubes and where they fit in a data warehousing solution. OLAP provides efficient and easy-to-use reporting tools
and graphical interface, to enable users to mine a data warehouse for hidden information.

describe a geometrical cube. Where it is appropriate, di-
mensions can be organized into any number of levels (hi-
erarchies).

In relational database systems, OLAP cubes are con-
structed from a fact table and one or more dimension ta-
bles. A fact table is the relational table in the warehouse
that stores the detailed values for measures (the thing you
are measuring). For example, this could be the values for
the relative change in gene expression. The dimension ta-
bles however are more abstract, containing only one row
for each leaf (lower) member in the fact table. They are
used to create summaries and aggregates of the data in the
fact table. Ad hoc calculations and statistical analysis can
also be achieved, but are vendor specific. Analysis Services
2000 (used here) is capable of such ad hoc calculations on
complex data.

The relationship between two dimensions can be
modeled using a grid as shown in Table 1. Dimensions are
the labels along the axes of the grid and each of the cells
is a fact. Facts correspond to the cross product of each di-
mension of the cube. The data in the cell is a measure, a
numerical value. A cube is designed to aggregate, analyze,
and find trends in the measures. For example, if the cube
describes relative gene induction, the measure is the aver-
age relative expression level of a gene under experimental
conditions compared to control conditions, and the cube
is used to compute this average for the dimensions cho-
sen. In other words, the measure is the number that you
would find in the grid cell.

Dimensions are organized into smaller units by using
levels where necessary. Levels may also contain other lev-
els, depending on how they are configured in the cube. For
example, in Table 1 which represents a two-dimensional
cube from our data warehouse designed to identify soy-
bean cyst nematode (SCN) resistance-associated genes in
soybean cultivars Peking (P) and Kent (K), the biosam-
ples are considered one level under K + /K— (Kent in-
fected with SCN versus uninfected), which in turn is an-
other level (along with P +/P—; Peking infected with SCN
versus uninfected) under the dimension probe combina-
tion. A fact describes the combination of the various di-
mensions, for example, probe combination = P + /P—,

TaBLE 1. The organization of a cube with two dimensions. In
this example, probe combination and genes are dimensions; P +
/P—, K + /K—, biosample 1, biosample 2, A01A10, SSH1B07,
DO09H12, and B03C02 are levels of the respective dimension. The
cells containing various figures are facts. Individual data in the
fact cells are the values of the measures. In this example, there
are two measures used in the cube, one is the fold induction,
the second is the result of the ¢ test (1 significantly induced, —1
significantly suppressed, 0 unchanged).

Probe combination
Fold induction/t test -
old induction/t tes P4 /P K+/K
Biosample 1 Biosample 2
1.2 1. .
AO01A10 > 076
1 -1 1
0.34 2.3 —-0.98
SSH1B07 0 ) )
Genes 1.6 1.4 0.03
D09H12 o ' '
-1 1 0
2 1.8 -2.1
B03C02
1 1 -1

gene = AO01A10, time = 6 hours yields a specific fact
about the induction of gene A01A10 in P + /P— 6 hours
after SCN infection (assuming we added a third dimen-
sion of time). This representation is just like the (x, y, z)
coordinate system in mathematics. Depending on the way
the cube is being used, the fact may show a measure of
the induction of a gene at a specific biosample or the re-
sult of the t test or some other differential gene expression
test.

The meaning of the measure depends on how the cube
is defined. The value represents an aggregation for the de-
fined grouping. The measures inside the cube are always
numeric. The mathematical operations of count and sum
are the primary reason why data warehouses are useful.
Calculated measures, such as average, can be calculated
from those two basic measures. These are called aggrega-
tions. Once dimensions are organized and a cube is be-
ing processed, the aggregations are calculated. Generally,
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FIGURE 2. A snapshot of a multidimensional cube of gene expression data constructed in Microsoft’s Analysis Services 2000 (shipped
with SQLServer2000). (A) shows the dimensions of the cube and their associated levels, (B) is the fact table, and (C) shows the

dimension tables.

aggregations are calculated immediately after the cube is
initially populated or when there is a change in the con-
tent of the cube.

