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Abstract. Using a combination of molecular and 
genetic techniques we demonstrate that Ifm(2)2 is an 
allele of the single-copy sarcomeric myosin heavy 
chain gene. Flies homozygous for this allele accumu- 
late wild-type levels of mRNA and protein in tubular 
muscle of adults, but fail to accumulate detectable 
amounts of myosin heavy chain mRNA or protein in 
the indirect flight muscle. We propose that the muta- 
tion interferes with either transcription of the gene or 
splicing of the primary transcript in the indirect flight 

muscle and not in other muscle tissues. Biochemical 
and electron microscopic analysis of flies homozygous 
for this mutation has revealed that thick filament as- 
sembly is abolished in the indirect flight muscle re- 
sulting in the instability of wild-type thick filament 
proteins. In contrast, thin filament and Z disc assem- 
bly are marginally affected. We discuss a working hy- 
pothesis for sarcomere assembly and define an ex- 
perimental approach to test the predictions of this 
proposed pathway for sarcomere assembly. 

combined genetic and developmental approach has 
contributed most to our understanding of sarcomere 
assembly (Shafiq, 1963; Auber, 1969; Waterston et 

al., 1980; Zengel and Epstein, 1980). In Drosophila melan- 
ogaster, ultrastructural analysis of assembling indirect flight 
muscle (IFM) ~ myofibrils has revealed that filaments first 
appear at the periphery of fusing myoblasts. These filaments 
are loosely associated with Z bodies, the direct precursors 
of the Z band (Shafiq, 1963; Auber, 1969). As development 
proceeds, sarcomeres are found with as few as 30 thick fila- 
ments in hexagonal array with thin filaments. The fibers con- 
tinue to grow in length and in diameter with the addition of 
new thick and thin filaments at the periphery of the myofibril. 
The center of the growing myofibril always shows the hex- 
agonal array of thick and thin filaments. The M line and H 
zone structures become apparent later in the differentiation 
of the muscle (Shafiq, 1963). 

Genetic analysis of flightless mutants has suggested that 
separate hierarchies exist for filament assembly (Mogami 
and Hotta, 1981). The rsd mutant, an actin null allele that 
fails to synthesize the IFM-specific actin isoform, has pro- 
found effects upon sarcomeric structure and the accumula- 
tion of a subset of myofibrillar proteins. Thin filaments fail 
to assemble, but interestingly, thick filaments and Z disc- 
related structures are present (Mahaffey et al., 1985). These 
results have established that the assembly of thick filaments 
is independent of thin filament assembly. 

1. Abbreviations used in this paper: IFM, indirect flight muscle; MHC, 
myosin heavy chain; MLC-I or -2, myosin light chain-1 or -2; MLC-ALK, 
myosin alkali light chain; TDT, tergotrochanteral muscle. 

Mogami and Hotta (1981) have reported the isolation of 
a mutation, Ifm(2)2, mapping within 0.007 map units of the 
single copy sarcomeric myosin heavy chain (MHC) gene on 
the second chromosome at band 36B (Bernstein et al., 1983; 
Homyk and Emerson, 1988) that possesses dominant flight- 
less behavior and is homozygous viable. This mutation af- 
fects the accumulation of a different subset of proteins than 
the rsd mutation. One protein that fails to accumulate and 
was hypothesized to be the focus of the mutation is protein 
spot 185 (Mogami and Hotta, 1981). We have cloned the gene 
that encodes protein spot 185 (Falkenthal et al., 1984) and 
have determined that this protein is the IFM-specific myosin 
alkali light chain (MLC-ALK) isoform (Falkenthal et al., 
1985, 1987). Significantly, the gene that encodes this protein 
maps to the third, not to the second, chromosome. These 
results suggest that the Ifm(2)2 mutation, like rsd, indirectly 
affects the synthesis or accumulation of an entire set of as- 
sociated myofibrillar proteins. 

