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Magnetic resonance imaging (MRI) has the potential to improve our understanding of
diabetes and improve both diagnosis and monitoring of the disease. Although the spatial
resolution of MRI is insufficient to directly image the endocrine pancreas in people, the
increasing awareness that the exocrine pancreas is also involved in diabetes pathogenesis
has spurred new MRI applications. These techniques build upon studies of exocrine
pancreatic diseases, for which MRI has already developed into a routine clinical tool for
diagnosis and monitoring of pancreatic cancer and pancreatitis. By adjusting the imaging
contrast and carefully controlling image acquisition and processing, MRI can quantify a
variety of tissue pathologies. This review introduces a number of quantitative MRI
techniques that have been applied to study the diabetic pancreas, summarizes
progress in validating and standardizing each technique, and discusses the need for
image analyses that account for spatial heterogeneity in the pancreas.
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INTRODUCTION

Recent advances in magnetic resonance imaging (MRI) technology have improved pancreas
imaging, surmounting some of the difficulties inherent to the small, irregular shape of the
pancreas, and its challenging location and susceptibility to motion. MRI of the pancreas has
emerged into a valuable clinical tool for characterizing a number of pancreatic diseases. The staging
and diagnosis of both acute (1) and chronic (2) pancreatitis often includes MRI. Furthermore, MRI
can detect focal pancreatic lesions, and is employed clinically in both diagnosis of pancreatic cancer
(3) and monitoring of therapeutic response (4). However, to date, MRI of the pancreas has had
relatively limited impact on the study or management of diabetes. This likely stems in part from the
established paradigm that diabetes effects only the endocrine pancreas, or islets, which are too small
to be imaged by MRI. However, the involvement of exocrine pancreas in T1D and T2D is of
renewed interest, as reviewed by Alexendra-Heymann et al. (5). As glucose, hormones, and other
measures of glycemic control can be assessed using blood or urine tests, there may be an assumption
that imaging is unnecessary. Indeed, two fields in which imaging has entered standard clinical
practice, neurology and oncology, are both characterized by difficulty in directly assaying the tissue
of interest and/or the absence of blood biomarkers. But while blood tests will likely always be the
cornerstone of diabetes management, they are subject to important limitations. For instance, testing
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of A1C is hampered by standardization issues, poor sensitivity,
and a lack of correlation with some pathophysiological hallmarks
of diabetes (6). In type 1 diabetes (T1D), fasting hyperglycemia
presents only after destruction of a majority of beta cells (7),
suggesting that blood tests are a lagging indicator of beta cell loss
due to a high insulin reserve. Circulating autoantibodies signify
risk for T1D, but their presence can be transient and time to
progression after autoantibody presentation is highly variable
(8). These limitations and other aspects of diabetes care currently
not well characterized by blood tests may be addressed in part by
medical imaging.

This review focuses on quantitative MRI techniques and their
application to study the pancreas in both type 1 and type 2
diabetes (T2D). These techniques are summarized in Table 1.
Quantitative MRI refers to the objective measurement of
parameters derived from digital images that characterize tissue
attributes (9). This contrasts with the traditional qualitative
assessment typically performed in standard radiology practice.
Importantly, quantitative MRI techniques can map the entire
pancreas, and thus identify regions of the pancreas with altered
properties. This ability to interrogate spatial variation is
significant, as histological studies have shown that the insult
characteristic of both T1D (10) and T2D (11, 12) can differ across
the pancreas. Furthermore, quantitative MRI parameters can be
standardized across multiple sites for incorporation into clinical
trials, and ultimately used to guide clinical practice. However, in
order for quantitative MRI to be adopted to study the diabetic
pancreas, the biological underpinnings of imaging results must
be validated against gold standard measurements and techniques
must be repeatable and reproducible across imaging centers. This
review highlights a range of quantitative MRI parameters that
may improve our understanding of the diabetic pancreas,
benchmarks each technique’s progress in validation and
standardization, and concludes with a discussion of image
analyses that can accurately characterize pancreas heterogeneity.
Frontiers in Endocrinology | www.frontiersin.org 2
PANCREAS VOLUME

