
RESEARCH ARTICLE

The cell surface protein MUL_3720 confers

binding of the skin pathogen Mycobacterium

ulcerans to sulfated glycans and keratin
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Abstract

Mycobacterium ulcerans is the causative agent of the chronic, necrotizing skin disease Bur-

uli ulcer. Modes of transmission and molecular mechanisms involved in the establishment of

M. ulcerans infections are poorly understood. Interactions with host glycans are often crucial

in bacterial pathogenesis and the 22 kDa M. ulcerans protein MUL_3720 has a putative role

in host cell attachment. It has a predicted N-terminal lectin domain and a C-terminal peptido-

glycan-binding domain and is highly expressed on the surface of the bacilli. Here we report

the glycan-binding repertoire of whole, fixed M. ulcerans bacteria and of purified, recombi-

nant MUL_3720. On an array comprising 368 diverse biologically relevant glycan structures,

M. ulcerans cells showed binding to 64 glycan structures, representing several distinct clas-

ses of glycans, including sulfated structures. MUL_3720 bound only to glycans containing

sulfated galactose and GalNAc, such as glycans known to be associated with keratins iso-

lated from human skin. Surface plasmon resonance studies demonstrated that both whole,

fixed M. ulcerans cells and MUL_3720 show high affinity interactions with both glycans and

human skin keratin extracts. This MUL_3720-mediated interaction with glycans associated

with human skin keratin may contribute to the pathobiology of Buruli ulcer.

Author summary

Mycobacterium ulcerans causes a skin-based disease known as Buruli ulcer. How the bac-

teria are transmitted and what mechanisms they use to establish the infection of the skin

is poorly understood. The only well characterized bacterial factor in Buruli ulcer patho-

genesis is mycolactone, a toxin produced by the bacteria. Mycolactone causes apoptosis in

human cells, leading to destruction of the skin around extracellular clusters of the myco-

bacteria. Human cells, like cells of all orders of life, are coated in complex sugar structures

and these glycans are one of the major targets of bacteria and viruses for the interaction

with host cells. Here we describe the glycan binding of whole Mycobacterium ulcerans
cells and a mycobacterial protein, MUL_3720, thought to be involved in glycan binding.

We show that both the bacterial cells and MUL_3720 bind to glycans known to be associ-

ated with human skin keratin and to skin keratin extracts. This binding of keratin extracts
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may explain initial bacterial attachment and clustering of the bacteria in the skin, ulti-

mately leading to tissue destruction and ulceration caused by a cloud of secreted mycolac-

tone at the site of infection.

Introduction

Buruli ulcer (BU) is a chronic, necrotizing skin disease, caused by Mycobacterium ulcerans [1].

It affects populations living in contact with stagnant or slow flowing water bodies primarily in

West and Central Africa, but has also been reported from Asia, the Americas, Papua New

Guinea and Australia [2]. The interaction of M. ulcerans with the human host is not fully

understood. The site of inoculation of the bacteria into susceptible layers of the skin is thought

to be the site where an infection is established. Presence of only one lesion in the majority of

BU patients speaks for a very low rate of contiguous spread. Thermo-sensitivity of the patho-

gen may in part explain why infections are typically confined to the cooler surface of the body

rather than internal organs, which are not infected [3]. Production of the macrolide toxin

mycolactone by M. ulcerans [4] causes apoptosis in mammalian cells [5] and leads to extensive

tissue necrosis. In advanced BU lesions, extracellular clusters [6] of the pathogen are residing

in completely necrotic areas, primarily localized in deeper layers of subcutaneous fat tissue [7].

A protective cloud of mycolactone appears to prevent infiltrating leukocytes to reach the bacte-

ria [8]. Clustering of the bacteria and skin location thus appear key elements in the long-term

persistence of M. ulcerans in the chronically infected immunocompetent host.

Many studies indicate a key role for host carbohydrates as targets for bacterial adhesins [9].