In this communication we demonstrate that Ifm(2)2 is an 
allele of the single-copy sarcomeric MHC gene. This muta- 
tion affects MHC gene expression in the IFM, but has no de- 
tectable effects in other muscle types. There is no detectable 
synthesis of MHC protein or accumulation of MHC mRNA 
in the IFM. This mutant allele has profound effects upon 
myofibrillar assembly; no thick filaments are present, where- 
as assembly of thin filaments and Z discs is minimally 
affected. Even though other thick filament proteins, such as 
the myosin light chains, are synthesized, they fail to accumu- 
late. We discuss the implications of these results and propose 
a model to define the interrelationship of thick filament, thin 
filament, and Z disc assembly. 
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Materials and Methods Results 

Growth and Maintenance of Fly Stocks 

Fly stocks were grown at 23°C on agar-cornmeal-based media (Lewis, 
1960). Pupae were synchronized by flotation 5 h after puparium formation 
(Mitchell and Mitchell, 1964) and aged at 23°C until they reached stage 
Pl2i (Bainbridge and Bownes, 1981). Canton-S flies were used as wild-type 
controls. The If m(2)2 mutation was induced by ethyl methanesulfonate on 
a Canton-S genetic background (Mogami and Hotta, 1981), and was ob- 
tained from Dr. S. Bernstein (San Diego State University, San Diego, CA). 
MHCI/SM3,Cy was obtained from Dr. C. P. Emeson, Jr. (University of 
Virginia, Charlottesville, VA) (Mogami et al., 1986). 

Preparation and Electrophoresis of 
Muscle Homogenates 

IFM were dissected from isolated thoraces with fine forceps in TBI buffer 
(80 mM potassium chloride, 16 mM sodium chloride, 5 mM magnesium 
chloride, 15 mM potassium phosphate, pH 7.0, 1% [wt/voll polyethylene 
glycol 6000 lBonner et al., 1984]). Tubular muscle was prepared from tis- 
sue obtained by pulling the mesothoracic leg and the attached tergotrochan- 
teral muscle (TDT) from the thorax with fine forceps. Dissected muscle 
bundles were suspended in IEF buffer (O'Farrell, 1975) or SDS sample 
buffer (Laemmli, 1970). All muscle samples were homogenized with a Pel- 
let Pestle mixer (Kontes Co., Vineland, NJ). 

Muscle proteins were displayed in one dimension according to their Mr 
(Laemmli, 1970). Two-dimensional gel analysis was performed by the 
method of O'Farrell (1975) using a pH range of 4-7. The gels were stained 
either with Coomassie Brilliant Blue R or with silver as described by Oakley 
et al. (1980). 

In Vivo Labeling of Indirect Flight Muscle Proteins 

Thoraces of stage Pl2i pupae (Bainbridge and Bownes, 1981) were injected 
with 20 }.tCi of [35S]methionine and incubated at 23°C for 2 h. The labeled 
IFM was dissected and lysed in IEF buffer by homogenization. After elec- 
trophoresis, the labeled proteins were detected by fluorography. 

Isolation and Electrophoresis of RNA 

Total cellular RNA was isolated from the IFM of 20 adults and from 40 
heads by homogenizing dissected muscle bundles or heads in 200 I-tl of 0.10 
M sodium chloride, 0.01 M Tris-HCI, pH 7.4, 0.001 M EDTA, 0.5% sodium 
lauryl sulfate. The sample was deproteinized by phenol extraction, and the 
nucleic acid was collected by ethanol precipitation. The RNA samples were 
subjected to electrophoresis in denaturing 1% agarose gels containing 2.2 
M formaldehyde as described previously (Rozek and Davidson, 1983). Af- 
ter electrophoresis, the RNA was transferred to nitrocellulose by capillary 
action (Thomas, 1980). Prehybridization and hybridization with 10% dex- 
tran sulfate were performed as described previously (Mullins et al., 1978). 
After washing the nonhybridized labeled DNA from the filter, the filter was 
air dried and then exposed to rapid x-ray film (Eastman Kodak Co., Roches- 
ter, NY) at -80°C. 

DNA hybridization probes were nick-translated to a specific activity of 
lO s dpm/ltg with [32p]dCTP. The eDNA clones, CD201 and MLC2-13.1, 
were used to detect MHC and myosin light chain-2 (MLC-2) mRNAs, 
respectively. MLC2-13.1 is a full length MLC-2 eDNA clone, whereas 
CD201 contains MHC sequences corresponding to the 3' exons 13-16. 
CD201 was kindly provided to us by Dr. Charles P. Emerson, Jr. 

