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Applications in omics research, such as comparative transcriptomics and proteomics, require the knowl-
edge of the species-specific gene sequence and benefit from a comprehensive high-quality annotation of
the coding genes to achieve high coverage. While protein-coding genes can in simple cases be detected by
scanning the genome for open reading frames, in more complex genomes exonic sequences are separated
by introns. Despite advances in sequencing technologies that allow for ever-growing numbers of gen-
omes, the quality of many of the provided genome assemblies do not reach reference quality. These
non-contiguous assemblies with gaps and the necessity to predict splice sites limit accurate gene anno-
tation from solely genomic data. In contrast, the transcriptome only contains transcribed gene regions, is
devoid of introns and thus provides the optimal basis for the identification of open reading frames. The
additional integration of proteomics data to validate predicted protein-coding genes further enriches for
accurate gene models. This review outlines the principles of the proteotranscriptomics approach, dis-
cusses common challenges and suggests methods for improvement.
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1. Introduction

A gene is basically a sequence of DNA nucleotides that encodes
the synthesis of a gene product, which can be either RNA or pro-
tein. The annotation of protein coding functional elements in a
complex genome is a challenging task that requires not only a
highly accurate genome assembly but also the implementation of
common gene features such as start and stop codons and splicing
signals. The development of highly efficient sequencing technolo-
gies enables the sequencing of an ever-growing number of gen-
omes. This necessitates automated gene annotations that are
usually highly dependent on the transfer of gene models from
related species. While this trend accommodates the need of the
progressively omics-oriented science to study gene regulation on
a global level in any species of interest, in reality imprecisions in
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annotations can propagate across new assemblies and genes can be
missed. In addition, genome assembly and its annotation is still a
highly challenging endeavor and thus remains reserved to highly
specialized research groups or big consortia. Thus, an alternative
approach by which gene predictions are based not on genomic
sequences but rather on assembled contigs from RNA-Seq data of
polyA enriched mRNA has advantages. As the transcribed part of
the genome is devoid of introns and other non-coding sequences
the resulting coding-gene predictions are likely more accurate.
Adding additional evidence in form of peptide information
obtained by mass-spectrometry, a technique broadly used for the
identification and characterization of proteins, a Proteo-
Transcriptomics Assembly (PTA) workflow can yield high confi-
dence annotation of protein coding genes without the need for
genome assembly. RNA-Seq and mass spectrometry data can
nowadays be easily produced via on-demand services or just
downloaded from RNA-Seq and proteomics repositories and hence
the protocols we present and discuss here can even be applied by
research groups with no such high-throughput equipment. In the
following, we outline the concepts of the approach, discuss com-
mon challenges and suggest methods for advancement.
Fig. 2. Main genome annotation steps. Many steps such as repeat masking, protein
homology prediction and the alignment of open reading frames from other species
include implementing data from other assemblies and annotations and hence
mistakes are transferred resulting in impaired precision.
2. Genome annotation remains challenging

Since its development in the late 1970s, DNA sequencing has
become one of the most pivotal tools in biomedical research [1].
It initially facilitated the sequencing of whole genomes of phages
in the late 1980s [2] followed by several prokaryotic organisms
and the first eukaryote, i.e. the yeast Saccharomyces cerevisiae in
the mid-2000s [3]. Multicellular eukaryotic genome sequencing
was achieved soon later starting with the roundworm Caenorhab-
ditis elegans [4] and the plant Arabidopsis thaliana [5]. As of March
2021, the International Nucleotide Sequence Database Collabora-
tion (INSDC) contained whole-genome DNA sequence information
Fig. 1. Paradigm of proteome assembly releases: The number of entries per UniProt Kno
The vast majority of these entries however (greater than99%) is merely inferred by hom
(lower panel). All data presented was extracted from the release notes of the respective

3668
for 6,480 unique eukaryote species, of which only 583 (9%) repre-
sented reference-quality chromosome-scale assemblies [6]. The
rest remain only draft assemblies, not passing the now generally
wledgebase (UniProtKB) [15] release increases extensively with time (upper panel).
ology or predicted and has no biological evidence at the transcript or protein level
UniProt release.
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accepted quality requirements [6,7]. Although the number of
reference-quality genomes is planned to be increased extensively,
this will still require concerted efforts from the community or lar-
ger consortia [6,7]. Further, this will not encompass every species
of interest and may still require some time.