OLAP has been used to make some important discov-
eries in the biomedical field. For instance, Dzeroski et al
[3] used OLAP on a database of patients with Y chromo-
some deletions and found correlations between deletion
patterns and patient populations, as well as clinical phe-
notype severity. OLAP has also been used in the health
management field. For example, Silver et al [4] used OLAP
to make business decisions that improved operational ef-
ficiency of hospitals while maintaining high levels of pa-
tient care. Hristovski et al [5] found OLAP to be a suitable
data mining tool for public health. However, to the best
of our knowledge, OLAP has not been applied to gene ex-
pression databases.

We applied OLAP technology to our microarray ware-
house, the soybean genomics and microarray database
(SGMD) [6], to mine a time-course experiment aiming
at discovering genes expressed in soybean roots upon in-
fection by the SCN. SCN is the major pest of soybean
and causes an estimated loss of 1$ billion in the United
States per year. The discovery of genes expressed under
these conditions will provide scientists with information
and tools to develop soybean cultivars that are resistant
to SCN. Using OLAP we identified numerous candidate
genes and associated pathways in a susceptible soybean

cultivar (Kent) after infection with SCN [7, 8]. In compar-
ison to traditional gene expression data mining methods,
such as k-means and self-organizing maps (SOM) cluster-
ing, OLAP performed significantly better at finding can-
didate genes for further study.

METHODS

Cube construction

We used Analysis Services 2000 (Microsoft, Redmond,
Wash), a product that comes with SQLServer2000, to
build a multidimensional cube of gene expression ex-
periments conducted over time (Figure 2). Our fact ta-
ble contained rows of data describing clones and their
fold induction at each time point for each biosample and
probe combination (P + /P—, K + /K—). The measures
from this fact table were the normalized log ratio from
Lowess print-tip normalization [9], called norm, and the
count of unique clones printed (called CountElements).
A calculated measure, named AvgNorm, was created to
represent the average normalized log ratio from the two
measures mentioned above. Four dimensions were cre-
ated. The first was experiments (exps), which had four
levels, exp, biosample, time point, and probe combina-
tion. A second dimension, called Clonelnfo, had two lev-
els, the clones ID’s and their names. The third (t test)
and fourth (TimePoints) dimensions had one level each,
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induced char (which refers to the results of the ¢ test) and
time point, respectively (Figure 2). Cubes are very flexi-
ble, new dimensions and measures can be added and re-
moved to customize the data analysis process, that is, the
cube can be configured to answer the scientific question
at hand.

Microarray data

Gene expression levels of approximately 6000 soybean
genes were measured at seven time points after SCN infec-
tion [7]. The standard reference design was used for these
microarray experiments. The reference (control) sample
was RNA extracted from soybean (cultivar Kent) roots
which is SCN susceptible, not infected with SCN, and
our treatment samples were RNA extracted from Kent
cultivar 6 hours, 12 hours, 24 hours, 2 days, 4 days, 6
days, and 8 days after infection with SCN. Reverse la-
beling of probes was conducted because the two dyes
(Cy3 and Cy5) may not have the same labeling efficien-
cies and do not have exactly the same correspondence
between mRNA concentration and fluorescent intensi-
ties. Each gene was printed in triplicate on glass slides.
Two replicated slides (one of which is the dye swap) were
used for each time point. Two biological samples were
also used to account for biological variation and inher-
ent variation in the extraction of mRNA, generating a to-
tal of 7 X 2 X 2 = 28 slides and 12 data points for each
gene. Self-self hybridized slides were generated for ¢ test
analysis. t tests were used to determine differentially ex-
pressed genes at each of the time points [9]. Details on
slide printing, hybridization, and scanning protocols are
described in Alkharouf et al [7]. OLAP was used to pro-
duce lists of common significantly induced/suppressed
genes at the early (6, 12, and 24 hours), mid (2 and 4
days), and late (6 and 8 days) time points. We used re-
sults of the t test to determine significance (P < .05) and
chose a cutoff value of 1.5 fold for extra stringency. In ad-
dition, k-means and 2D SOM clustering were applied on
the time series data set. k-means was done using J-Express
version 2.0 (MolMine; http://www.molmine.com) set-
ting K = 20, initialization method to Forgy, and dis-
tance metric to Euclidean. SOM was done using the 2D
SOM algorithm from GeneSight version 3.5.2 (BioDiscov-
ery; http://www.biodiscovery.com), setting the number of
horizontal clusters to 5, the number of vertical clusters to
5, distance metric to Euclidean and clustering by genes
only.

