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Agaricus blazei, a type of edible straw-rotting mushroom with somewhat sweet taste and fragrance of almonds, has
attracted considerable scientific and practical attention. High-throughput Illumina PE150 and PacBio RSII platform were
employed to generate a genomic sequence. De novo assembly generated 36 contigs with 38,686,133 bp in size, containing
10,119 putative predicted genes. Additionally, we also studied transcriptional regulation of the mycelia and the primordia
for exploration of genes involved in fruiting body formation. Expression profiling analysis revealed that 2,164 genes were
upregulated in mycelia and 1,557 in primordia. Functional enrichment showed that differentially expressed genes as-
sociated with response to stress, ribosome biogenesis, arginine biosynthesis, and steroid biosynthesis pathway were more
active in fruiting body. .e genome and transcriptome analysis of A. blazei provide valuable sequence resources and
contribute to our understanding of genes related to the biosynthesis pathway of polysaccharide and benzaldehyde, as well
as the fruiting body formation.

1. Introduction

Mushrooms (mainly the fruiting body) have been used for
consumption as a product by humans since ancient times
due to their delicacy and nutritional values, as well as their
medicinal properties [1, 2]. Agaricus blazeiMurrill, an edible
mushroom originating from Brazil, is commonly known as
“Cogumelo do Sol” in Brazil, “Himematsutake” in Japan,
and “Ji Song Rong” in China [3, 4]. It serves as one of the
utmost valuable edible and culinary-medicinal Royal Sun
mushroom species. Also, it has been widely consumed today
in several Oriental countries and studied for its high nu-
tritional properties and pharmacological effects, such as
antitumor activity [5], antiviral effect [6], antidiabetic po-
tential [7], and antiapoptotic role [8]. Nowadays, A. blazei
has received great scientific and practical interest. A series of
bioactive compounds, for instance polysaccharides [9, 10],
lectin [11, 12], and ergosterol [13, 14], have been discovered
in A. blazei. Moreover, several volatile flavor ingredients
have been identified in its fruiting body and mycelia [15].
However, very few studies focus on those compounds’

biosynthesis pathways and the fruiting body formation in A.
blazei.

Recently, several studies reported genome or tran-
scriptome landscape of mushrooms, such as Agaricus bis-
porus [16], Volvariella volvacea [17, 18], Flammulina
velutipes [19], and Auricularia heimuer [20]. .e availability
of genomes has been a benefit to researchers for identifi-
cation of CAZymes, mating-type loci, β-glucan synthase
genes, and secondary metabolite genes [17, 18, 20]. Addi-
tionally, transcriptome or comparative expression profiles
from different developmental stages have facilitated the
discovery of genes involved in fruiting body formation
[21–23]. .e shift from vegetative mycelia to primordia has
been seen as one of the most complex and critical de-
velopmental processes in mushrooms [24]. Understanding
the molecular mechanism regulating fruiting body forma-
tion will contribute to the improvement of commercial
mushroom production, with consequent economic benefits.

In this study, we presented the genome of A. blazei to
understand the genomic structure and its gene content.
Additionally, we also performed the transcriptome analysis
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of mycelia and primordia to study the expression difference
between the two stages. .e transcriptome analysis will
enable us to identify genes regulating mycelia growth and
fruiting body formation. Our genomic and transcriptomic
data will provide important information platform for the
further investigation of this species.

2. Materials and Methods

2.1. Strains and Culture Condition. A. blazei strain JA, the
main cultivar in several provinces in China (eg., Fujian,
Yunnan, Jiangxi, Guangxi, Henan, and Sichuan province),
was provided by Fujian Academy of Agricultural Sciences.
To prepare samples for RNA sequencing, strain JA was
cultured on a compost purchased from a company pro-
ducing button mushroom (Jinming Food Co., Ltd, Fujian,
China), and the main components of the compost are rice
straw, bagasse, cow manure, and gypsum. Samples of my-
celia (20 days after casing) and primordia (24 days after
casing, equivalent to the pinhead stage in A. bisporus whose
velum not differentiated according to Hammond and
Nichols [25]) were harvested and immediately frozen in
liquid nitrogen. For the whole genome sequencing, A. blazei
sterile monospore strain JA-15036, germinated from one of
the spores of dikaryotic strain JA, was incubated in liquid
potato dextrose broth at 24°C for 20 days.

2.2. DNA Sequencing andGenomeAssembly. Genomic DNA
was extracted with the SDS (sodium dodecyl sulfate) method
and sequenced by Novogene Biotech AG (Beijing, China) on
the Illumina PE150 and PacBio RSII platform. Paired-end
reads were constructed after sequencing of a 350 bp insert
library using an IlluminaHiseq X system. For PacBio RSII
platform, a 20 kb library was generated and sequenced.