Accurate and contiguous genomic sequences are important
foundations for the identification of functional elements, a process
called genome annotation. While this procedure was performed in
a highly curated manner with very intense efforts for the first
sequenced organisms, the sheer number of sequenced genomes
nowadays requires fully automated processes for annotation. In
these processes the genome sequence is screened for features of
open reading frames that potentially code for proteins. While these
measures efficiently enable prediction of possible open reading
frames (Fig. 1), the accuracy has been described to suffer in many
cases [8,9].

The main challenges of genome annotation can be divided into
two categories. The automated annotation of large, fragmented
draft genomes still remains very difficult as open reading frames
at the edge of contigs as well as in non-assembled genomic regions
are lost. This is reflected in the loss of ORFs when compared to fully
assembled genomes [10–13]. In addition, draft genome assemblies
are known to be frequently contaminated with common bacteria,
sequencing vectors, or even human DNA, all of which are ubiqui-
tously present in most labs [14]. These contaminations and any
other error in existing annotation i.e. wrongly assigned gene names
or a non-genic sequence being annotated as protein coding lead to
errors in annotation that tend to propagate across species (Fig. 2).
For eukaryotic genomes challenges are even more complex as
genes are exceptionally far apart and usually interrupted by
introns. That might explain why only 34% of animals with genome
assemblies in GenBank also have corresponding annotations [9]. In
addition, automated genome annotation mostly provides predic-
tions based on sequence without further evidence unable to con-
trol for overprediction (Fig. 1). Hence while genome sequencing
technology has continuously improved, genome annotation has
become less accurate in general [8].
3. Transcriptome assembly enables gene prediction with
reduced complexity

One approach to overcome the obstacles of genome sequence-
based gene annotation for protein-coding genes is to start the
annotation effort with much less complex underlying data, namely
the transcriptome. The transcriptome as the intermediate level of
information between genome and proteome is devoid of complex
features such as introns and other non-coding sequences and does
theoretically constitute the perfect basis for the identification of
open reading frames. The large drop in the cost of sequencing also
led to the expansion of investigations of transcriptomes of a large
range of organisms [16]. This is accomplished by extracting total
RNA from the organism of interest, enriching for poly-adenylated
transcripts and reverse transcription to create a cDNA library.
The cDNA can then be fragmented into various lengths depending
on the platform used for sequencing. 454 Sequencing, Illumina, and
SOLiD platforms utilize different types of technologies to sequence
millions of short reads [17]. Similar to genome assembly the cDNA
sequence reads can then be assembled into transcripts. However,
established genome assemblers can’t be directly used in transcrip-
tome assembly for several reasons. (1) Sequencing depth is assum-
ingly uniform across the genome, while the depth obviously varies
between transcripts. (2) In genome sequencing both strands are
sequenced, while RNA-Seq is normally strand-specific. (3) Tran-
script variants of the same locus share different exons and it can
be difficult to reconstruct and tease apart all splicing isoforms.
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Thus, transcriptome assembly has its own challenges. The
approach was however strongly enforced by the development of
dedicated transcriptome assembly programs [18]. Transcriptome
assembly can be performed in two different modes: de novo assem-
bly (i.e. assembly of reads without the usage of any reference gen-
ome or transcriptome) and genome-guided transcriptome
assembly (i.e. reads are mapped to a related reference genome to
identify transcript models, which are then assembled into tran-
scripts). While genome-guided assembly provides better results
when a well-assembled genome is available, the de novo approach
enables transcriptome assemblies in cases where genome assem-
bly is absent or in a non-satisfactory shape, i.e. highly gapped or
fragmented. Short-read de novo transcriptome assemblers gener-
ally use one of two basic algorithms: (1) overlap graphs or (2) de
Bruijn graphs. Overlap graphs are utilized for most assemblers
designed for Sanger sequenced reads. The overlap between each
pair of reads is computed and compiled into a graph, in which each
node represents a single sequence read. This algorithm is more
computationally intensive than de Bruijn graphs, and most effec-
tive in assembling fewer reads with a high degree of overlap. De
Bruijn graphs align k-mers (sub-sequences within the read with a
length of k - usually 25–50 bp) to create contigs. The de Bruijn
graph approach bypasses the challenge of all-against-all overlap
consensus assembly using the full-length reads. While building
the graph, the reads are computed as a path through the k-mers
and as the k-mers are shorter than the read lengths. This allows
fast hashing so the operations in de Bruijn graphs are generally less
computationally intensive. The following short read assemblers
were specially designed for working with RNA-Seq data and are
based on de Bruijn graphs: Trans-ABySS [19], Trinity [20,21], Oases
[22], IDBA-Tran [23], SOAPdenovo-Trans [24], and Shannon [25].
Bridger [26] and BinPacker [27] are two assembly tools that rely
on splicing graphs [26] instead of de Bruijn graphs. SPAdes
v3.13.0 [28] is a widely used de novo genome assembler based
on de Bruijn graphs and MK values. These assemblers have been
used to provide transcriptomes for chickpea [29], planarians [30],
Parhyale hawaiensis [31], as well as the Nile crocodile, the corn
snake, the bearded dragon, and the red-eared slider [32], to name
just a few.