Electron Microscopy 
Thoraces were dissected from adult flies by cutting off the head and abdo- 
men with a razor blade and pulling off the legs. The TDT muscle was re- 
moved with the mesothoracic legs. The thoraces were washed in 0.1 M caco- 
dylate, pH 7.2, and then fixed in 3% glutaraldehyde in 0.1 M cacodylate, 
pH 7.2, for 2 h at room temperature. After fixing, the tissue was rinsed in 
0.1 M cacodylate, pH 7.2, before the cuticle was teased away from the tho- 
rax. Next, the tissue was stained in I% osmium tetroxide in 0.1 M cacodyl- 
ate, pH 7.2, for 1 h at room temperature and then stained afterward in 2% 
aqueous uranyl acetate before dehydration. After dehydration, the tissue was 
washed in propylene oxide and then embedded in Epon. After polymeriza- 
tion, the Epon blocks were trimmed and the samples were sectioned using 
an ultramicrotome (MT-I; Sorvall Instruments, Newton, CT). Gold sections 
were collected and stained with 2 % uranyl acetate and Reynold's lead citrate 
before viewing. 

lfm(2)2 Is a Mutation in the MHC Gene 

lfm(2)2 maps within 0.007 map units of a Drosophila MHC 
null allele, Mhc ~, which contains a deletion of intron 4 and 
exon 5 spanning nucleotides 4,155-4,255 3' from the tran- 
scription start site (Homyk and Emerson, 1988; O'Donnell 
and Bernstein, 1988). Because of the tight linkage of this mu- 
tation with the Mhc j allele (within 1,900 nucleotides as- 
suming that 1 map unit approximates 275 kb of DNA [Kidd 
et al., 1983]), it is reasonable to suggest that Ifm(2)2 is an 
Mhc allele. Therefore, we examined first the accumulation 
of MHC in the IFM of Ifm(2)2 homozygotes. By visual in- 
spection of the gel, MHC protein is undetectable in the 
Ifm(2)2 lane (Fig. 1 b, lane 2). (This is not due to underload- 
ing the gel, because the amount of actin in the Canton-S lane 
is equal to that in the Ifm(2)2 lane.) Moreover, a laser den- 
sitometric scan of the gel failed to reveal any accumulation 
of a 200-kD polypeptide, the Mr of MHC protein. No addi- 
tional polypeptides to those detected in the Canton-S lane 
were present in the Ifm(2)2 lane. This rules out the possibil- 
ity that a stable, truncated form of the MHC protein accumu- 
lates in the IFM of Ifm(2)2 homozygotes. As a control, we 

Figure 1. SDS-polyacry lamide  gel analysis o f  proteins that ac- 
cumulate in tubular and IFM myofibers. Mesothoracic  legs and the 
attached TDT were dissected from wild-type and mutant homozy- 
gotes, homogenized,  and the solubilized proteins were displayed on 
a 7.5 % SDS-polyacry lamide  gel. Proteins were visualized by stain- 
ing with Coomass ie  Brilliant Blue. (a) TDT and mesothoracic leg 
muscles.  Lane 1, wild-type; lane 2, Mhcq+; lane 3, lfm(2)2; lane 
4, Ifm(2)2/Mhc ~. Densitometr ic  scans of  the gels showed that the 
amount  of  MHC protein in the transheterozygote lanes (lanes 2 and 
4) is 50% of  wild-type. (b) IFM. Lane 1, wild-type; lane 2, Ifm(2)2; 
lane 3, Mhcl/+; lane 4, lfm(2)2/Mhc I. (c). To detect the synthesis 
o f  MHC protein, in vivo 35S-labeled proteins were displayed on a 
7.5 % SDS-polyacrylamide  gel and were detected by fluorography. 
Lane 1, wild-type IFM (100,000 cpm);  lane 2, lfm(2)2 IFM 
(100,000 cpm).  In wild-type IFM,  M H C  protein (Mr = 200 kD) is 
synthesized at a high rate. No detectable synthesis o f  a protein with 
a similar molecular  mass to M H C  is seen in Ifm(2)2. However, a 
band with a slightly slower mobility than M H C  is detected. From 
laser densitometry, the intensity of  this band is <2 % that of  the 
M H C  band in the wild-type lane. If  this is indeed M H C  protein, 
it could represent  a small amount  of  contamination o f  the IFM prep- 
aration with direct flight muscle  or  a very low rate of  M H C  synthe- 
sis in the mutant IFM.  
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examined the accumulation of MHC in tubular muscles of 
lfm (2)2 homozygotes. The MHC should accumulate in these 
muscles, because the tubular muscles are normal in their 
morphology and function. Significantly, the MHC protein 
accumulates to wild-type levels in the tubular muscles of 
If m(2)2 homozygotes (Fig. 1 a). 