Here we conducted a glycomic analysis to define the glycan-binding repertoire of whole, fixed

M. ulcerans cells. In a second step, we compared this repertoire with the glycan-binding activ-

ity of the candidate adhesin MUL_3720. 2D gel electrophoretic analysis of an M. ulcerans
whole protein lysate has shown that MUL_3720 is one of the most highly expressed proteins of

the pathogen, a feature that is currently being exploited in the development of a diagnostic

antigen capture assay [10]. The function of MUL_3720 is suggested by its two-domain struc-

ture, with a conserved bulb-type lectin domain and a Lysine Motif (LysM) domain, which is

predicted to be involved in binding to peptidoglycan [11]. Studies with a mycobacterial-spe-

cific two-hybrid system furthermore indicated that MUL_3720 interacts with a range of cell

wall associated proteins [10]. Immunofluorescence staining of M. ulcerans bacilli demon-

strated a cell wall localization of MUL_3720 [10,12] and all these features together suggested

that MUL_3720 plays a role in the binding of M. ulcerans cells to glycosylated substrates. Here

we show that MUL_3720 is binding to sulfated galactose and GalNAc structures, which are ele-

ments of sulfated glycosaminoglycans (GAGs), such as chondroitin sulfate, dermatan sulfate

and heparan sulfate.

Materials and methods

Growth and maintenance of M. ulcerans
The M. ulcerans strain S1013, recently isolated from the lesion of a BU patient from Cameroon

[13] was grown in BacT/Alert culture bottles supplemented with enrichment medium accord-

ing to the manufacturer’s protocol (bioMérieux). Cells were fixed with 4% formalin prior to

array and SPR analysis.
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Cloning, expression, and purification of MUL_3720

Full length MUL_3720 (aa 1–207) was cloned into pET28a, as previously outlined [14]. The

recombinant protein was expressed and purified as previously described [10,14], with the

purity on par with that shown in Bolz et al. 2016 [14].

Evolutionary analysis of the MUL_3720 protein

The MUL_3720 protein sequence was analysed using the BLAST tool (NCBI) against the non-

redundant protein sequence database and mycobacterial sequences with an e-value of> 1e-30

were downloaded for further analysis against the MUL_3720 sequence. The evolutionary his-

tory of the retrieved sequences was inferred using the Maximum Likelihood method and Whe-

lan And Goldman + Freq. model [15]. Initial tree(s) for the heuristic search were obtained

automatically by applying Neighbour-Join and BioNJ algorithms to a matrix of pairwise dis-

tances estimated using a JTT model, and then selecting the topology with superior log likeli-

hood value. A discrete Gamma distribution was used to model evolutionary rate differences

among sites (5 categories (+G, parameter = 0.5861)) of an 88 amino acid sequence region of

the proteins. Evolutionary analyses were conducted in MEGA X [16,17] and shown in S1 Fig.

Glycan array analysis

Glycan arrays were printed onto SuperEpoxy 3 activated substrates as previously described

[18]. The glycan array analysis of the whole, fixed M. ulcerans cells was performed using a

modification of the method used in Day et al 2009 and Mubaiwa et al 2017 [19,20]. Briefly,

approximately 106 Bodipy 595/625 nm labelled bacteria in 500 μL of array PBS (1 x PBS con-

taining 1 mM CaCl2 and 1 mM MgCl2) were applied to the glycan array in a 65 μL gene frame

without a cover. The bacteria were incubated on the array at room temperature in the dark for

30 minutes and washed three times for five minutes, once in array PBS and twice in 1x PBS

without Mg or Ca ions. Glycan arrays with the MUL_3720 protein were performed as previ-

ously described [21] using 2 μg of protein per array and 20 minutes of incubation time prior to

washing. Both protein and cell arrays were scanned and analysed using the Innoscan 1100AL

scanner and the MAPIX analysis package. Final statistical analysis of the combined datasets

were performed in Microsoft Excel using Student’s T test. The lis of glycans is present in S1

Data and the MIRAGE compliance information is included in S1 Table.