Owing to its exquisite soft tissue contrast, MRI can delineate
pancreas borders from neighboring organs, which can in turn be
used to quantify pancreas size. The pancreas has long been
known to be smaller in type 1 diabetes (13) and more recently
in type 2 diabetes as well (14). A meta-analysis validated these
findings across multiple studies and found smaller pancreas size
in T1D than T2D (15). Of note, the degree of pancreas reduction
in both type T1D and T2D far exceeds the volume of the
endocrine pancreas, suggesting exocrine involvement in
diabetes pathogenesis. These imaging findings are supported by
histological studies of the pancreas from T1D donors which
found reduced numbers of acinar cells (16) and altered exocrine
cell expression (17) versus controls. Investigations into the
temporal dynamics of pancreas size in T1D have found
reduced pancreas size at diagnosis (18, 19), in individuals at
risk for disease (20, 21), and longitudinal declines over the course
of disease (20). Example images demonstrating the longitudinal
decline seen in pancreas size in one individual with T1D is shown
in Figure 1. Taken together, these studies suggest that alterations
in pancreas size may be an early hallmark of T1D risk and may
correlate with disease progression.

The relationship between pancreas volume and beta cell mass
or function remains unclear. An islet transplantation study
found a direct correlation between pancreas size and islet yield,
and that this relationship was dependent on donor HbA1c (22).
This suggests that pancreas size may reflect a combination of
islet mass and function. Pancreas volume measurements
performed using MRI display high accuracy, repeatability, and
reproducibility. Porcine pancreas volume calculated from MRI
demonstrated excellent correlation with gold standard water
displacement measurements (23), indicating the accuracy of
the technique. Furthermore, in human subjects who received
MRI scans in quick succession, measurements of pancreas
TABLE 1 | Quantitative magnetic resonance imaging (MRI) techniques.

MRI Technique Pancreas Pathology
Interrogated

Change
in T1D

Change
in T2D

Biological
Confounders

Technical Confounders

Anatomical MRI Pancreas Volume ↓↓ ↓ Age; weight
Fat Fraction Mapping Fat infiltration ↔ ↑ Age, sex, visceral

adiposity
MRI acquisition; pancreas heterogeneity

Longitudinal Relaxation
(T1)

Fibrosis ? ? Age MRI acquisition; magnetic field strength; pancreas
heterogeneity

Extracellular Volume
Fraction (ECV)

Fibrosis ? ↑ MRI acquisition; contrast agent administration; magnetic field
strength; pancreas heterogeneity

Diffusion-Weighted
Imaging (DWI)

Cell density; membrane
integrity; fibrosis

↑ ? Age, sex MRI acquisition; magnetic field strength; pancreas
heterogeneity

Dynamic Contrast-
Enhanced (DCE)

Perfusion; vascular
permeability

? ↑ MRI acquisition; contrast agent administration; processing
technique; pancreas heterogeneity

Arterial Spin Labeling (ASL) Perfusion ? ? MRI acquisition; pancreas heterogeneity
Incoherent Intravoxel
Motion (IVIM)

Microvascular perfusion ? ? MRI acquisition; processing technique

Blood Oxygen Level
Dependent (BOLD)

Perfusion; oxygen
consumption

? ?

