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Type I and type III interferons are among the most potent anti-

viral cytokines produced by the immune system. The recent

outbreak of SARS-CoV-2, which causes COVID-19,

underscores the vital role of these cytokines in controlling the

virus and dictating disease severity. Here we delineate the

pathways that lead to interferon production in response to

SARS-CoV-2 encounter, and elucidate how this virus hinders

the production and action of these cytokines; we also highlight

that these interferon families serve protective as well as

detrimental roles in patients with COVID-19, and conclude that

a better understanding of the time, dose, localization, and

activity of specific members of the interferon families is

imperative for designing more efficient therapeutic

interventions against this disease.
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Introduction
Emergence of the novel SARS-CoV-2 virus at the end of

2019has reshaped themedical and socioeconomicalhabitsof

our societies. While the accelerated introduction of new

vaccine platforms based on the use of adenoviruses or

RNA has successfully enabled viral spread to be contained

in several countries, the limited availability of these vaccines

and the logistic limitations linked to their storage at con-

trolled temperatures, has exposed numerous regions of the

world to uncontrolled surgesofCOVID-19.  The wide spread

of the virus is associated with introduction of new variants of

concern that will further prolong the pandemic and its

detrimental effects. Despite this, the new virus — to which

we have limited, if any, pre-existing immunity — presents  a

unique opportunity to better understand the functioning of
www.sciencedirect.com 
the human immune system [1], and knowledgederived from

past and ongoing studies of SARS-CoV-2 has yielded

unprecedented insight into unknown aspects of the immune

response, and has identified potential new therapeutic tar-

gets and drugs that may be used not only against SARS-CoV-

2, but also against viral infections in general, and/or against

other immune-mediated pathologies.

COVID-19 is a pathology initiated by SARS-CoV-2, but

the most severe cases of COVID-19 appear to be linked to

an exaggerated and deregulated immune response. In

severe COVID-19, the immune mediators that are pro-

duced to restrict viral spread also cause dysfunction of the

lung, as well as of other tissues and organs. Unraveling the

extent to which a specific immune mediator plays a key

protective or detrimental role is probably one of the major

challenges for the scientific community. We argue here

that the timing and dosing of the production of various

immune mediators, and the location where these med-

iators are produced, must be taken into consideration to

effectively understand their roles, and to come up with

better strategies for designing therapeutic interventions.

In this review, we frame COVID-19 in the broader

context of immune-driven pathologies, and then focus

on the two major families of IFNs — type I and type III

IFNs — best known for their potent anti-viral properties

[2,3]. Type I IFNs are mainly represented by several

IFN-a’s (13 in humans) as well as by IFN-b [3], while

type III IFNs belong to the IL-10 family of cytokines

and are represented by IFN-l1-4 in humans (only IFN-

l2 and IFN-l3 exist in mice) [4�,5�,6�]. These two

families of IFNs signal via different receptors (the

IFNAR and the IFNLR, respectively), but the signaling

cascades initiated by type I and type III IFNs are very

similar, and drive the transcription of a similar set of

genes, termed the interferon-stimulated genes (ISGs).

The major difference between these two families of

IFNs is reflected in the pattern of expression of their

receptors; while the IFNAR is expressed almost ubiqui-

tously in the body, expression of the IFNLR is limited to

epithelial cells and few immune cells. Thus, type III

IFNs are believed to be gatekeepers of mucosal surfaces

that efficiently restrict viral replication, and at the same

time limit the inflammatory response at the mucosae [2].

Here we discuss the production and functions of these

IFNs in the context of the anti-viral response, and also

review what is known about their role in participating to

the immune-mediated damage that characterizes severe

COVID-19.
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COVID-19 is an inflammatory disorder
A key feature of severe COVID-19 is an exuberant

activation of the immune system, and severe forms of

SARS-CoV-2-driven pathology are characterized by pro-

duction of high levels of numerous pro-inflammatory

cytokines and chemokines [1]. This inflammatory

response favors the recruitment and activation of multiple

immune cells to the lungs, and it also results in systemic

inflammation [7,8]. The virus potentially infects multiple

human cell types in a number of organismal locations

[9,10], but the damage and dysfunction that occur in

several tissues are mainly linked to secondary immune-

mediated responses, rather than to the presence of the

virus itself [11] or to the viral load [12]. The term

‘cytokine storm’ is still controversial [13,14], but severe

COVID-19 is broadly recognized as an inflammatory

disorder mediated by an uncontrolled immune response

[14,15]. The inflammatory nature of this pathology is also

reflected by the fact that the only effective pharmacolog-

ical interventions for preventing or restraining the most

severe cases involve the use of anti-inflammatory drugs.

