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Editorial on the Research Topic

The Significance of Mitogenomics in Mycology

Fungi are a diverse group of eukaryotic organisms, ranging from unicellular yeasts to multicellular
filamentous microorganisms and mushrooms, with beneficial and harmful effects to human health
and the environment (Wu et al., 2019). Fungal diversity encompasses a broad range of taxa
and associated differences in morphology, ecology, and life history strategies (Hyde et al., 2019;
Naranjo-Ortiz and Gabaldón, 2020).

Like other eukaryotes, fungi contain mitochondria that are responsible for ATP synthesis and
perform many biological tasks in fungal cells ranging from the production of chemical energy
to synthesis of protein co-factors, and fatty acid, heme, and iron-sulfur cluster biosynthesis. To
date, however, most of our knowledge on mitochondrial function/dysfunction comes from studies
on Saccharomyces cerevisiae, which shows a high tolerance to mutations inactivating oxidative
phosphorylation and the loss of mtDNA (Malina et al., 2018). This is in contrast to filamentous
fungi that are obligate aerobes and the presence of functional mtDNA is essential.

The mitochondrial respiration chain has been linked to adaptation of fungi to oxygen-limited
conditions or oxidative stress during certain phases of their life cycle, which explains the ability
of fungi to survive in different environments and their potential to shift to different modes
of living (Marcet-Houben et al., 2009; Grahl et al., 2012). Besides coping with oxidative stress,
fungal pathogenicity, virulence, and mycotoxin production have been linked to mitochondrial
morphology, integrity (Tang et al., 2018) and dynamics (Neubauer et al., 2015), and fission and
fusion of mitochondria (Verma et al., 2018) and their overall implication in a range of vital cellular
functions appear to be the common denominators underlying these processes (Medina et al.).

Mitochondria have been found to confer drug tolerance in both human and plant fungal
pathogens. The mechanisms of resistance are complex and can occur at many different levels,
however lipid homeostasis in mitochondria (Shingu-Vazquez and Traven, 2011) and mutations
in genes encoding proteins that are involved in mitochondrial processes (Mosbach et al., 2017)
appear to play the most important role in drug resistance of fungi. On the other hand, considering
the importance of mitochondria in numerous cellular tasks, it is not surprising that mitochondrial
pathways have been considered important targets for developing fungicides (Hahn, 2014; Mosbach
et al., 2017; Young et al., 2018; Carmona et al., 2020; Medina et al.).

Fungal mitochondria harbor their own genome (mitogenome), with genetic codes different
from the nuclear genome. The mitogenome is responsible for the proper functioning of the cells
and stability of nuclear genome. On the other hand, to sustain their functions and integrity,
mitochondria require communication with the nuclear genome (Kaniak-Golik and Skoneczna,
2015). In fungi, the majority of mitochondrial proteins are encoded in the nuclear genome,
produced in the cytosol as precursors, and imported into the mitochondria (Bolender et al., 2008).
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The S. cerevisiae mitochondrial proteome includes around 1,000
proteins, while 438 have been identified in N. crassa using
proteomic studies (Ambrosio et al., 2013).

The typical fungal mitogenome of Ascomycota and
Basidiomycota (dikarya fungi) contains 14 protein-coding
genes (atp6, 8, and 9; cob; cox1– 3; and nad1– 6, 4L), the rnL
and rnS genes, and usually from 20 to 31 of trn genes. The
Rps3 gene encoding the ribosomal protein S3 can be also be
found in many fungal mitogenomes. Fungi show variation
in gene content. For example, mitogenomes of yeasts (family
Saccharomycetaceae) lack and genes (Freel et al., 2015). In
addition, a patchy distribution of the rnpB gene encoding the
RNA subunit of the mitochondrial RNAse P is also frequently
observed. In Ascomycota, mitochondrial genes are generally
encoded in one strand, but in both strands in Basidiomycota
(Zardoya, 2020).