RESULTS

OLAP was used to drill down, slice, and dice the time
series data and find lists of genes induced and suppressed
in each of the specified time intervals (Table 2). OLAP was
used to find commonly induced or suppressed genes at
two or more time points and in one or more biosamples.
OLAP was very quick and efficient in providing those re-
ports. On average OLAP only took 2 to 5 seconds to return

aresult of a query after the cube was constructed (running
on a 1.8 GHz Pentium 4 workstation with 1 GB RAM).
This is a fraction of the time needed to produce similar re-
ports from complex SQL queries and multiple-table joins.
For instance selecting statistically induced genes common
to the 6-, 12-, and 24-hour time points, which requires
3-table joins, took almost 25 seconds to achieve, whereas
the same report took only 1 second with OLAP running
on the same system.

A common technique for viewing multidimensional
output is to view the output as a two-dimensional “slice”
of a cube. This is the way the Microsoft SQLServer2000
analysis services display output. This is a simple and infor-
mative technique to view the reports in a spreadsheet-like
manner. Multidimensional extensions (MDX) can also be
used to query cubes instead of using the user interface
mentioned above. MDX is a syntax designed for query-
ing multidimensional objects and data and is more flex-
ible than the user interface. It was used to query the
cube and obtain the results shown in Table 2. MDX has
a similar syntax to SQL, but is designed to work with
multidimensional cubes instead of relational tables. The
SQLServer2000 analysis services manager has an interface
that accepts MDX queries.

The OLAP reports highlighted a number of genes and
defense pathways that were triggered in soybean in re-
sponse to SCN infection (Table 2). These are discussed
in detail in [7]. The key findings in the study were that
the nematodes elicit the activation of a transcription fac-
tor (WRKY) that shuts down a defense pathway known as
the salicylic acid inducible pathway, thereby rendering the
plants more susceptible to nematode infection.

OLAP found a number of candidate resistance genes
that k-means and SOM did not (Table 2), whereas cluster
analysis did not reveal any new information that OLAP
did not identify by MDX queries. For instance OLAP
found trehalose-6-phosphate synthase (TPS) induced at
the mid time points, whereas cluster analysis did not.
TPS is a key enzyme of sugar metabolism and its in-
duction at the mid time points, where the nematode has
formed the syncytium (feeding site), may be an indica-
tor of the parasite’s success in utilizing the plants metabo-
lite synthesis apparatus for its own sustenance. Metabolic
profiling experiments conducted in collaboration with
the Noble foundation also show increased levels of tre-
halose in Kent 48 hours after infection with SCN (un-
published data). OLAP also found jasmonic acid (JA) in-
ducible genes, such as pathogenesis-related protein PR-6
and chalcone synthase, induced at the early and mid time
points whereas cluster analysis did not. The JA signaling
pathway is known to be induced in plants after wound
damage or parasitic infection [18].

Generally, we found OLAP a lot more powerful for
determining genes induced at specific time intervals but
not at other time points. This was hard to do using clus-
ter analysis, because the algorithms are designed to group
genes with similar profiles, not necessarily to identify
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TaBLE 2. Genes found to be induced at different time intervals using OLAP, k-means, and SOM clustering. Many of the key candidate
resistance genes were identified by OLAP and not cluster analysis, in particular those genes induced at specific time intervals and not
others. Cluster analysis did not reveal any other genes that OLAP did not.