Magnetic Resonance
Elastography (MRE)

Stiffness; fibrosis ? ↑ Age MRI acquisition; processing technique
↑ = increase; ↓ == decrease; ↔ = no change; ? = unknown.
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volume were highly repeatable (24, 25). Pancreas borders can be
difficult to delineate, which may lead to reader subjectivity in
pancreas volume measurements. However, reproducibility across
multiple readers reveals good agreement between two readers
outlining the same image (24, 25). One caveat is that pancreas
volume changes over the course of the human lifespan in the
absence of disease, with rapid increases in size over childhood
and pancreas atrophy in later life (14). Current quantification of
pancreas size typically normalizes to body weight or surface area
to account for these dynamics in pancreas size over the lifespan.
Other factors that account for the large variations in pancreas
volume seen between individuals are currently not known, but
warrant further investigation.
FAT FRACTION MAPPING

MRI can measure the fat composition of tissue, as protons
associated with fat and water spin with slightly different
frequencies. Thus, their relative concentrations in a voxel (a
portmanteau of “volume element”, i.e., a three-dimensional pixel)
of interest are relatively easy to separate. The relationship between
pancreatic fat deposition and diabetes has been demonstrated in
rodent models, in which ectopic fat accumulation leads to beta cell
Frontiers in Endocrinology | www.frontiersin.org 3
dysfunction (26). Similarly, MRI studies of people with T2D have
demonstrated higher pancreatic fat associated with reduced beta
cell function (27, 28). However, a number of other studies have
failed to find a correlation between T2D and pancreatic fat content
(29, 30). MRI may be sensitive to declines in pancreatic fat content.
A study of diet-induced reversal of T2D found that diabetes
reversal was accompanied by a decline in pancreatic fat fraction
(31). Furthermore, pancreatic fat content may be increased in
individuals at risk for developing T2D (32, 33) (Figure 2). In
contrast with studies of T2D, MRI measures of pancreatic fat
content are not altered in T1D (34), although some autopsy studies
have found fatty infiltrate in the pancreas of T1D donors.

In terms of standardization and validation, fat fraction
measurements are relatively advanced, owing in part to the
simplicity of the technique and the availability of standard
processing tools from MRI vendors. Histological measures of
fat content from resected pancreata and MRI quantification of fat
fraction demonstrate excellent agreement (35). Furthermore,
test-retest measurements of pancreatic fat content calculated
using MR spectroscopy were found to be repeatable (36).
However, a meta-analysis of five studies of pancreatic fat
content in T2D demonstrated high heterogeneity in fat
measurements between studies (15). As is typical of MRI
techniques, the acquisition and processing used to calculate the
FIGURE 2 | Assessment of pancreatic fat content in subjects with lower (A) and higher (B) pancreatic fat content. Pancreatic fat content was measured as proton-
density fat fraction (PDFFpanc) in a region of interest (red circle). L = liver; S = spleen. (C) Differences of pancreatic fat content between controls, subjects with
prediabetes and diabetes displayed by box-and-whisker. Figure adapted from Heber et al. (32) under a Creative Commons License.
A B

FIGURE 1 | The pancreas of a 19-year-old male at diagnosis with T1D (A) is 25% smaller one-year post diagnosis (B). The pancreas is displayed in green with the
kidneys, ribs, and spine shown for anatomical context.
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fat fraction may impact the measurement (37), and may account
for some of the differences seen between studies. Additionally,
there exist regional variations in fat fraction throughout the
pancreas, with different values in the head, body, and tail (38)
(Figure 2). Finally, pancreatic fat content can be influenced by age,
sex, and visceral adipose tissue (32). These demographic factors
must be carefully accounted for when examining pancreatic fat
content in individuals with diabetes. Unfortunately, reference
standards for pancreatic fat content and its relationship with
demographic factors are not well established at present.
RELAXOMETRY