Nearly all mechanisms responsible for maintaining the
nuclear genome integrity, such as mismatch repair, base
excision repair, and double-strand break repair via homologous
recombination or the non-homologous end-joining pathway,
also occur to maintain mtDNA stability (Kaniak-Golik and
Skoneczna, 2015). In fungi, the mutation rate in mtDNA is
usually lower than in nuclear genomes (De Chiara et al.,
2020). However, it is worth noting that the mutation rate in
mtDNA appears to be dependent upon the fungal group studied.
For example, in plant pathogenic Rhynchosporium species the
mutation rate in mtDNA was proved to be higher than in
nuclear genomes (Torriani et al., 2014), however, themechanisms
underlying this variation remain unclear. It has been suggested
that the higher mutation rate of mtDNA could be due to
poor effectiveness of the mtDNA repair system due to the
nearby production of reactive oxygen species (Mendoza et al.,
2020). Mitogenomes can display increased variation due to gene
rearrangements caused by mitogenome recombination (Aguileta
et al., 2014). Fungal mitogenomes may also differ in gene order
and composition, pseudogene content and tandem repeats in
intergenic regions (Aguileta et al., 2014; Fonseca et al.). Among
the other explanations of mitogenome variability in fungi are
double-stranded RNA elements and the frequent mobility of
present self-splicing introns (Wu and Hao, 2019; Mendoza et al.,
2020).

The most frequently encountered introns in fungal
mitogenomes are group I introns that can encode homing
endonucleases (HEGs) with either LAGLIDADG or GIY-YIG
motifs. Intron encoded proteins catalyze intron mobility and
have been shown in some instances to act as maturases enhancing
the splicing of introns (Hausner, 2003). Distribution of these
introns is irregular among different lineages and their irregular
distribution has also been observed at the strain level. On the
other hand, the same introns and associated HEGs may also
be present in mitogenomes of evolutionarily distant lineages
(Hausner, 2003). Their irregular distribution in fungi is often
explained with “early intron” or “late intron” evolutionary
contradicting hypotheses. The first one supports that introns
were introduced to eukaryotes at an early stage of their evolution,
and a general evolutionary process dominated toward the loss
of introns (Goddard and Burt, 1999). The second hypothesis

suggests more recent intron expansion even between diverse
species through horizontal transfer (Gonzalez et al., 1998).
Both hypotheses could be proven based on the most recent pan
genomic approach, which indicated an intron-rich ancestor of
fungi as well as the existence of intron-late events through a
range of recombinational events that resulted from both vertical
and horizontal gene transmissions (Megarioti and Kouvelis,
2020). Although mitochondrial introns have been viewed by
many as neutral elements (Goddard and Burt, 1999) recent
studies are suggesting some introns may impact mitochondrial
gene expression (Rudan et al., 2018), virulence in some fungal
pathogens (Baidyaroy et al., 2011; Medina et al.), and resistance
to certain fungicides (Cinget and Bélanger, 2020). With regards
to fungi pathogenic toward humans, as group I introns are not
found in mammalian genomes, they are starting to be explored
as fungal specific druggable RNA targets (Gomes et al., 2018).

Fungal mitogenomes are usually represented as circular
molecules, although linear versions with defined telomeric ends,
and versions existing as linear concatemers have been reported
(Bullerwell and Lang, 2005; Valach et al., 2011), and they can
range in size from 12.055 bp to 500 kbp (James et al., 2013;
Liu et al., 2020). The size variation is in part due to introns,
intergenic spacers, plasmid insertions, partial duplications, and
in some instances the proliferation of repeats (Hausner, 2003;
Liu et al., 2020). Patterns of variation in mtDNA provide genetic
information that is often sufficiently variable for comparative
genomics as well as for evolutionary studies of fungi. The
use of genomic data has greatly promoted the development of
taxonomy and phylogenetic relationships of fungi, leading to
the taxonomic revisions and the identification of new species.
However, it is worth to note that despite molecular dating,
some of fungal lineages still hold an uncertain phylogenetic
position (Naranjo-Ortiz and Gabaldón, 2020). Characterization
of mitogenome patterns may help to resolve these questions.
Some recent examples of new phylogenetic insights were
derived from studies in nematode-trapping fungi (Zhang et al.),
the commercialized edible mushroom Hypsizygus marmoreus
(Wang et al., 2019), and ectomycorrhizal fungi from the genus
Rhizopogon (Li et al., 2019). It is worth noting however, that
estimating phylogenetic relationships of fungi based on both
mitogenome and nuclear phylogenies can be difficult due to
their highly discordant evolutionary trajectories (De Chiara et al.,
2020).