Although the de novo mode facilitates the inference of many
valid and precise transcripts, the approach also bears some poten-
tial issues, namely: possible assembly errors in paralogs and multi-
gene families; production of errorsome chimeras; problems
reaching full transcript length, and misestimation of allelic diver-
sity [33–35]. Using short read sequences for transcriptome assem-
bly sometimes suffers from low accuracy, especially for the
transcripts from eukaryotes that contain complex isoforms
[35,36]. This can be partially tackled by using long-read sequences
which span longer parts of the original transcript and hence allows
for more precise assembly [37]. A downside to long-read sequenc-
ing is that the accuracy per read can be much lower than that of
short-read sequencing introducing other errors into assembled
contigs. Lately hybrid approaches integrating both short and long
read sequences in the assembly process have been proposed [38].
To benchmark the transcriptome assemblies overall and the
assembled contigs individually, control measures and programs
that can characterize these have been developed. Mapping rate
(re-mapping rate can give preliminary insights into the quality of
a transcriptome assembly), Ex90N50 statistics (expression-
informed ExN50 statistic), rate of full-length protein-coding tran-
scripts reconstruction, rnaQUAST [39] (completeness and correct-
ness levels of the assembled transcripts), TransRate [40]
(confidence and completeness measures based on the reads used
for the assembly only), DETONATE [41] (compactness of the
assembly and its support from the RNA-Seq reads) and BUSCO
[42] (abundance of single-copy orthologs in the assembly) are
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some of the more established measures and tools. Using these tools
the general quality of the assembly can be measured, and some of
the algorithms (TransRate, DETONATE) also provide per-transcript
measures that allow further filtering of assembled transcripts to
keep only high confidence transcripts.