Genetically, one can establish allelism of two mutations by 
a complementation test for function. However, because both 
mutations are dominant with respect to flightlessness and 
Ifm(2)2 is homozygous viable, a complementatton assay 
based upon function (viability or flight) could not be used. 
Rather, a molecular complementation assay was devised. 
lfm(2)2 heterozygotes accumulate MHC, whereas homozy- 
gotes fail to accumulate this protein; therefore, we can use 
the accumulation of MHC as an assay for complementation. 
If we assume that lfm(2)2 is not a Mhc allele, but perhaps 
an IFM-specific transregulatory factor of the MHC locus, 
then the transheterozygotes will be heterozygous at each 
genetic locus and will have the genotype Mhcqfm(2)2+/ 
Mhc+Ifm(2)2. Therefore, adult flies should accumulate 25 
and 50 % of the wild-type concentration of MHC protein in 
the IFM and leg musculature, respectively. If, however, 
Ifm(2)2 is a Mhc allele, the transheterozygotes will have the 
genotype Ifm(2)2/Mhc% We expect that MHC should not 
accumulate in the IFM, but should accumulate in the TDT. 

Transheterozygotes between Mhd and lfm(2)2 were con- 
structed by mating Ifm(2)2 homozygous females with Mhcq 
SM3,Cy males (Note, these males carry a balancer chromo- 
some marked with the dominant mutation, curly wings). The 
transheterozygotes are easily identified because they have a 
Cy ÷ phenotype (straight wings). The MHC content in the 
IFM of the transheterozygotes, as well as from Ifm(2)2 
homozygotes and MhcqSM3,Cy adults was assayed. As seen 
in Fig. 1 b, lane 3, the MhcqSM3,Cy heterozygote accumu- 
lates less MHC than Canton-S. Densitometry confirms this; 
the amount of MHC is 48% of wild-type, after normalizing 
to the amount of actin. The transheterozygotes fail to ac- 
cumulate MHC proteins at detectable levels (<2 % of wild- 
type) (Fig. 1 b, lane 4). As a control, the MHC content of 
the TDT of transheterozygotes was analyzed (Fig. 1 a). The 
accumulation of MHC protein in the TDT of lfm(2)2/Mhd 
transheterozygotes should be 50% of wild-type, because the 
Ifm(2)2 mutation does not affect the accumulation of MHC 
protein in the TDT (Fig. 1 a), whereas the MhM null allele 
encodes no MHC protein in any tissue. Again, densitometry 
of the polyacrylamide gels confirms our prediction. On the 
basis of these results, we conclude that lfm(2)2 is an allele 
of the MHC gene. 

Accumulation of MHC mRNA in I f  m(2)2 
Homozygotes 
MHC protein fails to accumulate in the IFM of Ifm(2)2 
homozygotes. This could be due to two causes: (a) premature 
termination of translation resulting in the synthesis of an un- 
stable truncated protein, or (b) no MHC mRNA is synthe- 
sized in lfm(2)2 IFM. Because we did not detect the synthe- 
sis of MHC protein or a novel protein species in the IFM of 
lfm(2)2 homozygotes (Fig. 1 c), it seemed probable that 
Ifm(2)2 IFM lacks MHC mRNA. As shown in Fig. 2, MHC 
mRNA sequences are present in all tissues assayed except in 
the IFM of lfm(2)2 adults. Transcripts of 8.0 and 8.6 kb ac- 
cumulate in the IFM of Canton-S, whereas transcripts of 8.0 

Figure 2. Accumulation of MHC and MLC-2 mRNA. RNA was 
isolated from IFM and heads. The RNA was subjected to elec- 
trophoresis in denaturing formaldehyde-agarose gels. After trans- 
fer to nitrocellulose, the presence of MHC and MLC-2 sequences 
was detected by hybridization with 32P-labeled MHC (a) or MLC- 
2 (b) DNA. Hybridization was detected by exposure of the nitrocel- 
lulose filters to x-ray film. (a) MHC mRNA accumulation in vari- 
ous tissues. Lane 1, Canton-S IFM; lane 2, Ifm(2)2 IFM; lane 3, 
Canton-S heads; lane 4, If m(2)2 heads; lane 5, 72-h Canton-S lar- 
vae. (b) MLC-2 RNA accumulation in various tissues. Lane I, 
Canton-S IFM; lane 2, Ifm(2)2 IFM; lane 3, Canton-S heads; lane 
4, Ifm(2)2 heads; lane 5, 72-h Canton-S larvae. 