Prior to assembly, reads of low quality were filtered by
the following steps. For preprocessing the raw data of the
350 bp library, reads with a certain proportion of low-quality
(read quality ≤35) bases (40% as default, parameter setting at
40 bp) were removed from raw data; reads containing a
certain percentage of Ns’ base or low complexity reads
(parameter setting at 10 bp) were filtered out; adapter
contaminations (15 bp overlap between reads and adapter)
and duplication contaminations were filtered out. Reads of
PacBio RSII were filtered using SMRT Link v5.0.1 software
with default parameters [26, 27], after which PacBio data
were de novo assembled using SMRT Link v5.0.1 software
into contigs with default parameters. And then, the Arrow
algorithm in SMRT Link software was applied to polish the
assembled contigs. We assessed the completeness of genome
assembly using BUSCO v3.0.2 (Benchmarking Universal
Single-Copy Orthologs) software (using “-m genome”) [28].
.e lineage dataset of BUSCO is fungi_odb9 (creation date:
2016-02-13, number of species: 85, and number of BUSCOs:
290).

2.3. Genome Annotation and Identification of Carbohydrate-
Active Enzymes. Protein-coding genes were predicted using
Augustus (version 2.7) [29]. All of these genes were

annotated by analysis of the corresponding amino acid
sequences with the GO (Gene Ontology database), KEGG
(Kyoto Encyclopedia of Genes and Genomes), KOG, NR
(nonredundant), and SwissProt protein database using
Blastp (E value≤ 1e− 5).

We employed the tRNAscan-SE (Version 1.3.1) [30] and
rRNAmmer [31] to analysis transfer RNA (tRNA) and ri-
bosome RNA (rRNA) genes, respectively. sRNA, snRNA,
and miRNA were predicted by BLAST against the Rfam
database [32, 33]. .e interspersed repetitive sequences were
predicted using the RepeatMasker (http://www.
repeatmasker.org/), and the tandem repeats [34] were an-
alyzed using the TRF (tandem repeats finder) [35].

Annotations of carbohydrate-active enzymes
(CAZymes) in the A. blazei genome were performed by
BLASTP search of CAZymes database at http://www.cazy.
org/ (e value≤ 1e − 5; the covered fraction ratio ≥40%; and
minimal alignment length percentage ≥40%).

2.4.TranscriptomeAnalysisduringFruitingBodiesFormation.
Total RNA of each sample fromA. blazei heterokaryon strain
JA was sequenced on the Illumina HiSeq X Ten Station and
Illumina PE150 platform at Novogene Biotech. In order to
ensure the accuracy of the further analysis, clean data (clean
reads) were generated by trimming of reads containing
adapter sequences, reads with unknown sequences Ns, and
low quality reads which contained bases with Qphred≤ 20,
and the percentage of these bases was more than 50% of a
read. And then, RNA-seq clean reads from each sample were
separately aligned to the reference genome using software
Hisat2v2.0.5 [36], and novel genes were predicted by
StringTie [37].

For obtaining the differentially expressed genes, feature
Countsv1.5.0-p3 software was adopted to count the numbers
of reads mapped to each gene [38, 39], after which the two
samples (each with three replicates) were analyzed using
DESeq2R package (1.16.1) [40], with the cutoff threshold,
adjusted P value <0.05, and |log2Ratio|≥ 1. For function
enrichment analysis, differential expression genes (DEGs)
were aligned in the GO database. .e pathway enrichment
analysis was implemented using the KEGG database. In both
analyses, cluster Profiler Rpackage [41] was applied and the
correct P value less than 0.05 was regarded as the threshold.

2.5. Quantitative Real-Time PCR (qRT-PCR) Validation.
To assess the reliability of the RNA sequencing-based ap-
proach in identifying DGEs, qRT-PCR was employed to
detect gene transcript patterns. Onemicrogram of total RNA
from the mycelia and primordia was adopted to synthesize
cDNA using TransScript All-in-One First-Strand cDNA
Sythesis Super Mix for qPCR kit (TransGen Biotech, Beijing)
in accordance with the manufacturer’s protocol..e primers
(Table S1) used for quantitative real-time PCR (qRT-PCR)
analysis were designed with primer premier 5.0 [42]. Twenty
microliters of qRT-PCR reaction mixtures were prepared
according to the manufacturer’s instructions using Trans-
Start TOP Green qPCR kit (TransGen Biotech, Beijing). .e
cycling parameters were as follows: 94°C for 30 s followed by
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30 cycles of 94°C for 5 s and 60°C for 30 s..ree independent
biological replicates were carried out for each gene. .e
glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH)
and α-tubulin severed as an internal control gene, and the
2− ΔΔct method [43] was applied to the calculated gene
expression.