3.1. Integration of peptide evidence increases confidence in protein
predictions

Although transcriptome assemblers get quicker and work with
increasing precision, transcript isoform variation contributes to
transcriptome complexity and ultimately the quality of transcrip-
tome assemblies. The consequence is overprediction and misas-
sembly especially in loci with high levels of alternative splice
forms, allelic variants, close paralogs, close homologs, and close
homeologs. Using assembly quality assessment tools as mentioned
above, some of these misassembled transcripts can be identified
and filtered out. However incorrect frame-shifted open reading
frames can only be detected by either comparison to known well
evidenced proteins from other species or by using evidence at
the protein sequence level. This can be accomplished by cross
checking the predicted open reading frame pool from transcrip-
tome assembly with mass-spectrometry peptide identifications.
Fig. 3. General outline of the PTA (Proteo-Transcriptomics Assembly) approach. RNA-sequ
used for transcript assembly in which individual reads are concatenated into potentia
translated into predicted protein sequences in all possible frames. These predictions are
protein coding transcripts (such as a Methionine start and an in-frame stop codon) into c
is measured with a high-resolution mass spectrometer. The mass spectrometer first re
individually to obtain sequence information via MS/MS. Peptide fragmentation spectra ar
of the process are transcript contigs that were validated by the presence of peptides an
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Using this approach, open reading frames stemming from misas-
sembled transcripts can be eliminated by establishing evidence
at the protein level and herewith strengthening the confidence in
the predictions. Similar approaches have been used to identify
non-canonical proteins and novel alternative splicing isoforms
which would be lost when working with predetermined annota-
tion databases [43–45]. The principle is easy; RNA-Seq data is
assembled to possible transcripts, these are the basis for the pre-
diction of potential open reading frames, which are then used as
search space for mass spectrometry peptide information (Fig. 3).
This Proteo-Transcriptomics Assembly (PTA) approach enables
unbiased proteome annotation without the need for genome infor-
mation. The ultimate result of the PTA process are transcript con-
tigs bearing open reading frames that are validated by the
presence of peptides and hence represent a set of high confidence
protein coding transcripts. Preferably the same sample may be
used for preparing RNA and protein extracts, however any avail-
able raw data (RNA-Seq or mass spectrometry data) can also be
downloaded from official repositories like GEO [46], SRA [47] or
PRIDE [48] and be combined retrospectively. This opens avenues
for the annotation of high confidence open reading frames facilitat-
ing research in a cost-effective approach to improve previous or
generate new gene models. As the technique can be based on de
encing data of all poly-adenylated RNAmolecules of any species of any cell origin is
l full-length transcript contigs. The predicted transcript contigs are then in-silico
used to find potential open reading frames taking important features of common

onsideration. In parallel the proteome of the same sample used for RNA-sequencing
cords the mass/charge (m/z) of each peptide ion and then selects the peptide ions
e matched to in silico generated peptide fragmentation patterns. The ultimate result
d hence represent a set of high confidence protein coding transcripts.



Fig. 4. General outline of the PTA workflow. In blue: RNA-Seq data preparation steps include 1. the validation of sufficient quality of the sequencing data (FastQC [52], fastqp
[53], fastq-stats [54]); 2. raw RNA-Seq reads correction and adapter removal (Rcorrector [55], QuorUM [56], specialized scripts from TranscriptomeAssemblyTools
(FilterUncorrectablePEfastq.py); TrimGalore (a wrapper around Cutadapt [57] and FastQC [52]); 3. Mapping of reads to a reference genome for the genome-guided mode
(STAR [58], Bowtie2 [59], BWA [60], Hisat2 [61], TopHat2 [62]); 4. Transcriptome assembly (Trinity [20,21], Oases [22], Trans-ABySS [19], SOAPdenovo-Trans [24], IDBA-Tran
[23], Bridger [26], BinPacker [27], Shannon [25], SPAdes-sc [28], SPAdes-rna [28]); 5. Identification of candidate coding regions within reconstructed transcript sequences
from the previous step (TransDecoder [21], FrameD [63], GeneMarkS [64]). In green: mass spectrometry spectra processing and filtering (MaxQuant [65],
ProteomeDiscoverer (Thermo Scientific), FragPipe [66], MS-GF+ [67]). In red: The predicted ORF protein sequences will be used as search space for the identified peptides
extracted from MS/MS spectra. In yellow: ORFs with peptide evidence can be functionally annotated (Trinotate [68], blast2GO [69], annot8r [70], Annoscript2 [71]). Newly
established annotations can be compared with current annotations e.g., from UniProt and Ensembl (blastp [72], DIAMOND [73]), checked for assembly quality standards
(TransRate [40], rnaQUAST [39], Detonate [41]) and examined for proteome completeness (BUSCO [42]). Programs that can be used for the individual steps are listed, while
the ones that were tested to work well and deliver satisfactory results in our hands are bolded. The list, though being comprehensive, is not intended to be complete. Beyond
the tools listed, alternative tools that may work equally well may exist or being developed. The right panel depicts the computation times of the different steps compared
between High-Performance-Computing machines and strong tabletop PCs. The times are only representative, based on the tools marked bold, and depend on the amount of
raw data processed and the underlying computing architecture. Execution time may vary for alternative tools used for the individual steps.
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novo transcriptome assembly, it provides the possibility to study
any species also in the absence of genome sequence information
enabling gene discovery, comparative analyses, estimation of
expression abundances, and identification of sequence variants.
4. Proteo-Transcriptomics assembly – Challenges