Except for Remdesivir (which is indicated for non-critical

patients), the other drugs in current use are immunomod-

ulatory agents [16–21].

The inflammatory nature of COVID-19 leads to interest-

ing parallels with sepsis, one of the most studied and less

curable inflammatory disorders. Sepsis is characterized by

the simultaneous activation of pro-inflammatory and

immune-suppressive events [22,23]. In particular, the

unbalanced production of pro-inflammatory mediators

that occurs in sepsis is accompanied by a failure to return

to homeostasis; in other words, tissues and organs are

unable to return to their initial functional state, and yet

cannot adapt to a new one as a consequence of fluctuating

environmental conditions driven by the infection or tissue

injury. The ‘failure of homeostasis’ phase during sepsis is

characterized by immunosuppression (both for immune

as well as metabolic functions) and by persistent critical

illness (PCI) [23]. Severe COVID-19 is characterized by

increased cell death: the elevated levels of interferon

(IFN)-g and TNF that are observed in patients with

severe disease induce a form of cell death called PANop-

tosis [23], which initiates a feed-back loop that sustains

lymphopenia, tissue damage, and inflammation. Another

key feature of the immunosuppressive phase of sepsis is

decreased antigen presentation — this is also a hallmark

of severe COVID-19, that is characterized by HLA-DRlo

circulating monocytes and dendritic cells [24–26]. In

addition, the gene signatures of monocytes derived from

patients with severe sepsis and from those with severe

COVID-19 are strikingly similar [15]. In keeping with an

immunosuppressive environment, adaptive immune

responses are also altered in patients with severe

COVID-19 (as recently reviewed in Ref. [27]) — this is

illustrated by induction of BCL-6+ Tfh cells being altered

in patients who succumb to severe COVID-19 [28�], and
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by the tight link between disease severity and delayed

antibody production or CD8 T cell responses [12,29].

As observed in most immune dysfunctions, profound

organismal and cellular metabolic changes are also found

in individuals who are severely infected with SARS-CoV-

2. By altering one-carbon and folate metabolism, the virus

favors its own growth [30]. Loss of nutrient metabolites

and lipids is common to patients with severe COVID-19

as well as other severe infections [31,32], while profound

alterations in the levels of iron and iron transporters are

associated with ferroptosis, and possibly with further

increases in cell death and disseminated tissue damage

in patients with severe COVID-19, as has been proposed

recently [33]. At the same time, the metabolism of

adaptive and innate immune cells is also changed:

patients with COVID-19 exhibit an altered balance

between respiration and glycolysis in their lymphocytes,

and this change culminates in VDAC-dependent induced

apoptosis [34]. Monocytes and neutrophils also display

metabolic changes that are typically associated with

immunosuppression [34]. Finally, post-acute sequelae

of SARS-CoV-2 infection (PASC) (reviewed in Ref.

[35]), also known as long COVID-19, may share several

aspects with PCI, although the study of these sequelae is

still in its infancy.

Besides the striking similarities between the failure of

homeostasis phase in severe COVID-19 and sepsis, pro-

duction of pro-inflammatory mediators also serves key

functions in SARS-CoV-2-infected patients who are suf-

fering from a severe pathology. As mentioned above, the

major pharmacological treatments currently utilized to

treat severe COVID-19 are aimed at decreasing cytokine

and chemokine — driven inflammatory responses. The

relevance of several inflammatory mediators involved in

COVID-19 has been extensively analyzed [1,8,36–38]. In

the rest of this review, we thus focus our attention mostly

on the role of type I and type III IFNs during COVID-19.