kb are detectable in the heads of both Canton-S and Ifm(2)2. 
As a control for the quality and quantity of RNA in each 
sample, the filter was stripped and rehybridized with 32P-la- 
beled MLC-2 sequences (Fig. 2 b). The concentration of 
MLC-2 mRNA is nearly equivalent between the Canton-S 
and Ifm(2)2 IFM samples. Therefore, the failure to detect 
MHC mRNA sequences in Ifm(2)2 is due to the absence of 
MHC mRNA in this tissue. 

MyofibriUar Structure and Sarcomeric 
Organization of lfm(2)2 
Examination of the IFM from Ifm(2)2 homozygotes by 
phase-contrast microscopy revealed a complete lack of myo- 
fibrils (data not shown). To further understand this lack of 
sarcomeric structure, the IFM of wild-type and mutant flies 
were examined by electron microscopy. The myofibrils of 
wild-type IFM show a constant sarcomeric length and di- 
ameter of 2.7 and 1.1 ~tm, respectively (Fig. 3). The Z discs 
are the most electron-dense structure of the myofibril, ap- 
pearing very straight and compact. In cross section, myo- 
fibrils show the regular hexagonal array of thin filaments sur- 
rounding each thick filament (Fig. 3 b). 

By comparison to wild-type, the sarcomeric structure of 
Ifm(2)2/+ heterozygotes is clearly disrupted (Fig. 4). In the 
most highly disorganized sarcomeres, the length of 3 lain is 
fairly constant; however, it is longer than wild-type length of 
2.7 ~tm. In addition, the thick and thin filaments splay away 
from the longitudinal axis of the fibril. The Z discs are ab- 
normal; they curve at the periphery of the fibril and are less 
electron dense than in the wild-type myofibril. The M line 
is present only in the middle section of the myofibril (Fig. 
4). The sarcorneric organization is completely lost at the pe- 
riphery showing a paucity of thick filaments and bundles of 
thin filaments (arrow, Fig. 4). 

In stark contrast to the wild-type and Ifm(2)2 heterozy- 
gotes, the IFM of lfm (2)2 homozygotes lack sarcomeric or- 
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Figure 3. Uttrastructure of wild-type IFM myofibrils. (a) Longitudinal section; (b) cross section. Note the regular hexagonal array of thick 
and thin filaments (arrowhead, b). Each sarcomere contains a well-defined Z disk (Z) and M line (M). Bars: (a) 1 Inn; (b) 0.5 lam. 
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Figure 4. Ultrastmcture of IFM of Ifm(2)2 heterozygotes. Longitudinal section of lfm(2)2 heterozygote. The arrowhead points to bundles 
of thin filaments found near the periphery of the muscle. Note that the sarcomeres are disorganized; in particular, the thick and thin filaments 
splay at the periphery of the fibrils, and the Z discs are curved. The M line is apparent only in the central region of the fibril. Bar, 2 gm. 

ganization (Fig. 5). Most notable is the complete absence of 
thick filaments throughout the muscle. Apparently normal 
thin filaments are surrounded by mitochondria. There is an 
increase in electron density along the length of the thin illa- 
ments with an approximate periodicity of 30-40 nm. In 
general, the majority of thin filaments maintain their normal 
arrangement along the longitudinal axis of the fiber and ema- 
nate from electron-dense material that appears to correspond 
to Z discs. However, the Z disc-like structures show a range 
of lengths and are no longer uniformly perpendicular to the 
longitudinal axis of the fiber. Therefore, the assembly of thin 
filaments and Z discs is affected in this mutant, but not to the 
extent of thick filament assembly, which is totally abolished. 