3. Result and Discussion

3.1.General Features of theGenome. We constructed genome
sequence data for A. blazei homokaraytic strain JA-15036 by
combining a high-throughput Illimina Hiseq PE150 with a
PacBio RSII long-read sequencing platform (Tables 1 and 2).
A 38,686,133 bp genome sequence was generated by assem-
bling PacBio clean data..is genome assembly consisted of 36
contigs with an N50 of 1,826,870 base pairs (Table 3). .e A.
blazei genome is similar in size to the genomes of several other
fruiting body formation fungi from the other Agaricales,
including Schizophyllum commune (38.5Mb) [44], V. vol-
vacea (37.2Mb) [17], and Coprinopsis cinerea (37Mb) [45],
but larger than that of Pleurotus ostreatus (34.9Mb) [46] and
A. bisporus (30.2Mb) [16].

.e completeness of genome was assessed using BUSCO
software, and the result (Table 4) suggested a well-completed
annotation set, with 93.7% of the Fungi BUSCOs within the
RefSeq annotation set and 2.1% of fragmented.

A total of 10,119 genes (Table S2) were predicted by
Augustus (version 2.7). Approximately 9,174 (90.7%) genes
were annotated in similarity search with GO, KEGG, KOG,

NR, CAZY, Pfam, and Swiss-Prot databases (Table 3). .e
remaining 945 (9.3%) predicted genes without apparent
homolog to the currently available sequences and protein
domains were found, and these genes were presumed to be
the specific genes in A. blazei genome. Among the 10,119
genes, 8,694 (85.9%) genes encoded proteins with homol-
ogous sequences in the NCBI NR databases, and 8,538
predicted proteins accounting for 84.4% of the entire ge-
nome were mappable through the KEGG pathway database
(Table 3). .e KOG analysis indicated that 1,620 genes were
assigned to different KOG categories (Figure 1(a)), and GO
analysis revealed 6,064 proteins into 3 different GO terms
(biological process, cellular component, and molecular
function) (Figure 1(b)). In addition, KEGG analysis assigned
1,768 predicted proteins involved in different pathways
(Figure 1(c)).

.e total length of repeat sequences in the ∼38.7Mb
assembled genome of A. blazei was 1,961,315 bp, accounting
for 5.0698%. Of the repeat elements, tandem repeat se-
quences account for 1.1761% and interspersed nuclear ele-
ments were 3.8937% (long terminal repeats (LTRs), 3.5795;
DNA, 0.2483%; short interspersed nucleotide elements
(SINEs), 0.0027%; long interspersed nucleotide elements
(LINEs). 0.0589%; rolling circle (RC), 0.0138%; and un-
classified, 0.0051%) of the assembled genome.

3.2. 6e CAZymes in A. blazei Genome. CAZymes are as-
sociated with the degradation of plant cell wall

Table 1: Illumina HiSeq PE150 data statistics of A. blazei.

Insert size (bp) Reads length (bp) Raw data (Mb) Filtered reads (%) Clean data (Mb) Clean data Q20 (%) Clean data Q30 (%)
350 2×150 1,238 8.30 1,135 96.19 90.25

Table 2: PacBio RSII data statistics of A. blazei.

Insert size (bp) Number of reads Number of base (bp) Mean read length
20 kb 399,158 3,047,821,198 7,635

Table 3: Feature of A. blazei genome.

General features Properties of predicted gene models
Polished contigs 36 Total models 10,119
Genome size (bp) 38,686,133 Nr 8,694 (85.9%)
Gene number 10,119 Swissprot 2,102 (20.8%)
GC content (%) 49.59 Pfam 6,064 (59.9%)
Gene length 15,513,776 KOG 1,620 (16.0%)
Gene average length 1,533 KEGG 8,538 (84.4%)
% of genome (genes) 40.1 GO 6,064 (59.9%)
N50 contig length (bp) 1,826,870 CAZY 279 (2.8%)
Gene internal length 23,172,357 Total 9,174 (90.7%)
GC content in intergenic region (%) 45.35

Table 4: BUSCO analysis on assembly and annotation.