Sensing of SARS-CoV-2, and induction and
inhibition of IFNs in vitro
SARS-CoV-2 is a positive-sense single-stranded RNA

(ssRNA+) virus that forms double-stranded (ds)RNA

intermediates during replication. Pattern recognition

receptors (PRRs) that recognize RNA viruses are mainly

represented by endosomal TLR7/8 and TLR3, and by

the cytoplasmic RNA-sensing receptors MDA5 and RIG-

I [39]. RIG-I and MDA5 recognize SARS-CoV-2 RNA as

well as intermediates of replication of the virus inside

infected cells [40–42], while other PRRs are involved in

virus recognition by bystander and/or non-infected cells.

Several C-type lectins (such as DC-SIGN) and Tweety

family member 2 (TTYH2) bind SARS-CoV-2 spike

protein, and induce pro-inflammatory responses in mye-

loid cells [43]. In keeping with recognition of SARS-CoV-

2 by non-infected cells, TLR2 binds the SARS-CoV-2
www.sciencedirect.com
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envelope to induce inflammation, in the absence of

internalization of the virus [44]. dsRNA that is formed

during replication of a ssRNA virus may be released by

dying infected cells, and is subsequently taken up by

phagocytes and recognized via TLR3, as recently sug-

gested for COVID-19 [2,45��]. Finally, the cGAS-STING

pathway also recognizes SARS-CoV-2 and participates in

triggering inflammation [46].

Although several PRRs recognize SARS-CoV-2, their

effectiveness in mounting an immune response, and in

particular in producing anti-viral IFNs, is challenged by

numerous mechanisms that are initiated by the virus to

inhibit the receptors from recognizing it, to prevent the

immune response from being triggered, and/or to abro-

gate IFN production or signaling via numerous effector

proteins, as reviewed elsewhere [36]. For example, mul-

tiple SARS-CoV-2 viral effectors disrupt cellular (but not

viral) RNA splicing and translation, and also block the

protein trafficking that would enable secretion of proteins

as well as release of anti-viral mediators [47,48]. SARS-

CoV-2 proteins also degrade host cell mRNA, and prevent

the export of nuclear mRNA [49]. These are just a few

among many of the strategies utilized by SARS-CoV-2 to

support its own growth and prevent the production of

IFNs, among other immune mediators. This strategy is

particularly relevant for cells wherein the virus is actively

replicating, and which are the first to respond to the virus.

SARS-CoV-2 is believed to effectively shut down the

production of IFNs, and thereby favor its own spread

from the upper to the lower airways, where it initiates the

complex mechanisms that cause a severe pathology.

However, recent findings have challenged this view.

Epithelial cells in the human airways respond to viral

challenge by producing type I IFNs [50], and alveolo-

spheres that are infected with SARS-CoV-2 not only show

signs of dysfunction (mirroring that seen in infected

patients), but also produce type I and type III (but not

type II) IFNs [51,52]. Whether production of IFNs under

these experimental settings is driven directly by cells

infected with the virus, or by bystander cells that sense

the presence of viral or cellular inflammatory cues,

remains to be determined. Also, human bronchial epithe-

lial cells cultured at the air-liquid interphase can produce

type I and type III IFNs when stimulated by either RIG-I

or TLR3, but not in response to several other PRR ligands

[45��]. Together, these findings suggest that epithelial

cells that are directly infected, or that sense the presence

of dsRNA derived from dying infected cells (via RIG-I or

TLR3 respectively), may participate in the anti-viral

response. In addition to the epithelial cells, other immune

cells may also be involved in recognizing SARS-CoV-2:

plasmacytoid dendritic cells (DCs) and conventional (c)

DCs, also contribute to this process [45��,53��,54–56].
How IFNs produced by different immune and
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non-immune cells influence the restriction of viral repli-

cation in vivo remains to be addressed.

Another important unresolved issue concerns the relative

contribution of different IFNs to restricting the virus. In
vitro studies show that a set of specific ISGs is critical for

controlling the replication of SARS-CoV-2 [57]; also that

specific members of the IFN families, in particular IFN-

l1 and IFN-g [58], or IFN-a5 [59], are efficient inhibitors

of SARS-CoV-2 replication. Thus, a critical question is

how the ability of distinct cell types to produce specific

IFNs (in response to a variety of PRR stimulations [45��])
affects the induction of particular ISGs, and in turn the

restriction of SARS-CoV-2.