Accumulation of lFM Myofibrillar Proteins 
Previous studies of the proteins that accumulate in thoraces 
of lfm(2)2 homozygotes (Mogami and Hotta, 1981) indicated 
that IFM specific proteins 138 (myosin light chain-1 [MLC- 
1]) (Takano-Ohmura et al., 1983), 158, 159, and 185 (the 
IFM-specific MLC-ALK, [Falkenthal et al., 1987]) fail to 
accumulate. However, thoraces are composed of tubular 
muscle (the direct flight and TDT muscle) as well as the 
fibrillar IFM, and many myofibrillar proteins are common 
to both muscle types. We know that the function of the IFM 
is affected due to the lack of thick filaments. This gave us the 
opportunity to determine the molecular consequences of the 
absence of MHC upon the accumulation of not only the myo- 
sin light chains but other myofibrillar proteins. 

A number of proteins present in the IFM of Canton-S fail 
to accumulate in the IFM of If m(2)2 homozygotes (Fig. 6). 
In addition to the absence of the MLC-ALK protein (185), 
MLC-1 protein (138), proteins 158 and 159, there is a total 
absence of MLC-2 protein (148 and 149). Furthermore, >10 
proteins with isoelectric points between that of actin (pI, 5.8) 
and tropomyosin (pI, 5.3) and molecular masses between 67 
and 110 kD (Fig. 6, c and d) fail to accumulate. The accumu- 
lation of the major thin filament proteins actin and tropomyo- 
sin is equivalent in Canton-S and Ifm(2)2 homozygotes. 
When two-dimensional gels of tubular muscles (mesotho- 
racic leg and attached TDT) from Canton-S and lfm (2)2 ho- 
mozygotes were compared, there were no quantitative or 
qualitative differences in the proteins accumulated (data not 
shown). 

Is the failure of the proteins to accumulate in the IFM of 
Ifm(2)2 homozygotes, as shown above, due to changes in 
protein synthesis or protein stability? We addressed this 
question by pulse labeling pupal If m(2)2 homozygotes and 
Canton-S controls in vivo and visualizing the proteins syn- 
thesized in the IFM on two-dimensional polyacrylamide gels 
(Fig. 7). The pattern of proteins synthesized during the label- 
ing period is indistinguishable between the mutant and con- 
trol pupae. In particular, we note that the labeling of the 
MLC-2 protein relative to the labeling of actin is nearly 
equivalent in both wild-type and mutant myofibrils. Al- 
though we fail to detect the accumulation of the myosin light 
chains in the IFM of lfm(2)2 homozygotes on silver-stained 
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Figure 5. Ultrastructure of If m(2)2 homozygotes. (a) Longitudinal section of lfm(2)2 homozygote. There is no sarcomeric organization. 
Note that thin filaments emanate from the electron-dense Z disk-like structures and that no thick filaments are apparent. (b) Cross section 
of lfm(2)2 homozygote. The arrowhead shows a cluster of thin filaments. Bars: (a) 1 ~rn; (b) 0.5 gtm. 
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Figure 6. Two-dimensional gel analysis of IFM proteins in wild-type and Ifm(2)2. Proteins from dissected IFM of 2-d adults were displayed 
on two-dimensional gels. The pH range for the first dimension is pH 4-7. The proteins were visualized by silver staining (Oakley et al., 
1980). (a) IFM proteins of wild-type adults; (b) IFM proteins of lfm(2)2 homozygotes. The arrowheads in b denote the position of proteins 
present in wild-type myofibrils that are absent in the muscles of Ifm(2)2 homozygotes. (c) An expanded view of the 55-110 kD molecular 
mass range of the gel shown in a. The arrowheads denote those proteins which are present in wild-type but absent in Ifm(2)2 IFM. (d) 
An expanded view of the 55-110 kD molecular mass range of the gel shown in b. The arrowheads denote the position of two new protein 
spots not seen in the wild-type gel. a, Actin; t, tropomyosin. 

gels, the rate of synthesis of these proteins appears to be simi- 
lar to that of wild-type. From these findings we conclude that 
the accumulation of these proteins is absolutely dependent 
upon their assembly into thick filaments. 