BUSCO
mode

Complete
BUSCOs (C)

Complete and single-copy
BUSCOs (S)

Complete and duplicated
BUSCOs (D)

Fragmented
BUSCOs (F)

Missing
BUSCOs (M)

Total BUSCO
groups searched

Genome 272 (93.7%) 271 (93.4%) 1 (0.3%) 6 (2.1%) 12 (4.2%) 290
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polysaccharides and have an important role in the processes
of substrate degradation [17]. Identification of CAZymes will
facilitate the further exploration of mechanisms of plant
polysaccharide hydrolysis. In A. blazi genome, a total of 279
candidate genes encoding CAZymes were identified, in-
cluding 135 glycoside hydrolases (GHs), 36 glycosyl trans-
ferases (GTs), 5 polysaccharide lyases (PLs), 14 carbohydrate
esterases (CEs), 74 auxiliary activities (AAs), and 39 car-
bohydrate-binding modules (CBMs) (Table S3)..e number
of GHs family, involved in the cell wall polysaccharides
decomposition [47], was significantly larger than that of GTs,
which might be because of its lifestyle in which cell wall
polysaccharides, such as lignin and cellulose, provide nu-
trition for its survival.

3.3. IdentificationofGenes Involved inβ-1,3-GlucanandUDP-
Glucose Biosynthesis. Polysaccharides have been considered
to be the main component of A. blazei for antitumor

[4, 48–50]. Among the polysaccharides in the fungal cell
wall, water soluble β-1,3-glucan with anticancer activity has
been widely applied for pharmaceutical purpose [41]. Bio-
synthesis of β-1,3-glucan begins with the formation of a
nucleoside diphosphate. Uridinediphosphate glucose (UDP-
glucose) acts as a precursor of β-1,3-glucan, and its synthesis
requires hexokinase or glucokinase, α-phosphoglucomutase,
and UTP-glucose-1-phosphate uridylyltransferase
[20, 51, 52]. Genes encoding these enzymes were identified
in A. blazei genome (Table S4).

A. blazei also possessed two potential β-1,3-glucan
synthase genes (A09123 and A09827, named AbFKS1 and
AbFKS2, respectively) known to play an important role in
β-1,3-glucan biosynthesis [52–54]. AbFKS1 and AbFKS2
shared high similarity to two A. bisporus β-1,3-glucan
synthase genes EKM78523 and EKM82691.1 with the
identity of 93% and 90%, respectively, and they were clas-
sified into two types (Figure 2). .ere are significant simi-
larities in domains between AbFKS1 and AbFKS2, where we
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Figure 1: Annotation of A. blazei genome with GO, KOG, and KEGG. (a) A. blazei gene GO analysis; (b) KOG function classification of A.
blazei; and (c) A. blazei gene KEGG pathway classification.
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observed conservation of the catalytic FKS1 domain (E
value� 1.3e − 41 and 1.1e − 41, respectively) and β-glucan
synthase-homologous region (E value� 0) using Pfam
analysis (http://pfam.xfam.org/search).

Previous studies showed that Saccharomyces cerevisiae
was found to contain two independent genes FKS1 and FKS2
encoding two functionally independent β-glucan synthases
[54]. FKS1 was primarily expressed in the vegetative growth,
whereas FKS2 was expressed under stress conditions (in-
clude sporulation and starvation) and mating process
[54, 57]. As there is no knowledge about whether the two
types of β-1,3-glucan synthase will have differences in cat-
alytic activity and function during developmental process in
A. blazai or not, more experiments (eg., RNAi and over-
expression) will be performed to explore their function in
our future studies.

3.4. Biosynthesis of Benzaldehyde and Benzyl Alcohol in A.
blazei. .e aromatic compounds of edible mushrooms,
such as benzyl alcohol, benzaldehyde, benzonitrile, and a
phenyl acetic acid-like compound, can whet the appetite.
Among the volatile components, benzaldehyde and benzyl
alcohol are considered as the main volatile flavor com-
pounds in A. blazei. .e production of benzaldehyde and
benzyl alcohol from phenylalanine has been investigated in
various microorganisms [58–62]. In addition, the conver-
sion of phenylalanine to benzaldehyde and benzyl alcohol
requires several enzymes. Here, we found 34 enzymes that
might be associated with the biosynthesis of benzaldehyde
and benzyl alcohol in A. blazei genome (Table S5). .ese
enzymes include phenylalanine ammonia-lyase, aryl alde-
hyde dehydrogenase, aryl-alcohol dehydrogenase, aryl-al-
cohol oxidase, and transaminase (aminotransferase).

Based on previous studies, the production of benzal-
dehydde and benzyl alcohol has been described in two
pathways [58–60]. In one pathway, L-phenylalanine is ini-
tially converted into trans-cinnamic acid by the action of
phenylalanine ammonia-lyase, and then cinnamic acid is
converted into 3-phenylpropionic acid or benzoic acid; in
the other pathway, transaminase or L-amino acid oxidase
initiated the pathway leading from L-phenylalanine to 3-
phenylpyruvic acid. .ough the metabolic pathway in A.
blazei is still unknown and more experiments need to be
done to reveal it in A. blazei, identification of enzymes
involved in benzaldehydde and benzyl alcohol formation
will facilitate the investigation of biosynthesis pathway in
this fungus.