Production of type I and type III IFNs in
patients with COVID-19
Besides the capacity of SARS-CoV-2 to induce and

antagonize IFN production in different cell types in vitro,
a foremost concern during this pandemic has been to

establish the role played by IFNs in SARS-CoV-2-

infected patients. Given that type I and type III IFNs

are among the most potent natural anti-viral mediators,

the following questions need to be addressed: are IFNs

produced in patients with COVID-19, is their localization

and timing of production relevant for the development of

SARS-CoV-2 infection, and do they exert a protective role

against severe COVID-19?

An early study used RNA sequencing (RNAseq) to ana-

lyze post-mortem lung tissue from two patients who were

severely affected with COVID-19, and concluded that

pro-inflammatory cytokines and chemokines are potently

induced in the lung as well as in the peripheral blood,

while their ISG signature is reduced, compared to that in

patients infected by other common respiratory viruses.

Also, that type I and type III IFNs are absent in the

peripheral blood of these COVID-19 patients [60��].
This paper was among the first to highlight the inflam-

matory nature of severe COVID-19, and to raise aware-

ness about the involvement of the immune system in

patients afflicted with severe SARS-CoV-2 infections.

Another report analyzed data from 50 patients who had

COVID-19 (pathology ranging from mild to critical) in

terms of their capacity to produce type I IFNs. The

authors measured gene transcripts and levels of protein,

and confirmed that the IFN gene signature, and also the

type I IFNs, were not induced in the peripheral blood of

patients with severe and critical disease [61]. In contrast,

mild-to-moderate cases of COVID-19 produced type I

IFN and also showed an ISG signature [61]. These

findings have been further verified by several groups,

who used single cell and/or bulk transcriptomics, and

in some cases also measured IFNs at the protein level

[62–64].
Current Opinion in Virology 2021, 50:119–127
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Type I and type III interferons as determinants of the severity of

COVID-19. Type I and type III IFNs play key roles during COVID-19

development. In the upper airways, a potent production of type III, and

to a lesser extent type I, IFNs is associated with increased viral loads,

younger age and milder pathology. In the lower airways, high levels of

type III (and type I) IFNs characterize the lung of severe-to-critical

COVID-19 patients. In the blood, the absence of IFN production and/

or responses, as well as a delayed and prolonged production of type I

and type III IFNs has been associated with negative outcomes of

COVID-19, while a transient and early production of IFNs has been

associated with a mild disease.
Reports reported above have documented that IFNs or

their corresponding signature are either absent or only

transiently upregulated in patients with severe COVID-

19. Other studies, instead, have reported a different trend

for the production of IFNs in COVID-19 patients: lon-

gitudinal analyses of the peripheral blood of COVID-19

patients revealed that type I and type III IFNs, and also

the ISGs, were induced, but only at late time points

following infection [65��,66]. In keeping with the produc-

tion of IFNs in COVID-19 patients, the ISG signature in

tissues derived from the lungs of COVID-19 patients

pointed to a potent upregulation, relative to that in

patients with other bacterial or viral pneumonias [67�].
In particular, IFNs and/or ISGs were readily detected at

the RNA level, when measured locally in inflamed areas

of the lung or in areas where SARS-CoV-2 was also

detected [11,68]. A potent induction of IFNs was also

reported at the mRNA or protein levels in the bronch-

oalveolar lavage fluids of patients with severe COVID-19

[45��]. Not only was induced the transcription of type III

and type I IFNs in these patients, but a unique protein

IFN signature (comprising all three families of IFNs) was

also found to be a hallmark of the severely infected

patients compared to non-microbially infected patients,

and also to patients suffering from other bacterial or viral

acute respiratory distress syndrome (ARDS) [45��]. Of

note, no or very limited correlation between the protein

content of the IFNs [45��] as well as of the transcriptional

signature [69] in the lungs compared to that in the blood

of the same group of patients was found. Finally, a tight

correlation was found between the production of type I

and type III IFNs and/or the ISGs and the levels of

SARS-CoV-2 in the upper airways of COVID-19 patients:

as the viral load in the upper airways increased, so did the

IFN signature [45��,70�,71,72]. These data indicate that

the viral effectors (described above) that inhibit IFN

production cannot efficiently prevent IFN induction

when the virus burden increases, or that bystander cells

can sense either viral or endogenous signals that drive

IFN production in cells that are not infected with SARS-

CoV-2.