Discussion 

The Primary Genetic Defect of  the lfm(2)2 Mutation 

Our results, in addition to the recombination mapping which 
placed the Ifm(2)2 mutation within 1.9 kb of the Mhc ~ mu- 
tation (Homyk and Emerson, 1988), indicate that Ifm(2)2 is 
a tissue-specific null allele of the muscle-specific MHC gene 
which fails to synthesize MHC mRNA and protein only in 
the IFM. The other muscles are unaffected by this mutation. 
How can we explain the specificity of the Ifm(2)2 mutation? 
The MHC gene undergoes alternative splicing at both the 5' 
and 3' ends of the gene generating different protein isoforms 
(Bernstein et al., 1986; Rozek and Davidson, 1986; Wassen- 
berg et al., 1987; C. P. Emerson, Jr., personal communica- 
tion). Therefore, the mutation may map to either the 3' or 5' 
end of the gene, interfering with the processing of the MHC 
primary transcript only in the IFM. In C. elegans, unc 54 
nonsense mutations result in significantly decreased levels of 
unc 54 mRNA (Dibb et al., 1985). Therefore, it is formally 
possible that Ifm(2)2 is a nonsense mutation that maps to 
an IFM-specific exon. An alternative proposal is that the 
lfm(2)2 mutation eliminates transcription of the MHC gene 
in the IFM, but not in other muscle tissues. Molecular char- 
acterization of upstream regulatory elements required for 
MHC expression in the IFM and of the tissue-specific slicing 

of MHC transcripts in the IFM of wild-type and Ifm(2)2 
homozygotes will be required to establish the validity of each 
proposal. 

Pleiotropic Effects of  lfm(2)2 on Thick 
Filament Assembly 

In their original description of the lfm(2)2 mutation, Mo- 
gami and Hotta (1981) noted that a number of myofibrillar 
proteins fail to accumulate. Based on our observation that 
thick filaments fail to assemble, we predicted that the MHC 
and MLC-2 proteins would fail to accumulate as well. Upon 
examination, we were struck by the large number of proteins 
that were undetectable on silver-stained two-dimensional 
gels. Not only were the MHC and myosin light chain proteins 
missing, but >10 proteins between 67 and 110 kD fail to ac- 
cumulate in the IFM. Not all of these proteins are IFM- 
specific (Mogami et al., 1982). We propose that some of 
these proteins are thick filament associated; likely candidates 
are the thick filament-associated proteins myosin light chain 
kinase, phosphotase, and paramyosin. In addition, some of 
the missing proteins may be localized to the M line. 

There are a number of possible causes for the failure of 
thick filament-associated proteins to accumulate. Either the 
mRNAs encoding these proteins are not synthesized in 
Ifm(2)2 IFM, or the proteins are synthesized but then de- 
graded in the absence of assembly. The in vivo labeling ex- 
periments and Northern gel analysis established that the 
MLC-2 mRNA and protein is synthesized; however, the 
MLC-2 protein is degraded rapidly in the absence of as- 
sembly. 
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Figure 7. Two-dimensional gel analysis of proteins synthesized in the IFM of developing pupae. [35S]Methionine was injected into the 
thoraces of developing pupae. After 2 h, the IFM were dissected, and the labeled proteins (250,000 cpm/gel) were displayed on two- 
dimensional gels. The labeled proteins were detected by fluorography. (a) Wild-type; (b) lfm(2)2, a, Actin; t, tropomyosin. MLC-ALK 
(spot 185) and MLC-2 (spots 148 and 149), actin and tropomyosin represent a large percentage of the proteins synthesized in both wild-type 
and mutant IFM. We do not detect the synthesis of a protein that comigrates with MLC-1 spot 138; however, a protein with the same molecu- 
lar mass but a slightly more basic pI is synthesized at a high rate (arrowheads). 

Drosophila, mammalian, and bacterial cells all possess an 
energy-dependent intracellular protein degradation system 
(Arrigo et al., 1988; Falkenburg et al., 1988). In vitro as 
well as in vivo experiments suggest that the stable form of 
nonpolymerized tubulin is a dimer composed of an a- and 
a 15-tubulin subunit. Mutations that affect 13-tubulin structure 
in Chinese hamster ovary cells result in assembly-defective 
13~-tubulin subunits which are rapidly degraded with a half 
life of 1-2 h. These mutations also affect the accumulation 
of tx-tubulin suggesting that excess ct-tubulin is also degraded 
(Boggs and Fernando, 1987). Similar results have been ob- 
served in Drosophila for mutant 13-2 tubulin subunits; the 
variant 1~-2 tubulin, as well as the wild-type a subunit, is 
degraded (Kemphues et al., 1982). These examples suggest 
that proteolytic-sensitive sites are masked by either other 
proteins in the multimeric complex or conformational 
changes induced by assembly. However, in the absence of as- 
sembly these sites are not masked and the protein is de- 
graded. This represents a simple means by which a cell can 
regulate the level of unassembled subunits without affecting 
transcription or translation. 