Longitudinal Relaxation (T1)
Generation of an MR image relies on perturbation (or tipping) of
protons from the main magnetic field by a radiofrequency pulse.
Longitudinal relaxation refers to the return of these perturbed
protons to their equilibrium state. The relaxation rate for each
voxel within an image is a function of the intrinsic tissue
parameters and is quantified by the time constant T1 (not to be
confused with T1D). This is the basis for so called T1-weighted
images, in which fat, injected contrast agents, and tissues with high
protein content appear bright. Of note, the pancreas appears
bright on a T1-weighted image, presumably due to the presence
of high levels of aqueous protein in the acinar cells (39). In
addition to qualitative T1-weighted images, one can employ a
variety of techniques to quantify the T1 value characteristic of each
voxel (40). Quantitative T1 mapping of the pancreas has
demonstrated increased T1 in chronic pancreatitis (41),
suggested that T1 may be sensitive to pancreatic inflammation.
In studies of individuals with T2D, the T1 value was found to be
higher than controls and correlated with HbA1c in one study (42).
In contrast, another study found lower T1 values in T2D, although
these values were also significantly different than controls (43).
Frontiers in Endocrinology | www.frontiersin.org 4
The T1 of the pancreas in individuals with prediabetes is also
increased (44) (Figure 3), suggesting that the alterations
responsible for prolonged longitudinal relaxation may occur
early in the development of T2D.

Validation and standardization of T1 measurements of the
pancreas are underway. The foremost hurdle is determining the
specific pancreas pathology reflected by T1 measurements. In
the heart, histological measurements of fibrosis have correlated
with T1 (45). Similar studies of resected pancreas are limited but
have shown correlation of T1 with grade of pancreatic fibrosis
(46). Standardization of T1 measurements must take into account
known correlations between pancreas T1 values and age (47),
although these associations have not been seen in all studies (48).
Additionally, there is a known dependence of T1 onmagnetic field
strength of the MRI scanner (47). Finally, there are a variety of
different techniques used to generate T1 maps. These methods
display some discrepancies when applied to image the pancreas of
the same individual (49). Further work is needed to standardize T1
mapping techniques for application to the pancreas.

Extracellular Volume Fraction (ECV)
Contrast agents are often used to alter tissue enhancement on MR
images. These contrast agents are typically paramagnetic agents
which shorten T1, thus leading to enhancement of tissues with high
contrast agent perfusion. This technique is commonly used in
oncological imaging, where well vascularized tumors “light up”
after contrast agent administration. By examining changes in T1
maps in both the tissue of interest and blood and coupling it with
the hematocrit, the extracellular volume fraction (ECV) can be
calculated. ECV has been developed primarily for cardiac MRI
applications, and has been found to be sensitive to a number of
cardiomyopathies (50). In the pancreas, ECV has been shown to
increase with increasing grade of chronic pancreatitis (51). ECV of
the pancreas is also higher in individuals with T2D and, similar to
native T1 maps, correlates with HbA1c (42).
FIGURE 3 | (A) A 48‐year‐old female with an HbA1c value of 5.5% with T1 map displayed in rainbow color shows the mean pancreatic T1 value of 866.3 msec. (B) A
76‐year‐old female with an HbA1c value of 6.0% with T1 map displayed in rainbow color shows the mean pancreatic T1 value of 924.9 msec. The white circle in each
panel indicates a regions-of-interest (ROI) manually placed in the pancreas. Figure adapted from reference (44) with permission, © 2020 John Wiley & Sons, Inc.
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The biological basis for increased ECV in the pancreas in
diabetes is assumed to be due fibrosis. However, while MRI has
demonstrated correlation between fibrosis and ECV in the heart
(52), similar correlation of imaging and pathology are lacking in
the pancreas. ECV values in the pancreas do not appear to be
influenced by age or sex (47). The repeatability and reproducibility
of ECV measurements have been established in the myocardium.
These studies have demonstrated general agreement, although as
with non-contrast enhanced T1 measurements, the technique
used for quantification can impact the result (53). Of note, ECV
requires administration of a contrast agent containing gadolinium,
which has been the subject of recent concerns over long term
brain retention.
DIFFUSION-WEIGHTED IMAGING (DWI)