Collectively, these studies highlight the complexity of

IFN production during COVID-19 (Figure 1), and under-

score how the timing of measurement, the choice of

organs analyzed, as well as the diversity of the patient

cohorts in terms of disease severity may impact this type

of analyses. Several of these works also raise the possibil-

ity that IFNs, and the IFN-dependent gene signature,

may drive detrimental roles during COVID-19, rather

than protection.

Protective and detrimental roles of IFNs in
COVID-19 patients
The finding that type I and type III IFNs are produced in

COVID-19 patients raises the issue of whether they serve

a protective or detrimental role. Given that these families
Current Opinion in Virology 2021, 50:119–127 
of IFNs serve anti-viral roles, that IFNs were initially

reported to be reduced in patients with severe COVID-

19, and that SARS-CoV-2 reportedly has the capacity to

inhibit IFN production and signaling, the general view-

point in the field was that type I and type III IFNs are

protective during COVID-19. In fact, an analysis of more

than 1600 patients with COVID-19 uncovered genetic

defects in TLR3, IRF-9, or IRF-7 that impair either the

production or signaling downstream of type I or type III

IFNs, and that these defects are associated with up to

3.5% of cases afflicted with severe disease [73��]. The

same group also showed that up to 2.6% of females, and

up to 12.5% of males with severe disease present auto-
www.sciencedirect.com
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antibodies directed against type I IFNs [74��]. More

recently, TLR7-deficency has been also implicated in

severe COVID 19 [88]. Additionally, autoantibodies

against CD32 suppress ISG induction in patients with

severe disease [64] and levels of gene expression of the

IFNAR2 (that encodes one of the two subunits of the

receptor for type I IFNs) are also decreased [75]. A study

of the broader landscape that pertains to autoantibodies

elicited in COVID-19 patients concluded that autoanti-

bodies directed against type I IFNs present in around 5%

of patients but also that these patients bear autoantibo-

dies directed against proteins involved in leukocyte func-

tion, activation and trafficking, type I and type III IFN

responses, type II immunity, and the protein of the acute

phase response [76��]. A principal component analysis

revealed that autoantibodies against chemokines and

cytokines can be used as significant predictors of the

severity of COVID-19: in particular, type III IFNs were

among the proteins targeted by the autoantibodies that

drove the association with disease severity. The paper

also showed that autoantibodies directed against type I

IFNs dampen viral clearance, and that injection of anti-

IFNAR antibodies in K18-ACE2 transgenic mice

infected with SARS-CoV-2 induced more severe disease.

Finally, in keeping with IFNs being protective against

severe COVID-19, it was documented that a large pro-

portion of patients with pre-existing autoantibodies

against type I IFNs (due of loss-of-function variants in

the AIRE gene) developed severe-to-critical COVID-19

[77]. Also, that autoantibodies directed against type I

IFNs are present also in uninfected patients [89].

Production of IFNs or ISGs was analyzed locally in the

upper airways of patients with COVID-19 in several

reports [45��,70�,71,72]. Studies that utilized whole [71]

or single cell [70�] RNAseq concluded that a potent

induction of ISGs in the upper airways was associated

with protection against SARS-CoV-2, but these works did

not detect IFNs in their samples. In contrast, another

study identified specific members of the type I and type

III IFN families in the upper airways of a cohort of more

than 150 subjects, and concluded that efficient induction

of IFNs, especially of type III IFNs, occurs only in

younger COVID-19 patients (who are less susceptible

to severe COVID-19 [78]) and is found in individuals who

are home-isolated with mild disease, rather than in those

who are hospitalized, or in ICU [45��]. Intriguingly,

patients with mild COVID-19 are primarily characterized

by the production of IFN-l1 and IFN-l3 [45��]. Another

recet study also confirmed the upregulation of IFNs in the

upper aiways of patients with mild COVID-19 [90].

These data further support the important roles of IFNs

in preventing severe and/or critical COVID-19, and

expand this concept to the upper airways, suggesting that

a major function of the IFNs is to prevent the spread of

the virus from the upper to the lower airways. Neverthe-

less, recent studies question the global relevance of anti-
www.sciencedirect.com 
type I IFN autoantibody, as well as of genetic defects

associated with IFN production and/or signaling, in driv-

ing severe COVID-19, and suggest that other factors exert

equally important protective and/or detrimental functions

[79,80].