3.5. Global Gene Expression Analysis and Novel Transcript
Prediction. .e RNA-seq Illumina Hiseq PE150 platform
was employed to investigate gene expression at two key
development stages, defined by mycelia (MY) and primordia
(PR). Of the 10,119 predicted genes, 7,624 genes (about
75.3%) were expressed at least at one developmental stage
with the cut-off FPKM value of 1. In addition, novel tran-
scripts can be determined through high-throughput RNA-
seq, which enriched the database of A. blazei. A total of 1,709
novel transcripts with averaged FPKM of 1 for

corresponding replicates at least from one development
stage were predicted at the two developmental stages
mentioned above, of which 1,577 (about 92.3%) were longer
than 500 bp (Table S6).

3.6. Discovery of Genes Related to Fruiting Body Formation by
Enrichment Analysis. To identify and investigate the dif-
ferentially expressed genes (DGEs), the total RNA from the
mycelia and primordia was used to construct DGEs library.
We analyzed the DGEs and found 3,721 genes were sig-
nificantly differentially expressed between mycelia and
primordia, including 2,164 and 1,557 genes downregulated
and upregulated in primordia, respectively. .e DGEs were
classified into three categories (biological process, cellular
component, and molecular function) in the GO database
(Figures 3(a) and 3(b)). Comparing the GO annotation of
these DGEs between mycelia and primordia revealed that
annotation percentage of the carbohydrate metabolic pro-
cess, transmembrane transport, cell wall, integral compo-
nent of membrane, peroxidase activity, antioxidant activity,
O-methyltransferase activity, oxidoreductase activity, and
hydrolase activity in mycelia upregulated genes were higher
than those in primordia, whereas GO terms involved in
response to stress, nucleic acid metabolic process, DNA
replication, ribosome biogenesis, protein modification
process, cytoplasm, and ATP binding showed higher levels
in primordia..e formation of fruit bodies is one of themost
complex processes and is affected both by external envi-
ronmental factors and endogenous genes. Most of the genes
involved in response to stress were upregulated in the
primordia, which could improve the adaptation to envi-
ronmental change during the fruiting body formation
process and thus play a positive regulatory role during
formation of fruit bodies.

.e KEGG enrichment analysis was implemented for
identification of the significantly enriched biological pro-
cesses in DGEs..e result showed that several gene sets were
significantly enriched (Figures 3(c) and 3(d)). Previous
observations demonstrated that more genes participated in
protein and energy production in mycelia of S. commune
[44]. .e DGE analysis of A. blazei showed that energy
production such as glycolysis/gluconeogenesis, starch and
sucrose metabolism, galactose metabolism, glyoxylate and
dicarboxylate metabolism, pentose phosphate pathway, and
pyruvate metabolism were upregulated in mycelia. Except
the carbohydrate catabolic process, genes associated with
arginine and proline metabolism and glycine, serine, and
threonine metabolism were enriched in the group of genes
downregulated in primordia..is analysis suggested that the
carbohydrate catabolic process and amino acid metabolism
pathways were more active in the mycelia, and the upre-
gulation of energy production might be required for mycelia
growth.

Ribosomes are ribonucleoprotein complexes found
within all living cells. .ey have been viewed as a molecular
machine that functions as the site of biological protein
synthesis [63, 64]. Genes involved in ribosome biogenesis
were upregulated at the primordial stage which was similar
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to the expression of that in F. velutipes [22] and A. polytricha
[65], implying that more proteins were required during
fruiting body formation. Ribosomes were also participated
in DNA repair, development, and cell division [63, 66]. 18
genes involved in DNA replication were found to be
upexpressed in primordia, compared with those at the
mycelial stage. Genes encoding ribosome proteins and DNA
replication proteins were highly expressed in primordia,
which suggested that an increase in activity of ribosome and
DNA replication was needed for cell differentiation during
primordia formation.