Surface plasmon resonance analysis

Surface plasmon resonance (SPR) analyses were performed as previously described on a Bia-

core T200 using a Series S C1 chip for whole bacteria analysis [20,22] and a CM5 chip for pro-

tein analysis [21] with the following modifications. Proteins were immobilized onto a CM5

chip at pH 4.5, flow rate of 5 μL/min for 600 seconds with an ethanolamine blank flow cell as a

control. The C1 chip was prepared as per manufacturer’s instructions and 100 μL of bacteria at

approximately 106 cells per mL at pH 4.5 were immobilized using amine chemistry at a flow

rate of 5 μL per minute for 720 seconds. Glycans (Fucα1-2Gal, Fucα1-2Galβ1-4(Fucα1–3)

GlcNAc, Neu5Acα2-6Galβ1-4GlcNAc, Fucα1-2(3-O-Su)Galβ1-3(Fucα1–4)GlcNAc; Elicityl,

mannose glycans; Dextra Laboratories), GAGs (GAGs; Dextra Laboratories) and keratin iso-

lated from human epidermis (mixed keratins with average molecular weight of 64.1 kDa;

Sigma-Aldrich, Cat# K0253) were tested between 2 nM and 20 μM. All data was double refer-

ence subtracted. Analysis was performed using the Biacore T200 Evaluation software package.

Competition assays were performed using the sulphated chondroitin disaccharide ΔUAα1-

3GalNAc-6S and a keratin extract, which were flowed separately or together at a maximum of

PLOS NEGLECTED TROPICAL DISEASES Mycobacterium ulcerans binds to sulfated glycans and keratin

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009136 February 25, 2021 3 / 13

https://doi.org/10.1371/journal.pntd.0009136


10 times the calculated KD (1μM for ΔUAα1-3GalNAc-6S and 50nM for keratin extract) to

ensure saturation in direct competition using a modification of a previously described method

[20]. Maximum responses for each interaction were used as final point data for the interaction

and compared to the calculated average and addition to determine the presence of a shared or

separate binding site.

N-linked glycan endoglycosidase PNGase F treatment of keratin from

human epithelial cells

Keratin isolated from human epidermis (10 μg mixed keratins with average molecular weight

of 64.1 kDa; Sigma-Aldrich, Cat# K0253) was treated with PNGase F (New England Biolabs)

under denaturing conditions as described in the manufacturers protocol. The same quantity of

keratin was incubated in the same buffers for the same time without PNGase F as a control.

Half of each reaction, plus/minus PNGase, were run on 4–12% PAGE gels in duplicate and the

gels were cut in half and stained using different methods. One gel half was stained with the

ProteoSilver Silver Stain Kit (Sigma) following manufacturers protocol for the staining of pro-

teins. The other portion of the gel was stained using the ProteoSilver Silver Stain Kit (Sigma)

following the method for the staining of sugars as previously described [23]. A DNA ladder

was run as a control for the sugar staining and a NEB 11-250kDa prestained blue protein lad-

der was run as a control for the protein size and staining.

Results

M. ulcerans cells and MUL_3720 bind to a subset of sulfated glycans

MUL_3720 is annotated as a possible lectin, based on the presence of a B-lectin domain that

has a mannose binding consensus sequence [10], to our knowledge the only annotated lectin

in M. ulcerans. Due to this hypothesised lectin activity, both MUL_3720 and whole fixed M.

ulcerans cells were analysed for glycan binding activity using a glycan arrays. This analysis

revealed that the M. ulcerans cells bind to 64 of the 368 glycans printed on the array (Table 1

and S1 Data). We reasoned that MUL_3720 may be responsible for part of these interactions

and found that it is binding to seven glycans on the array (Table 1, S1 Data). The M. ulcerans
cells bound to a range of distinct glycans including mannose structures, Lewis and ABO blood

group antigens, sialylated glycans and sulfated glycans including both sulphated GAGs and

sulfated galactose and GalNAc structures (Table 1). MUL_3720 only recognized sulfated galac-

tose and GalNAc structures including those typical of the glycosylation present on keratins

and GAGs (Table 1) [24–26].