Time GenelD GeneName OLAP k-means SOM Comments
L Cell wall proteins that are found
Proline-rich . .
BM139889 Ivcoproteins v — — activated during pathogen attack
glycop [10] to reinforce the cell wall
Involved in detoxification and is
BMI107775 Peroxidase v v v activated fiurmg the hypersensmve
response in plants against
pathogen attack [11]
BM139591 Cytochrome P450 v — — Photosynthesis-related gene
monooxygenase
Induced at Photosystem II Involved in plant photosynthesis
all time BM107779 core proteins v v v and energy production
int
potts Involved in phenylpropanoid
4-coumarate- metabolism and the synthesis of
BM107798 CoA v v v secondary metabolites that are
ligase known to be involved in plant
defense [12]
Believed to suppress PR-1 genes,
Transcription thereby inferring susceptibility to
BM108156 factor WRKY6 v v v pathogen attack in plant species
[13]
CA850582 Tryps'ln inhibitor v — — Proteinase inhibitors
proteins
Induced at - Known to have antimicrobial
Germin-like o . . .
the early BM107847 . v — — activity, activated in plants during
. - protein . .
time points pathogen infection [14]
only Path i
athogenests- Proteinase inhibitors known to be
CA851099 related protein v — — . . S
induced by jasmonic acid [15]
PR-6
Trehalose-6- Synthesizes trehalose, is thought to
DUP21F10 phosphate v — — be an important regulator of sugar
Induced at synthase (TPS) metabolism [16]
the mid BM108164 Pyrophosphatase v — — Metabolism-related gene
time points . . o o Induced by aluminum in soybean
only BM108095 Sali3-2 protein v roots [17]
BM107806 Chalcone v . . Induced by the jasmonic acid
synthase signaling pathway [18]
Glutamate .
BM108193 dehydrogenase v Metabolism-related gene
Induced at
h Geranylgeranyl o o .
the{ late time = CA853854 hydrogenase v Metabolism-related gene
points only Torosi
yrosine- o o o
BM107804 phosphatase v Metabolism-related gene
A stress-induced PR-10 protein,
CA850882 Stress-induced v . o which is a ribonuclease protein
gene SAM-22 found activated in plants after
Commonly viral infection [15]
1rﬁducef1 at Helps new or distorted proteins
t leear.()lf BM107930 Heat shock v . o fold into shape, found induced in
and mic protein 70 a number of plant species after
time points pathogen infection [19]
BM107821 Lectin-chitin v v v Cell wall protein
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TasLE 2. Continued

Time GenelD GeneName OLAP k-means SOM Comments
Commonly
induced at
the early BM107803 Beta-glucosidase v _ _ Metabolism-related gene
and late
time points
Fructose-
CA852009 biphosphate v — — Metabolism-related gene
aldolase
BM107809 Sucrose synthase v v v Metabolism-related gene
BM108104 ATP-synthase v Metabolism-related gene
Involved in jasmonic acid
BM108223 Li N v v v synthesis and is implicated in
Ipoxygenase plant responses against pathogens
Commonly (18]
induced at
the mid and Plays an important role in
late time marking proteins for proteolytic
points Ubiquiti _ _ degradation, one of the key
BM108233 HqHn v events in the systematic defense
mechanism of a plant against
pathogen invasion [20]
A member of the aquaporin
AQP) water ch: 1 family,
CA853086 Metallothionein v v v (AQP) water channel family,

induced in rice upon infection
with Magnaporthe grisea [21]

genes induced uniquely at one time point, but not at oth-
ers. This explains why none of the genes found uniquely
induced at the early, mid, or late time points were iden-
tified by cluster analysis (Table 2). Finding these genes is
important for the dissection of the metabolic effects of the
nematode invasion across time.

In terms of speed, OLAP took approximately 1.2 min-
utes to generate all the reports summarized in Table 2 and
are shown in their entirety on http://psi081.ba.ars.usda.
gov/SGMD/Publications/OLAP/. In contrast, it took 5
times longer (approximately 6.5 minutes) to do one of the
cluster analysis methods (including the time it takes to ex-
port the data from the database to the respective clustering
software in the required format). If one were to also mea-
sure the time it takes to interpret the OLAP reports ver-
sus the clustering results, OLAP would be even at a more
advantage point, because it makes the results easier to in-
terpret. Results of the cluster analysis can also be accessed
from the web site mentioned above.