Diffusion-weighted imaging (DWI) measures the random
Brownian motion of water molecules within a voxel. In
biological tissue, DWI reflects an amalgamation of cell density,
cell membrane integrity, and viscosity. DWI can be quantified by
adjusting the diffusion weighting (commonly referred to as the b-
value) of two images and comparing their intensities to yield the
apparent diffusion coefficient (ADC). While early applications of
DWI were primarily limited to the brain due to long imaging
times, advances in MRI hardware and processing have reduced
acquisition times for abdominal imaging. In the pancreas, MRI
has proven useful for detecting and characterizing malignant
pancreatic masses (54), similar to the success of DWI in other
oncological applications. Furthermore, in chronic pancreatitis
the ADC value has been found to be reduced compared with
controls (55). Applications of DWI to study the diabetic pancreas
are limited. One study found reduced ADC in individuals with
fulminant T1D (55). Our study of individuals with recent onset
T1D did not find differences in ADC versus controls when
measurements were averaged throughout the pancreas (20).
However, we did find altered distributions of ADC in the
pancreas in T1D, with an increased number of voxels with high
Frontiers in Endocrinology | www.frontiersin.org 5
ADC values in T1D. These areas of high ADC (corresponding to
areas of increased water diffusion, and presumably inflamed
tissue) were found in focal areas in the pancreas in T1D at a
greater rate than control pancreas (Figure 4). In individuals with
suspected pancreatic disease, a negative correlation was found
between pancreatic ADC and HbA1c (56). In addition to ADC,
DWI can be quantified using other metrics. For instance, diffusion
kurtosis can be calculated by assuming non-Gaussian Brownian
motion and acquiring DWI with strongly diffusion-weighted
images (higher ‘b-values’). This kurtosis is thought to reflect the
restriction of water diffusion by cell membranes and other tissue
microstructure. Similar to ADC, diffusion kurtosis was found to
correlate with HbA1c, with higher kurtosis in the group with
highest HbA1c (56).

As DWI is a mixed measure that reflects a number of tissue
parameters influencing water diffusion, the biological basis in the
pancreas is still under investigation. One study of resected
pancreas found reduced ADC in more fibrotic tissue (46),
presumably reflecting increased cellular density in fibrous
tissue. The ADC in healthy pancreas appears to display
regional variation over the pancreas, with highest values in the
pancreas head and lowest values in the body (57). ADC values
are also influenced by age and sex (58). A study across multiple
MRI scanners found that ADC measures of the pancreas are
generally reproducible, although, similar to T1 measurements,
ADC is influenced by magnetic field strength (59). Measurement
of ADC in the pancreas is likewise influenced by the acquisition
scheme. DWI acquired with higher diffusion weighting (higher
b-values) results in a higher calculated ADC (60). Thus,
accurately quantifying DWI of the diabetic pancreas requires
standardization of image acquisition and normalization for
pancreas anatomy and patient demographics.
PERFUSION

The endocrine pancreas is characterized by a dense network of
capillaries, which receive a significantly higher rate of blood flow
A B

FIGURE 4 | Diffusion-weighted imaging (DWI) of the pancreas of a control (A) and individual with recent-onset T1D (B) displays focal alterations in the apparent
diffusion coefficient (ADC), designated with arrows, with more focal areas of increased diffusion in T1D. Images display contiguous slices spanning the pancreas
pseudo colored with contour plots according to the ADC value according to the ADC value in units of mm2/s.
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than exocrine tissue (61). Alterations in islet vasculature have
been found in the pancreas of organ donors with both T1D (62)
and T2D (63). Thus, there is intense interest in studying islet
blood flow and measuring it non-invasively in humans. MRI is
widely used clinically to measure cerebral and myocardial
perfusion. Four different MRI techniques for measuring
perfusion are introduced below along with implications for
pancreas imaging.