M. ulcerans cells and MUL_3720 bind to specific glycans with high affinity

To validate the glycan array results using a different technique and to determine the dissocia-

tion equilibrium constant (KD) of the interactions, SPR analyses were performed between free

oligosaccharides and M. ulcerans cells or purified recombinant MUL_3720 that were bound to

sensor chips (Table 2). Eight glycan structures representative for each of the distinct glycan

groups that either bound only to M. ulcerans cells or to both M. ulcerans cells and purified

MUL_3720 were chosen. These structural groups are representatives of blood group antigens

(Fucα1-2Gal), Lewis antigens (Fucα1-2Galβ1-4(Fucα1–3)GlcNAc), sulfated glycans (GAGs

including chondroitin 6S-complex polymer, chondroitin 62 disaccharide ΔUAα 1-3GalNAc-

6S and, heparin and Fucα1-2(3-O-Su)Galβ1-3(Fucα1–4)GlcNAc), mannose structures

(Manα1-3Man, Manα1-6(Manα1–3)Manα1-6(Manα1–3)Man) and sialylated glycans

(Neu5Acα2-6Galβ1-4GlcNAc). This set of structures provides a broad coverage of the glycan
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Table 1. Glycans bound by M. ulcerans cells and MUL_3720 protein in glycan array analysis. Red labelling indicates binding as determined by interaction above back-

ground in three replicate array experiments. A positive fluorescent value is defined as any value above the average background fluorescence of 20 negative control spots + 3

standard deviations. Data are presented as fold-above this background value, which were 2706±372 RFU for M. ulcerans cells and 1829±140 RFU for the MUL_3720 stud-

ies. Only glycans that showed binding are shown; see S1 Data for full array results and list of all the glycans present on the array.