This complex association between IFN production and

COVID-19 severity was confirmed in patients with severe

COVID-19, who exhibited an increased ISG signature in

their blood [81], and in whom the elevated levels of type I

and type III IFNs in the peripheral blood were correlated

with negative outcomes of severe COVID-19 [65��]
(Figure 1).

If and how potent IFN-mediated responses favor severe

COVID-19 remains to be fully elucidated. One possibil-

ity is that the type I IFNs have a pro-inflammatory

activity. This is supported by the increased IFN signa-

ture of peripheral monocytes in patients with severe

COVID-19, compared to those with mild disease [81].

A non-exclusive alternative is that type I and, especially,

type III IFNs play a detrimental role, as recently

described in mouse models of RNA virus infections

[53��,82�]. These studies point to a role for IFN signaling

in preventing the proliferation of lung epithelial cells

and in facilitating their apoptosis; in turn, these events

delay tissue repair, favor lung permeability and impair

lung barrier functions. The findings are even more

critical in light of the high levels of IFNs, particularly

type I IFNs and IFN-l2, detected in the lower airways

of patients with severe COVID-19 [45��]. In keeping

with data obtained in mouse models, these severe

patients also present gene signatures associated with

decreased proliferation and increased p53 activity

[45��]. Also, it has been recently demonstrated that type

I and type III IFNs dramatically increase expression of

ACE2 and TMPRSS2 to boost viral entry in alveolar

epithelial cells [83]. IFNs have been shown to upregu-

late only a truncated, non-funcitonal, form of ACE2

[91,92]. Nevertheless, these new data reveal the possi-

bility that a combinantion of cytokines - comprehending

IFNs - may favor viral entry, possibly unveiling another

detrimental effect of these immune mediators in the

lower airways of COVID-19 patients. It is, though,

important to mention that studies focused on the activity

of type III IFNs in the gut revealed a protective role for

this group of IFNs on intestinal epithelial cells [84,85],

as well as their capacity to reduce tissue damage by

dampening neutrophils’ functions [86�]. It is possible

that either the nature of the agent that drives the

inflammatory process, or the duration, for example,

persistent incapacity to eliminate SARS-CoV-2 as

opposed to transient tissue damage of the gut epithelial

layer — drive different functions of IFNs. Overall, the

apparently opposing roles played by type III IFNs in the

gut and in the lung give a potent mandate to further

analyze their biology and signaling activity.
Current Opinion in Virology 2021, 50:119–127
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In sum, these observations reveal a complex regulation of

the type I and type III IFN families during the develop-

ment of COVID-19. The timing of the response appears

to be fundamental, with an early, transient IFN produc-

tion being correlated with a milder pathology, as previ-

ously discussed [38]. The data discussed above add

another layer of complexity linked not only to the timing,

but also to the localization of the response, with efficient

induction of IFNs in the upper airways being protective,

while sustained production of IFNs in the lung or in the

blood driving detrimental roles. The cell types that

produce and/or respond to IFNs may also be a factor in

this complex phenotype [45��], and an intriguing possi-

bility is that only certain types of IFNs, and/or cells that

respond to specific IFNs, initiate the transcriptional pro-

grams associated with protection against SARS-CoV-2, or

favor detrimental outcomes of COVID-19.

Conclusions
The emergence of the new SARS-CoV-2 virus has

enabled detailed insight into the immune response to a

virus for which no previous immunity is broadly present in

humans. This event highlights unique features of the

host-pathogen response, with type I and type III IFNs

playing complex and somewhat contrasting roles. The

complexity of the response is evidenced by the difficulty

of harnessing recombinant IFNs (namely, drugs that are

widely available and are used to treat several pathologies)

for use as anti-virals against SARS-CoV-2. In fact, studies

that have utilized recombinant type I and type III IFNs

report opposing effects, as reviewed elsewhere [87]. We

posit that the dosing, route, and timing of administration,

as well as the nature of the specific IFN utilized, will have

profound impacts on the effectiveness of this type of

treatment, and we contend that a better understanding of

the complexity and specificity of action of each member

of the IFN families, and of its targets, will help in the

design of more efficient therapeutic interventions against

COVID-19.
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