In population genetic studies on fungi, mitogenomic analyses
may give different results from nuclear genome analyses,
indicating nucleus and organelle may evolve via different
trajectories. Wolters et al. (2015) revealed that the distribution
of mitochondrial introns in S. cerevisiae had population-specific
profiles. However, further work by De Chiara et al. (2020)
showed that despite high mtDNA polymorphism, mitochondrial
population structure poorly reflects the clustering based on
nuclear data, which indicated that in yeasts both nuclear
and mitochondrial genomes are affected by outbreeding. The
limitations of mitogenomics in population surveys have been
recently underlined in studies on plant pathogenic Fusaria.
Comparative analysis of strains fromworldwide field populations
did not reveal a link between mitogenome variation and the
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geographic origin of the populations mostly due to high sequence
conservation and ancestral origin of introns and associated HEGs
(Kulik et al.).

Mitogenomics shows promise in the field of fungal
diagnostics. Efficient detection of fungi is difficult due to
the inefficient recovery of genomic DNA for PCR, mostly due
to the very low and uneven distribution of fungal biomass in
tested samples and difficult to disrupt chitinous cell wall (Bilska
et al., 2018). Markers developed on the basis of mitochondrial
sequences provide a highly sensitive detection of fungi due to
the multi-copy nature of mitogenomes. It has been also noted
that mitochondrial DNA may be useful in deciphering cryptic
species diversity (Kulik et al., 2020). However, development of
novel diagnostic assays requires their evaluation in terms of
uniformity and specificity against a test panel of different target
and non-target fungi. This requires a continuously updating of
knowledge on both fungal taxonomy and mitogenome variation.
Continued investment in sequencing of both nuclear and
mitochondrial genomes is necessary to open up dimensions for
improved diagnostics, which should be consistent with the actual
taxonomic/natural classification of fungi.

Mitogenomics can also bring new insights into the
mechanisms onmitochondrial functioning, fungal pathogenicity,
virulence and drug resistance. Fungi, still belong to a group of
largely unexplored microorganisms in terms of integrative
proteomic and genomic approaches for understanding
mitochondrial processes (Ambrosio et al., 2013; Medina

et al.). Today, there are a lot of open questions regarding the
mitochondrial proteome and its role in the dynamic modulation
of these organelle (Ambrosio et al., 2013; Mendoza et al.,
2020). Mitochondrial inheritance has been explored in only
a few fungal species (S. cerevisiae, Cryptococcus neoformans,
Microbotryum violaceum, and Ustilago maydis) and these
studies provided evidence for a large variation in inheritance
mechanisms (Mendoza et al., 2020). We believe that the outlined
knowledge gaps that exists in the field of fungal mitogenomics
will stimulate the posting of additional questions that will
promote research on the diverse cellular functions and roles of
mitochondria in various fungal systems. Deciphering molecular
mechanisms underlying these processes requires an integrative
approach (mitogenomics, transcriptomics, and proteomics)
combined with the knowledge on mitogenome structure
and organization.

We are very proud of this special issue on the “Significance
of Mitogenomics in Mycology” and would like to thank all
contributors for submitting their cutting-edge research to it.
All readers we wish a pleasant update on the possibilities and
impossibilities of fungal mitogenomics in a varied range of
fungal species.
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