Array ID Structure M. ulcerans MUL_3720

Terminal Galactose Structures

145 Galβ1-3(6-O-Su)GlcNAcβ-sp3 1.92±0.64 0.432099

146 Galβ1-4(6-O-Su)Glcβ-sp2 1.59±0.18 0.382383

147 Galβ1-4(6-O-Su)GlcNAcβ-sp3 1.94±0.34 0.441459

151 6-O-Su-Galβ1-3GalNAcα-sp3 1.87±0.40 2.44±0.88

152 3-O-Su-Galβ1-4Glcβ-sp2 1.91±0.98 0.432046

159 4-O-Su-Galβ1-4GlcNAcβ-sp3 1.73±0.26 0.234259

161 6-O-Su-Galβ1-3GlcNAcβ-sp3 1.64±0.37 2.49±0.26

178 6-O-Su-Galβ1-4(6-O-Su)Glcβ-sp2 1.17±0.26 0.442476

179 6-O-Su-Galβ1-3(6-O-Su)GlcNAcβ-sp2 1.60±0.41 1.48±0.33

180 6-O-Su-Galβ1-4(6-O-Su)GlcNAcβ-sp2 1.83±0.51 0.456808

182 3,6-O-Su2-Galβ1-4GlcNAcβ-sp2 1.99±0.62 3.29±1.77

189 3,6-O-Su2-Galβ1-4(6-O-Su)GlcNAcβ-sp2 1.90±0.45 2.46±0.56

201 3,4-O-Su2-Galβ1-4GlcNAcβ-sp3 1.92±0.92 1.52±0.64

203 Galβ1-4(6-O-Su)GlcNAcβ-sp2 1.92±0.79 0.457048

18C Galβ1-3GalNAcβ1-3Gal 1.77±0.94 0.488285

Fucosylated glycans

215 Fucα1-2Galβ1-3GlcNAcβ-sp3 1.86±0.26 0.361827

219 Fucα1-2Galβ1-4Glcβ-sp4 1.88±0.93 0.42071

542 LecLex1-6’(Lec1-3’)Lac-sp4 2.77±0.76 0.045969

7A Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc 1.63±0.92 0.325579

7E Galβ1-3(Fucα1–4)GlcNAcβ1-3Galβ1-4(Fucα1–3)Glc 1.82±0.72 0.459277

7G Fucα1-2Galβ1-4Glc 1.69±0.59 0.444367

7L Fucα1-2Galβ1-4(Fucα1–3)Glc 1.83±0.80 0.471871

7P Fucα1-2Galβ1-3(Fucα1–4)GlcNAc 1.66±0.26 0.473629

Terminal N-Acetylgalactosamine

4 GalNAcα-sp0 1.48±0.63 0.392032

193 3-O-Su-GalNAcβ1-4GlcNAcβ-sp3 1.52±0.95 0.261001

195 6-O-Su-GalNAcβ1-4-(3-O-Su)GlcNAcβ-sp3 1.93±0.86 0.409689

199 4,6-O-Su2-GalNAcβ1-4-(3-O-Ac)GlcNAcβ-sp3 1.54±0.79 2.45±0.87

2C GalNAcβ1-3Gal 1.76±0.40 0.414296

2F GalNAcα1-3Galβ1-4Glc 1.89±0.34 0.557756

Mannose

19 ManNAcβ-sp4 1.72±0.45 0.357543

5D Manα1-3Man 1.48±0.34 0.022

5E Manα1-4Man 1.56±0.81 0.213395

119 Manα1-2Manβ-sp4 1.49±0.14 0.481129

122 Manα1-6Manβ-sp4 1.49±0.28 -0.02186

123 Manβ1-4GlcNAcβ-sp4 1.69±0.54 0.47481

N-Acetylglucosamine

118 GlcNAcβ1-6GalNAcα-sp3 1.67±0.81 0.107263

149 GlcNAcβ1-4(6-O-Su)GlcNAcβ-sp2 1.68±0.29 -0.0567

493 (GlcNAcβ1–4)5β-sp4 1.47±0.32 0.24036

4C GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAc 1.44±0.59 0.137314

4E GlcNAcβ1-4MurNAc 1.48±0.73 0.04918

(Continued)
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types recognised by both M. ulcerans cells and purified MUL_3720 to aid in the identification

of the hierarchy of glycan recognition. The SPR analyses reconfirmed that both MUL_3720

and M. ulcerans cells interact with high affinity (KD in the low μM range) with sulfated glycans

and GAGs (Table 2).

In the SPR analysis, MUL_3720 showed the strongest binding to the chondroitin 6S-disac-

charide ΔUAα 1-3GalNAc-6S. However, due to lack of availability, the best MUL_3720 bind-

ing glycans from the array analysis (compounds 151, 161, 182, 189 and199) were not analysed.

There is a large difference between the complex 6S-polymer and the 6S-disaccharide of chon-

droitin, with a greater than 10-fold higher affinity to the 6S-disaccharide for both the M. ulcer-
ans cells and MUL_3720. The binding to α2–6 sialyated glycans on the glycan array were

confirmed to be differential between M. ulcerans cells and MUL_3720 with the whole bacteria

binding to the α2-6Neu5Ac terminating glycan (Neu5Acα2-6Galβ1-4GlcNAc) with

~4600-fold higher affinity than MUL3720 (Table 2).

M. ulcerans cells and MUL_3720 show high affinity interactions with

human keratin extract

Reports studying keratins isolated from primary human cells rather than cancer cell lines, have

reported the presence of keratan sulfate glycans in human keratin extracts [26]. Due to this

Table 1. (Continued)