Arginine, an important amino acid in plants, acts not
only as the main nitrogen reserve but also as a biosynthetic
precursor of polyamine, glutamic acid, and nitric oxide [67].
It is reported that arginine and its metabolites are associated
with growth and development and adaptation to environ-
mental change [67]. Besides that, arginine plays a role in
accelerating and increasing fruiting body formation in fungi
[68, 69]. .e KEGG pathway enrichment analysis also in-
dicated that genes under the term of arginine biosynthesis
showed high level in primordia, suggesting their importance
for fruiting body formation. Significant changes in the level

of genes related to the arginine biosynthesis may lead to the
change of arginine, which may be beneficial for A. blaze
adapting to environment and regulation of nitrogen
metabolism, thus providing sufficient nitrogen sources for
fruiting body formation. Steroids are a kind of bioactive
compounds in mushroom. In steroid biosynthesis, several
important encoding enzyme genes showed increased ex-
pression in primordia such as squalene synthase, squalene
monooxygenase, lanosterol synthase, lanosterol 14-alpha
demethylase, 3-keto steroid reductase, sterol 24-C-methyl-
transferase, delta24 (24(1))-sterol reductase, and sterol
O-acyltransferase..e upregulated expression of these genes
could be conducive to accumulation of steroid in the fruiting
body. Earlier investigations demonstrated that steroids
provide characteristic functions that were necessary for
mycelial growth and sporophore formation in mushroom
[70–72]. .e active steroid biosynthesis in A. blazei seemed
to be required for fruiting body formation.

3.7. Genes Previously Identified as Important for Vegetative
Growth and Fruiting. .e DGE profiles were also employed
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for examining genes that have previously played a role in
fungal growth and fruiting body formation [65, 73, 74].
Some genes, in accordance with the previous study, were
found, namely, genes encoding metallopeptidase, glycosyl
hydrolases, laccase, hydrophobin, and WD40 protein
(Table S7). Metallopeptidases have been discovered in
several mushrooms such as A. polytricha [65] and P.
ostreatus [73]. Higher expression of metallopeptidase in
primordia and fruiting body than mycelia from P. ostreatus
suggested that metalloprotease played an important role in

the initiation and formation of fruit bodies [73]. In the
present study, four metallopeptidase members were iden-
tified, and all of them displayed high expression in mycelia
implying that metallopeptidase also had a critical function in
the mycelial stage in A. blazei. Moreover, 10 glycosyl hy-
drolases were upregulated in primordia and 16 in mycelia
demonstrating their importance for A. blazei growth, es-
pecially in the mycelial stage. .e multigene family of lac-
cases has been widely described in mushrooms (eg., A.
bisporus, F. velutipes, and V. volvacea), and these enzymes
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are involved in lignin degradation [74, 75], fruiting body
formation [76], and stipe elongation [19, 56]. We found that
a total of 8 laccases (Table S6) showed significant expression
between the mycelial and primordial stage. Among them, 6
enzymes were upexpressed in mycelia, three of which
(A04922, A05207, and A01869) exhibited more than 50-fold,
134-fold, and 1,478-fold higher expression levels than in
primordia, which suggested that they possibly play impor-
tant roles in lignin bioconversion in A. blazei. Compared
with mycelia, the expression levels of A05193 and A06810
were upregulated to approximately 202 folds and 5 folds in
primordia, respectively, which indicated that these two genes
may be associated with fruiting body formation..ese genes
could play a similar function with laccase from V. volvacea,
in which laccase could crosslink mycelial walls into coherent
aggregates during the initiation of primordia and then
continue to act on the mycelia surfaces throughout fruiting
body development [77].

Hydrophobins, unique fungal proteins with a wide
spectrum of functions, have been reported to participate
with fungal growth and fruiting body formation [78–80]. A.
blazei possessed 21 genes encoding fungal hydrophobins in
mycelial and primordial stags, and the expression differ-
ence of these genes between the two stages was analyzed.
Among the identified hydrophobins, A06219, A04048,
A01017, and A08707 were found to have significantly
upregulated expression in primordia, whereas 17 of 21
genes showed downregulated expression in primordia
(Table S7), indicating that different hydrophobins could be

required for different developmental stages in A. blazei.
WD40 repeat proteins represent a large family in eu-
karyotes and perform diverse functions like regulation of
growth, cell cycle, development, signal transduction, and
formation [81]. .e upregulation of WD40 repeat protein
family members indicated the abundance of these proteins
in primordia.

3.8. Validation of the DGE Results by Quantitative Real-Time
PCR (qRT-PCR). To validate expression profiles obtained by
RNA-seq, we conducted qRT-PCR for 32 randomly selected
genes with GAPDH and α-tubulin acting as the reference
gene (Figure 4, Tables S1 and S8). .e transcript levels of
these genes analyzed by qRT-PCR were consistent with
RNA-seq results (Figure 4), indicating that the DEG analysis
was reliable.