4.1. Computational complexity

While PTA delivers promising results, the implementation of
the various programs, tools and custom scripts is not a straight-
forward endeavor yet. A possible workflow (outlined in Fig. 4) for
the full analysis including QC requires the implementation of at
least 10 different programs. As there is no pipeline available yet,
the application of the approach remains reserved to computation-
ally experienced researchers, limiting it to more highly relevant
fields. One possible solution to this issue would be the implemen-
tation of a workflow framework that eases the writing of data-
intensive computational pipelines, e.g. Nextflow [49], Snakemake
[50] or bpipe [51] to automate all relevant programming steps in
a parallelized preferably portable pipeline. This would enable a
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scalable and reproducible analysis also for research groups with
less computational experience.

An additional bottleneck for the more widespread application of
the PTA approach is the relatively high demand of computing
resources of the individual processes, especially of the transcrip-
tome assembly step. As a consequence, the process cannot be effi-
ciently performed on every computational platform (Fig. 4) and is
still beyond regular desktop PCs. One solution to this problem is
the execution of the workflow on a server or within a High-
Performance Computing (HPC) infrastructure. Today, many aca-
demic and scientific research firms that require massive computa-
tional processing power also use cloud computing instead of
establishing their own computing infrastructure. HPC via the cloud
can be expanded, adapted and shrunk on demand with affordable
costs. For the overall workflow, the implementation of HPC specific
features facilitates most efficient execution in terms of processing
time and resources.
4.2. Transcriptome assembly accuracy

A known issue with all transcriptome assembly programs is a
more or less severe level of fragmented contig assembly. Such frag-

http://FilterUncorrectablePEfastq.py


Fig. 5. Open reading frames can be predicted from the assembled transcripts. A known issue of transcriptome assembly is that under certain circumstances (see details in
main text) the assembler is not able to assemble the complete transcript but the assembled transcript rather represents a fragment of the actual transcript. The completeness
can be measured by comparing the assembled transcripts to current annotations. Depicted are the proportions of assembled transcripts in our previously published
transcriptome assembly of the silkworm Bombyx mori [74] with different levels of completeness when compared to the genome-based annotation of the silkworm from
SilkBase [75]. The left panel represents the distributions in all raw transcript assemblies. Only around 62% of the transcripts show completeness of more than 80%. However,
in the pool of predicted open reading frames that could be verified at the protein level (depicted in the right panel) the proportion of near complete transcripts increases to
82%. These gene annotations with additional peptide evidence are enriched for full-length transcripts and thereby increase accuracy.
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mented contigs lack a start or a stop codon, or both and hence rep-
resent only partial open reading frames and lead to noisy results.
The main reasons for partially assembled contigs are low read cov-
erage at a locus, repetitive regions, differential expression of differ-
ent exons, polymorphism, and sequencing errors, which might
potentially lead to local assembly errors. The most efficient way
to clean assemblies from these false contigs would be to use mea-
sures that would detect any of the underlying causes and then try
to filter contigs with high chance of being a wrong assembly, keep-
ing only high-confidence full-length contigs. There are two pro-
grams that facilitate the detection of such features. Both
TransRate [40] and Detonate [41] provide metrics which take the
mapping of reads against the contigs into account in assessing
the assembly quality. In addition to an overall assembly score for
a given assembly, for each contig within the assembly, TransRate
[40] and Detonate [41] provide a score that assesses how well that
contig is supported by the RNA-Seq data and that can be used to
filter suspicious contigs. While using these measures can help to
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enrich for high confidence predictions, we observed that the pool
of predicted proteins for which peptide evidence can be detected,
the overall completeness of the assembled transcripts seems to
be significantly higher (Fig. 5). This also emphasizes the impor-
tance of adding peptide evidence to predictions, a step most cur-
rent genome annotations lack (Fig. 1).