Array ID Structure M. ulcerans MUL_3720

18G 6-O-Su-GlcNAc 1.30±0.675 0.441581

N-Acetylneuraminic acid

18K 9-NAc-Neu5Ac 1.99±0.46 0.494373

18O Neu5Gc 1.60±0.59 0.464909

169 Neu5Acα2-3Galβ-sp3 1.70±0.31 0.327169

170 Neu5Acα2-6Galβ-sp3 1.77±0.18 0.516095

171 Neu5Acα2-3GalNAcα-sp3 1.51±0.70 0.41582

172 Neu5Acα2-6GalNAcα-sp3 1.68±0.34 0.470861

174 Neu5Gcα2-6GalNAcα-sp3 1.77±0.24 0.469814

421 GalNAcβ1-4(Neu5Acα2–3)Galβ1-4Glcβ-sp2 1.83±0.41 0.469452

533 GalNAcβ1-4(Neu5Acα2-8Neu5Acα2-8Neu5Acα2–3)Galβ1-4Glc-sp2 1.62±0.77 0.468232

Glucose

9 Glcβ-sp3 1.63±0.71 0.457861

164 GlcAβ1-3GlcNAcβ-sp3 1.52±0.48 -0.03734

165 GlcAβ1-3Galβ-sp3 1.45±0.40 0.137664

166 GlcAβ1-6Galβ-sp3 1.61±0.36 0.09887

18J 6-H2PO3Glc 1.40±0.88 0.480741

Glycosaminoglycans

12A Neocarratetrose-41, 3-di-O-sulphate (Na+) 1.63±0.86 0.143975

12B Neocarratetrose-41-O-sulphate (Na+) 1.69±0.81 0.217521

12E Neocarraoctose-41, 3, 5, 7-tetra-O-sulphate (Na+) 1.67±0.91 0.102244

12G ΔUA-2S-GlcNS-6S Na4 (I-S) 1.41±0.78 0.198534

12M ΔUA-GlcNAc Na (IV-A) 1.73±0.60 0.249342

13K Chondroitin sulfate 2.71±1.74 0.836093

13L Dermatan sulfate 2.70±0.58 0.852452

13N HA—4 1.79±0.64 0.622733

14I HA 1600000 Da 2.67±0.94 0.846553

https://doi.org/10.1371/journal.pntd.0009136.t001
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observation, we analysed the interaction of keratin extracted from human epidermis (mixed

keratins with average molecular weight of 64.1 kDa) with MUL_3720 and M. ulcerans cells.

The cells bound to the keratin extract with a KD of 37.9 nM (Table 2), on par with interactions

observed for the glycans Neu5Acα2-6Galβ1-4GlcNAc and Manα1-3Man. MUL_3720 showed

a nearly 10 fold higher affinity to the keratin extract (KD 4.78 nM; Table 2). To determine

whether the binding of MUL_3720 to keratin was via the sulfated N-linked glycans, we enzy-

matically removed N-linked glycosylation from the human keratin extract. After PNGase F

treatment of the keratin extract we compared the staining using silver staining of glycans (S2

Fig lanes 3 and 4) and protein (S2 Fig lanes 6 and 7); this analysis shows that the keratin extract

comprises a heterogeneous mixture of this glycoprotein, ranging from 26-43kDa. Treatment

with the PNGase F removed all N-glycans leaving a single main band of reduced molecular

mass. To confirm that the glycosylated portion of the keratin extract was the target for

MUL_3720 we conducted competition studies between MUL_3720, ΔUAα 1-3GalNAc-6S and

keratin in SPR studies (Fig 1). These data indicate strongly for an overlap of the binding sites

for the 6S-disaccharide and the keratin extract, as the data for the binding to the combined

ligands was closer to a combined average than to an additive signal or to one outcompeting the

other.

Discussion

We observed that M. ulcerans cells bind to a far smaller group of glycans present on our glycan

array than other bacteria that have been assayed previously, including Campylobacter jejuni
and Neisseria meningitidis [19,20]. The glycan-binding profile of M. ulcerans demonstrated

that this skin pathogen recognises a range of negatively charged glycans common to sulfated

GAGs, sialoglycoconjugates and keratans. Much of the binding is to negatively charged modi-

fications (sulfation/sialylation) of carbon-6 of Gal or GalNAc. The whole M. ulcerans cells

were found in SPR analyses to have the highest affinity among the tested glycans for the sialy-

lated Neu5Acα2-6Galβ1-4GlcNAc (Table 2). While this exact glycan was not bound on the

array, smaller mono/disaccharide versions of it were tested on the array. Testing using the

larger free trisaccharide can reflect the results of smaller sugars. This is due to the flexibility of

a glycan that has not been anchored on the non-reducing end, the end normally attached to a

protein/lipid/array surface. The non-reducing GlcNAc of this sugar is not in any fixed anome-

ric configuration (α/β) due to it not being linked. All the glycans on the array have a fixed

anomeric configuration and orientation dictated by the linkage to the spacer. This spacer effect

Table 2. SPR results for the binding of M. ulcerans cells and MUL_3720 protein to selected glycans. Shown are dissociation equilibrium constants (KD) of the interac-

tions between free oligosaccharides and captured M. ulcerans cells and MUL_3720 protein; NCDI: no concentration-dependent interaction detected up to a maximum

concentration of 20 μM. See S2 Data for representative sensorgrams.