4. Conclusion

We constructed a de novo assembly of genome sequence of
A. blazei sterile monospore strain JA-15036 and predicted
10,119 genes from the genome sequence data. Several
enzymes possibly involved in biosynthesis of β-1,3-glucan
and bezylic compound were identified. .ese data will
provide the basis for understanding the metabolism for
benzylic compound formation in A. blazei. We also re-
ported and analyzed the difference between mycelia and
primordia of artificially cultivated A. blazei strain JA by
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transcriptome analysis. Functional annotations revealed
that glycolysis/gluconeogenesis, starch and sucrose meta-
bolism, galactose metabolism, glyoxylate and dicarbox-
ylate metabolism, pentose phosphate pathway, and
pyruvate metabolism were more active in mycelia while
response to stress, ribosome biogenesis, arginine bio-
synthesis, and steroid biosynthesis pathway were more
active in fruiting body. Besides, the transcript pattern of
genes previously identified as important for vegetative
growth and fruiting was analyzed. .e expression results
in our work would be useful in selecting candidate genes
for further studies on the growth and development of this
mushroom.

Data Availability

.e genome sequences of A. blazei JA-15036 have been
deposited at DDBJ/ENA/GenBank (http://www.ncbi.nlm.
nih.gov/) under the accession number SSNC00000000,
and the version described in this paper is version
SSNC01000000..e transcript raw Illumina sequencing data
of mycelia and primordia were submitted to NCBI Gene
Expression Omnibus (GEO) with the accession numbers
GSM3814130, GSM3814131, GSM3814132, GSM3814133,
GSM3814134, and GSM3814135.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.is work was supported by Public Welfare Industry (Ag-
riculture) Scientific Research Project (201503137), Natural
Science Foundation of Fujian Province (2019J05143), Fun-
damental Research Project for Public Welfare Scientific Re-
search Institutes in Fujian (2017R1020-1), Seed Industry
Innovation and Industrialization Project of Fujian Province
(fjzycxny2017009), and S & T Innovation Team of Fujian
Academy of Agricultural Sciences (STIT2017-1-6).

Supplementary Materials

Supplementary information included 8 tables, and each of
them has been named. Table S1 displayed primers used for
qRT-PCR; Table S2, Agaricus blazei gene annotations; Table
S3, carbohydrate-active enzyme (CAZy) annotation results;
Table S4, the putative genes in beta-1,3 glucan and UDP-
glucose biosynthesis; Table S5, the putative genes involved in
biosynthesis of benzaldehyde and benzyl alcohol in Agaricus
blazei; Table S6, list of novel transcripts identified from
mycelium and primordium by RNA-Seq; Table S7, genes
previously identified as important for vegetative growth and
fruiting; Table S8, the expression information of selected
genes for qRT-PCR in mycelium and primordium. (Sup-
plementary Materials)

References

[1] S. T. Chang and J. A. Buswell, “Mushroom nutriceuticals,”
World Journal of Microbiology & Biotechnology, vol. 12, no. 5,
pp. 473–476, 1996.

[2] S. S. Singh, H. Wang, Y. S. Chan et al., “Lectins from edible
mushrooms,” Molecules, vol. 20, no. 1, pp. 446–469, 2014.

[3] F. Firenzuoli, L. Gori, and G. Lombardo, “.e medicinal
mushroom Agaricus blazei murrill: review of literature and
pharmaco-toxicological problems,” Evidence-Based Comple-
mentary and AlternativeMedicine, vol. 5, no. 1, pp. 3–15, 2008.

[4] H. Wang, Z. Fu, and C. Han, “.e medicinal values of cu-
linary-medicinal royal sun mushroom (Agaricus blazei
Murrill),” Evidence-Based Complementary and Alternative
Medicine, vol. 2013, Article ID 842619, 6 pages, 2013.

[5] M. Mizuno, K.-I. Minato, H. Terai, H. Tsuchida, H. Ito, and
M. Kawade, “Anti-tumor polysaccharide from the mycelium
of liquid-cultured Agaricus blazei mill,” IUBMB Life, vol. 47,
no. 4, pp. 707–714, 1999.

[6] L. C. Faccin, F. Benati, V. P. Rincão et al., “Antiviral activity of
aqueous and ethanol extracts and of an isolated poly-
saccharide from Agaricus brasiliensis against poliovirus type
1,” Letters in Applied Microbiology, vol. 45, no. 1, pp. 24–28,
2007.

[7] Y.-W. Kim, K.-H. Kim, H.-J. Choi, and D.-S. Lee, “Anti-di-
abetic activity of β-glucans and their enzymatically hydro-
lyzed oligosaccharides from Agaricus blazei,” Biotechnology
Letters, vol. 27, no. 7, pp. 483–487, 2005.