DISCUSSION

Gene expression data is valuable for the understand-
ing of gene regulation and biological networks. A main
goal of gene expression data analysis is to determine what
genes are expressed as a result of a certain cellular state,
that is, what genes are expressed in diseased cells that
are not expressed in healthy cells. Microarray experiments

profile hundreds to thousands of genes at a time generat-
ing large data sets that are only getting bigger as more ad-
vances in genomics and microtechnologies are made. As
these data sets become larger, however, the need for fast
and effective database mining tools becomes more obvi-
ous and necessary. Data warehouses and OLAP provide
tools to construct, populate, view, and access microarray
data in an efficient and fast manner. The fundamental unit
of OLAP software is the cube, which is a repository of in-
tegrated information from the existing data sources.

In our cube design the data sources were the relational
tables in SGMD, a gene expression database [6]. Microar-
ray databases are in fact data warehouses because of their
consistent and stable data, and little if any modifications
to the database model need to be made to use OLAP.
OLAP proved to be more efficient than standard relational
database queries that rely on time-consuming multitable
joins. Although the results obtained from OLAP and these
standard SQL queries are the same, the time it takes to ex-
ecute an OLAP query was found to be 25 times greater
than standard SQL queries.

OLAP provides a different view of the data compared
to cluster analysis and provides additional insights into
the data as shown in Table 2. OLAP identified a number
of candidate resistance genes that cluster analysis did not.
One reason is the large number of genes of an unknown
function that makes such cluster analysis difficult to in-
terpret. OLAP avoids this issue because it allows for the
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categorization of genes into categories of known and un-
known functions, thereby reducing the complexity of the
problem by allowing investigators to analyze genes with
a known function first. Another benefit of OLAP is that
the values of the clustered elements do not all have to be
the same unit, as they are in cluster analysis. This is use-
ful when searching for trends across a heterogeneous data
set. In OLAP, you can set any type or number of dimen-
sions to drill your data with, thereby identifying trends
that cannot be identified using cluster analysis.

OLAP’s main advantage is that it is flexible and can
be customized to answer the scientific question at hand
if some prior knowledge is known about the data sets,
whereas cluster analysis is mostly used as an initial data
mining tool with no prior knowledge and is used mainly
for grouping genes based on similar expression profiles.
The genes that are clustered together however can vary
considerably because of the different similarity metrics
that are used. Another issue with clustering is that a gene
can be characterized in more than one way, while it can
belong to only one cluster. OLAP allows scientists, espe-
cially those not trained in the computational sciences, to
mine their data sets to not only group genes based on their
expression profiles but to also ask specific scientific ques-
tions such as “give me the genes induced at a certain time
point, that is, not induced at all other time points, or the
genes induced at time point A that are also induced at
time points B, and C,” for instance. The answers to these
questions can provide valuable insights into the relation-
ships between genes and pathways that cluster analysis
cannot answer.

In the case of our data set, for instance, seeking re-
sistance genes induced at specific time points yielded a
number of candidate resistance genes and gave us insights
into the metabolic changes in soybean when infected with
SCN. Thus OLAP is an automation of the manual analy-
sis that most biologists would always perform rather than
relying on visually appealing but scientifically uninforma-
tive cluster analysis. We are not suggesting that OLAP is
better than cluster analysis, but only that the two meth-
ods are useful and quite different. We are suggesting how-
ever that OLAP can be considered as a supplement or even
an alternative to cluster analysis when clustering methods
are not suitable to analyze a data set, such as small time-
course data sets as ours.

The implementation of OLAP technology to gene ex-
pression analysis is not difficult given the right tools.
OLAP can be applied to any gene expression database
built on any of the major relational database manage-
ment systems (Oracle, Sybase, MySQL, or even Access),
through the use of OLE DB (an industry standard tech-
nology for database connectivity). OLAP reports can also
be obtained using Excel’s (Microsoft, Redmond, Wash)
pivot tables, a feature that allows one to cross-tabulate
columns in Excel. This might work well for small data sets.
OLAP’s ability to drill through the data and find com-
mon/unique genes given different criteria, along with its

flexibility, make it an important data mining tool in gene
expression analysis, one that holds great promise in our
view.

This study also demonstrates that databases and
database applications may not be used solely for the stor-
age and retrieval of expression data but that they can act
as tools for doing exploratory data analysis as well. In fact
databases can eliminate the need for third-party software,
because most of the analysis, even time series analysis, and
can be done within the database itself.
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