Oligosaccharide/glycoprotein M. ulcerans MUL_3720

Fucα1-2Gal 1.10 μM ± 0.23 NCDI

Fucα1-2Galβ1-4(Fucα1–3)GlcNAc 4.47 μM ± 0.62 NCDI

chondroitin 6S (ave mol weight 14kDa) 1.93 μM ± 0.44 4.68 μM ± 0.75

chondroitin 6S-disaccharide ΔUAα 1-3GalNAc-6S 171 nM ± 28 99.2 nM ± 35

heparin (ave mol weight 14kDa) 1.48 μM ± 0.19 1.29 μM ± 0.078

Neu5Acα2-6Galβ1-4GlcNAc 1.49 nM ± 0.36 6.90 μM ± 3.2

Fucα1-2(3-O-Su)Galβ1-3(Fucα1–4)GlcNAc 12.8 μM ± 3.7 17.4 μM ± 1.9

Manα1-3Man 49.8 nM ± 11 NCDI

Manα1-6(Manα1–3)Manα1-6(Manα1–3)Man 962 nM ± 90 NCDI

Human keratin extract (ave mol weight 63kDa) 37.9 nM ± 12 4.78 nM ± 1.1

https://doi.org/10.1371/journal.pntd.0009136.t002
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has been observed to effect the binding of molecules to glycans printed on arrays previously

[27,28]. It is due to the effect of presentation that testing with a second method such as SPR is

so important. In human skin Neu5Acα2–6 is known to be associated with eccrine sweat glands

[29], which may be a potential invasion site for M. ulcerans [30]. The high affinity binding of

this structure was not due to MUL_3720, and is likely to be mediated by another M. ulcerans
lectin.

Furthermore, the bacilli also bind to mannose structures, which are a major component of

N-linked glycans [31]. Mannose glycans play an important role in the skin, with mannose-con-

taining N-linked glycans important for skin homeostasis cell-cell adhesion and cell motility

[32,33]. The surface expression of mannose-containing N-linked glycans on cells of the skin

may provide an initial attachment site for M. ulcerans, but the bacterial surface factors involved

in this binding remain to be determined.

Mycobacterial species produce numerous cell surface glycan structures with a large propor-

tion of their surface glycosylation being lipid-linked sugars. Recently, glycan-glycan interac-

tions have been identified as a mechanism for pathogen association with host cells [9,20,34–

37]. Surface glycans such as the lipo-oligo/polysaccharide of Gram-negative bacteria have been

shown to bind to host surface glycans [9,34,35,38,39]. The extent and diversity of the glycolip-

ids produced by mycobacterial species may thus provide another adherence factor that can

explain the glycan recognition of M. ulcerans cells in the glycan array experiment.

The M. ulcerans protein MUL_3720 recognises a subset of the determined M. ulcerans gly-

can binding profile, including sulfated galactose and sulfated GalNAc structures. These

Fig 1. SPR competition analysis of ΔUAα 1-3GalNAc-6S and keratin extract. Values are the average maximum endpoint response units obtained individually and in

competition at 10x KD. The two columns in orange represent the expected values for either a shared binding site (average signal for keratin and ΔUAα 1-3GalNAc-6S) or

separate binding sites (additive signal for keratin and ΔUAα 1-3GalNAc-6S).

https://doi.org/10.1371/journal.pntd.0009136.g001
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sulfated glycans are primarily found as components of the GAGs chondroitin (repeating Gal-