[8] V. G. Venkatesh, S. Rajasankar, W. J. Swaminathan, K. Prabu,
and M. Ramkumar, “Antiapoptotic role of Agaricu sblazei
extract in rodent model of parkinson’s disease,” Frontiers in
Bioscience, vol. 11, no. 1, pp. 12–19, 2019.

[9] Y. Liu, L. Zhang, X. Zhu, Y. Wang, W. Liu, and W. Gong,
“Polysaccharide Agaricus blazei Murill stimulates myeloid
derived suppressor cell differentiation from M2 to M1 type,
which mediates inhibition of tumour immune-evasion via the
Toll-like receptor 2 pathway,” Immunology, vol. 146, no. 3,
pp. 379–391, 2015.

[10] W. Xie, A. Lv, R. Li et al., “Agaricus blazei Murill poly-
saccharides protect against cadmium-induced oxidative stress
and inflammatory damage in chicken spleens,” Biological
Trace Element Research, vol. 184, no. 1, pp. 247–258, 2018.

[11] H. Kawagishi, A. Nomura, T. Yumen, T. Mizuno,
T. Hagiwara, and T. Nakamura, “Isolation and properties of a
lectin from the fruiting bodies of Agaricus blazei,” Carbo-
hydrate Research, vol. 183, no. 1, pp. 150–154, 1988.

[12] S. P. .erkelsen, G. Hetland, T. Lyberg, I. Lygren, and
E. Johnson, “Effect of a medicinal Agaricus blazei murill-
Based mushroom extract, AndoSan™, on symptoms, fatigue
and quality of life in patients with ulcerative colitis in a
randomized single-blinded placebo controlled study,” PLoS
One, vol. 11, no. 3, Article ID e0150191, 2016.

[13] T. Shimizu, J. Kawai, K. Ouchi, H. Kikuchi, Y. Osima, and
R. Hidemi, “Agarol, an ergosterol derivative from Agaricus
blazei, induces caspase-independent apoptosis in human
cancer cells,” International Journal of Oncology, vol. 48, no. 4,
pp. 1670–1678, 2016.

[14] H. Gao and W.-Y. Gu, “Optimization of polysaccharide and
ergosterol production from Agaricusbrasiliensis by fermen-
tation process,” Biochemical Engineering Journal, vol. 33,
no. 3, pp. 202–210, 2007.

[15] Z. Xing, Q. Guo, Z. Feng, L. Guo, and Y. Liu, “Analysis on the
volatile flavor compounds in Agaricus blazei by GC-MS,”

10 BioMed Research International

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://downloads.hindawi.com/journals/bmri/2020/1824183.f1.zip
http://downloads.hindawi.com/journals/bmri/2020/1824183.f1.zip


Journal of Chinese Medicinal Materials, vol. 26, no. 11,
pp. 789–791, 2003, in Chinese.

[16] E. Morin, A. Kohler, A. R. Baker et al., “Genome sequence of
the button mushroom Agaricusbisporus reveals mechanisms
governing adaptation to a humic-rich ecological niche,”
Proceedings of the National Academy of Sciences, vol. 109,
no. 43, pp. 17501–17506, 2012.

[17] B. Chen, F. Gui, B. Xie et al., “Composition and expression of
genes encoding carbohydrate active enzymes in the straw-
degrading mushroom Volvariella volvacea,” PLos One, vol. 8,
no. 3, Article ID e58780, 2013.

[18] D. Bao, M. Gong, H. Zheng et al., “Sequencing and com-
parative analysis of the straw mushroom (Volvariella volva-
cea) genome,” PLos One, vol. 8, no. 3, Article ID e58294, 2013.

[19] W. Wang, F. Liu, Y. Jiang et al., “.e multi gene family of
fungal laccases and their expression in the white rot basid-
iomycete Flammulina velutipes,” Gene, vol. 563, no. 2,
pp. 142–149, 2015.

[20] Y. Yuan, F. Wu, J. Si, Y.-F. Zhao, and Y.-C. Dai, “Whole
genome sequence of Auricularia heimuer (Basidiomycota,
Fungi), the third most important cultivated mushroom
worldwide,” Genomics, vol. 111, no. 1, pp. 50–58, 2019.

[21] Y. Fu, Y. Dai, C. Yang et al., “Comparative transcriptome
analysis identified candidate genes related to Bailinggu
mushroom formation and genetic markers for genetic ana-
lyses and breeding,” Scientific Reports, vol. 7, no. 1, p. 9266,
2017.

[22] F. Liu, W. Wang, and B. Xie, “Comparison of gene expression
patterns in the mycelium and primordia of Flammulina
velutipes, strain 1123,” Acta Edulis Fungi, vol. 21, no. 1,
pp. 1–7, 2014, in Chinese.
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