Sarcomere Assembly in the Absence of MHC Protein 

Previous developmental studies have not addressed the inter- 
dependency of thick filament, thin filament, and Z band as- 
sembly (Shafiq, 1963). It is remarkable that, in the absence 
of thick filaments, assembly of thin filaments and Z band 
structures occurs in the IFM of Ifm(2)2. Interestingly, the 
thin filaments align normally along the longitudinal axis of 
the IFM maintaining their attachments to Z band-like struc- 
tures. These structures are reminiscent of the IZI structures 
obtained from myosin-extracted Lethocerus myofibrils (Goll 
et al., 1977). We noted a periodicity in electron density of 
30-40 nm along the thin filaments. Negative staining of 
Lethocerus thin filaments also revealed projections showing 
a periodicity of 39 nm; this periodicity corresponds to a half 
turn of the thin filament axial repeat (Bullard, 1984). Be- 
cause the troponin complex in Lethocerus is very large 

(twice the molecular mass of vertebrate troponin), the pro- 
jections certainly must be troponin (Bullard, 1984). There- 
fore, the "bumps" that we see along the Drosophila thin fila- 
ments most likely are troponin complexes reflecting the 
periodicity of tropomyosin along the thin filament. Interest- 
ingly, three-dimensional reconstruction of insect flight mus- 
cle in rigor revealed that cross-bridges occur with a periodic- 
ity identical to that of troponin. This analysis also revealed 
that thin filament structure is not uniform along the long axis 
of the myofibril showing an undertwist zone with maximal 
separation of the actin strands at the lead chevron (Taylor et 
al., 1984). The question remains as to whether the myosin 
heads contribute to the periodic change in the variable twist 
of the actin helix or whether this is innate to the structure 
of insect thin filaments. The absence of thick filaments in the 
IFM of Ifm(2)2 should facilitate the isolation of sufficient 
quantities of native thin filaments for biochemical and struc- 
tural analysis without having to resort to the harsh extraction 
procedures typically used for the isolation of thin filaments 
from Lethocerus asynchronous muscle. 

The alignment and spacing of the Z band-like structures 
is altered in Ifm(2)2 implying that thick filaments are not re- 
quired to initiate the assembly of proteins into the Z band, 
while they are required for the completion of Z band assem- 
bly including the proper registry and alignment of the Z 
bands along the longitudinal axis of the myofiber. The actin 
null mutation, rsd, shows complementary effects upon fila- 
ment assembly. In rsd homozygotes the IFM totally lacks 
thin filaments and Z bands; however, thick filaments as well 
as Z bodies assemble (Mahaffey et al., 1985) demonstrating 
that thin filaments are necessary for the differentiation of Z 
bodies to Z bands, but not for thick filament assembly. We 
do not know if thick filaments play a role in the stabilization 
of the Z body structure. Our working hypothesis is that there 
are three structures whose assembly is independent, but in- 
terrelated: the Z body, thick filaments, and thin filaments. 
Thin filament assembly influences the further structural 
modification of the Z body to the Z band (Shafiq, 1963; Ma- 
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haffey et al., 1985); whereas, thick filaments are necessary 
for the further elaboration of the H zone and the M line, and 
proper registry of the Z bands along the longitudinal axis of 
the fiber. We are currently testing this hypothesis by analyz- 
ing assembly during the development of the double mutant 
Ifm(2)2; rsd, which should lack both thick and thin filament 
systems. It is conceivable that Z bodies will assemble and ac- 
cumulate in this genetic background. 

Finally, because Ifm(2)2 is a tissue-specific null allele of 
the MHC gene, flies carrying this mutation possess an excel- 
lent genetic background for transformation experiments with 
in vitro mutagenized MHC genes. Not only can the nucleo- 
tide sequences necessary for MHC transcription and RNA 
processing in the IFM be defined, but the amino acid se- 
quences necessary for the stable assembly of the myosin light 
chains with the MHC can be determined. It is our hope that 
these experiments will further our understanding of sarco- 
mere assembly and function. 
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