NAc(±2,4,6S)β1-3GlcA), dermatin (repeating GalNAc(±2,4,6S)β1-3IdoA) and as keratan sul-

fate glycosylations. Keratan sulfate glycans come in a range of forms including GalNAcα
(±3,6S)1-3Gal(NAc(±6S)β [25], Gal(±6S)β1-3GlcNAc(±6S)/GalNAc(±6S) [24,26], and keratan

sulfate glycans containing Gal(±6S)β1-3GlcNAc(±6S)/GalNAc(±6S), present on proteins

including lumican, keratocan, and mimecan. The MUL_3720 protein was predicted to be a

mannose binding lectin [10], however, the glycan array analysis revealed that MUL_3720 is

binding to sulphated GAGs and not to mannose structures. MUL_3720 is an orthologue of a

predicted lectin found in multiple other mycobacterial species including M. marinum, M. basi-
liense, M. riyadhense, M. attenuatum, M. gastri, M. pseudokansasii, M. innocens and M. persi-
cum, with the M. marinum orthologue being most similar (99% sequence identity [10]) to the

M. ulcerans protein (S1 Fig). Like M. ulcerans, M. marinum infections in humans are also typi-

cally limited to the skin [40–43], indicating the possibility that M. marinum MMAR_3773 is

targeting similar glycans. M. marinum also causes a tuberculosis like infection in various fish

species [40] and sulphated GalNAc structures such as those found in keratan and chondroitin

sulfate are the most common sulfated GAGs in many fish species [44–46]. The data on

MUL_3720 may be indicative for a role of MMAR_3773 in M. marinum infections in both

humans and fish.

M. ulcerans infects skin, one of the keratin/keratan-rich tissues of the body, with the epider-

mal layer being made of keratinocytes and the dermal layer having high keratan sulfate areas

around hair follicles and sweat glands/ducts [47,48]. Furthermore, human skin keratin extracts

have indicated that keratin is either strongly associated with or is decorated by keratan sulfate

glycosylation [26] (S2 Fig). Keratan sulfate proteoglycans such as lumican are crucial compo-

nents of the dermal layer of skin [49,50]. Mice lacking lunican have skin laxity and fragility

caused by improper organisation of collagen fibrils [49]. Keratin and keratan sulfate-contain-

ing proteins have a wide range of functions throughout the body, including intimate involve-

ment in wound healing [24,47,50–52]. MUL_3720 binds with high affinity (KD = 4.78 nM) to

keratin and this binding may have a role in adherence, tissue tropism, and the formation of

extracellular clusters of the pathogen in the skin. Clustering of the bacteria appears to be a pre-

requisite for the formation of a protective cloud of mycolactone that prevents elimination of

the bacteria by phagocytes [8]. Most BU patients have only a single lesion and formation of sat-

ellite lesions is rare. This is indicative for retention of the bacteria to the infected skin area and

the abundant protein MUL_3720 may play an important role in tissue tropism and

sequestration.

Supporting information

S1 Data. Red indicates binding. Binding is determined by positive interaction in three repli-

cate array experiments. Positive interactions are determined by a background subtracted fluo-

rescence value significantly above background subtracted fluorescence of negative control

spots (average background fluorescence from 20 spots + 3 standard deviations).

(PDF)

S2 Data. Representative sensorgrams of SPR analysis.

(PDF)

S1 Table. Supplementary glycan microarray document based on MIRAGE guidelines DOI:

10.1093/glycob/cww118.

(DOCX)
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S1 Fig. Evolutionary analysis of mycobacterial MUL_3720 orthologues.

(TIF)

S2 Fig. SDS-PAGE analysis of PNGase F treatment of keratin extract. Lane 1 DNA ladder,

Lane 2 and 5 NEB prestained blue protein ladder. Lane 3 and 6 Keratin extract without PNGa-

seF treatment. Lane 4 and 7 Keratin extract with PNGase F treatment. PNGase is labelled on

the right side of the gel image.

(TIF)
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Jennings.

Data curation: Christopher J. Day.

Formal analysis: Christopher J. Day, Gerd Pluschke.

Funding acquisition: Gerd Pluschke, Michael P. Jennings.

Investigation: Christopher J. Day.

Methodology: Christopher J. Day, Katharina Röltgen, Gerd Pluschke, Michael P. Jennings.
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