4.3. Considerations of proteome coverage

Addition of protein data will increase confidence for the exis-
tence of an assembled transcript. Most proteomic data is available
as peptide identifications from bottom-up experiments and can be
accessed on databases like PRIDE [48] and Massive [76]. However,
while high confidence peptide identification has been aided by
ever more accurate mass spectrometers in the last decade, cur-
rently even for in-depth proteomes, we unfortunately only mea-
sure peptides of the more abundant proteins in a sample [77].
This naturally limits the PTA approach as only a fraction of the pre-
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dicted open reading frames can thus be supported by peptide evi-
dence. Despite this current limit, increases in proteome coverage
can further enhance the comprehensiveness of PTA. Advances in
mass-spectrometry instrumentation [78–80] and acquisition
methods [81–83] enable increasing measurement depth. The use
of specific methodology like removal of high-abundant proteins
or fractionation approaches can split sample complexity across
the measurement and are readily implementable [84]. In addition,
the use of samples from different developmental stages, tissues or
treatments can modulate and increase the pool of expressed pro-
teins allowing to obtain more peptide evidence [85].
5. Summary and outlook

Identifying all coding regions in a genome is crucial for any
study at the level of molecular biology, ranging from single-gene
cloning to genome-wide measurements using RNA-Seq or mass
spectrometry. While satisfactory annotation has been made feasi-
ble for well-studied model organisms through great efforts of big
consortia, for many species this kind of data is either absent or
not adequately precise. We here reviewed an approach that seeks
to overcome many of the bottlenecks of detecting protein-coding
regions in the genome. We could previously show that by combin-
ing in-depth transcriptome sequencing and high resolution mass
spectrometry by proteotranscriptomics we achieved improved
gene annotation of protein-coding genes in the Bombyx mori cell
line BmN4, which is an increasingly used tool for the analysis of
piRNA biogenesis and function [74]. Using the PTA approach, we
provided the exact coding sequence and evidence for more than
six thousand expressed genes on the protein level. This approach
outperformed current Bombyx mori gene annotation efforts from
4 different sources in terms of accuracy and coverage [74]. Similar
approaches were also successfully applied by other groups in var-
ious different species and fields such as in human placental sam-
ples [86] and leukemia cells [87] and for the detection of
microproteins in human [88], in rat [89], pigs [90], mosquitos
[91,92], in a combined analysis of human and adenovirus [93],
and plants such as the opium poppy [94] and Michelia maudiae
[95] demonstrating that proteotranscriptomics is widely
applicable.

The presented PTA approach can in principle be applied by any
individual lab and without prior genomic information. Although
most labs do not have their own next-generation sequencer or a
high-resolution mass-spectrometer, access to these services from
different in-house or external providers are easily available. In
principle, even already existing data from different RNA-Seq and
proteome repositories can be incorporated eagerly well for PTA.

As mentioned above a significant bottleneck of PTA is the com-
putational complexity of the different bioinformatic analysis steps,
which also need considerably large computing resources. These
obstacles can be overcome by building a computational pipeline
that executes the different processes in a highly parallelized and
streamlined manner on an HPC platform or in the cloud. Indeed,
we are currently developing a workflow that will be deployable
in cloud computing infrastructure and will make benchmarked
PTA feasible for anyone interested. Another common issue, frag-
mented transcript assemblies, has been the source for the develop-
ment of quality control programs that provide quality measures for
assembled contigs. In the future, we envision integrating this QC
information with a machine learning algorithm to facilitate identi-
fying potentially fragmented transcript assemblies even more
precisely.

In summary, Proteotranscriptomics is an efficient, cost-effective
and accurate approach to improve previous gene annotations or
generate completely new gene models. As this technique is based
3673
on de novo transcriptome assembly, it provides the possibility to
study any species also in the absence of genome sequence informa-
tion, for which proteogenomics in its stricter meaning is impossi-
ble. Easier computational access and solving major bottlenecks
such as program application, efficient transcriptome assembly
and automatic quality controls are the next steps to make this
approach feasible and reproducible for the broader scientific
community.
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