Dynamic Contrast-Enhanced MRI
(DCE-MRI)
Dynamic contrast-enhanced MRI (DCE-MRI) relies upon
acquisition of T1-weighted MR images after injection of a
paramagnetic contrast agent. For further information on T1-
weighting and MR contrast agents, please refer back to
Longitudinal Relaxation (T1) and Extracellular Volume
Fraction (ECV), respectively. These contrast agents traverse
through the vascular network and extravasate out of permeable
vessels. The “dynamic” nature of this technique is derived from
the acquisition of serial images over the time course of contrast
agent distribution. The resultant time activity curves for each
voxel in the image can be analyzed using pharmacokinetic
models to yield estimates of perfusion parameters (64). DCE-
MRI has shown promise for imaging pancreatitis (65) and
tracking response of pancreatic cancer to therapy (66). A study
of DCE-MRI in individuals with T2D found increased vascular
permeability but lower plasma volume in the pancreas (Figure
5), and that the magnitude of these perfusion changes increased
with longer disease duration (67). A later study was unable to
replicate these findings, and also did not determine an effect of
glucose bolus on DCE-MRI parameters (43).

Correlation of DCE-MRI parameters and pathology has been
performed in pancreas sections resected from individuals with
pancreatic cancer. This analysis found correlation between DCE
parameters and both fibrosis and microvascular density (68).
Repeatability and reproducibility of DCE-MRI has been
notoriously difficult to both measure and improve, as
measurements can be influenced by acquisition parameters,
choice of pharmacokinetic model, and contrast agent
administration protocol. One study of repeatability in the
pancreas found variability of 21% and also measured regional
variations in the pancreas head, body, and tail (69). As with ECV
Frontiers in Endocrinology | www.frontiersin.org 6
measurements, contrast agent safety can be a concern when
imaging in young individuals or performing repeat scans.

Arterial Spin Labeling (ASL)
Concerns over contrast agent injection have spurred the
development of MRI techniques sensitive to perfusion that do
not require exogenous sources of contrast. One such technique is
known as arterial spin labeling (ASL) which magnetically labels
blood flowing through a plane containing feeding blood vessels
and images the resultant distribution of this tagged blood
volume. ASL has demonstrated the ability to image increases
in pancreas perfusion due to secretin (70), a hormone known to
induce pancreatic fluid and bicarbonate secretion. Similarly, ASL
of the pancreas has measured increased pancreas perfusion in
response to glucose bolus (71). A study performing ASL during
hyperglycemic clamp did not detect a difference between
individuals with T1D and controls (72). However, ASL has
been subject to a number of recent technological advances and
continues to rapidly improve.

There have not been studies comparing ASL measurements in
the pancreas to pathology. However, comparisons between DCE-
MRI derived perfusion with those from ASL display strong
agreement (73). Thus, ASL may also reflect microvascular
density throughout the pancreas. Of note, this parameter may
vary across the pancreas, as ASL measurements found differences
in the pancreas heady, body, and tail (74). The repeatability of
ASL in the pancreas is moderate (70). Further work is needed to
define the reproducibility of ASL across different MRI scanners
and establish standardized acquisition and processing schemes.

Intravoxel Incoherent Motion (IVIM)
In previous discussion of diffusion-weighted MRI (Section 5), we
noted that Brownian motion can be analyzed as having non-
Gaussian distribution. While analyzing high b-value data yields
diffusion kurtosis measurements, fitting non-Gaussian diffusion
using low b-value data yields intravoxel incoherent motion
(IVIM). IVIM is thought to be sensitive to the microscopic
perfusion of capillaries (75). In pancreas imaging, IVIM may
help characterize benign versus malignant pancreas lesions (76).
While we are not aware of studies of IVIM in individuals with
diabetes, IVIM has demonstrated correlation with glucose
stimulated perfusion increases in porcine models (77). Future
A B

FIGURE 5 | Pixel-by-pixel color maps for transfer constant obtained with region of interest analysis. Calculated values of each pixel in region of interest can be seen
in colors (red, yellow, and green are high, middle, and low values, respectively). (A) Color map in 61-year-old male coronary artery disease patient with type 2
diabetes shows a mean transfer constant = 1.291 min−1. (B) Color map in 54-year-old male coronary artery disease patient without type 2 diabetes shows a mean
transfer constant = 0.787 min−1. Figure reproduced from reference (67) with permission, © 2009 RSNA.
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studies examining response to glucose in diabetes using IVIM
are warranted.

The biological basis of IVIM in the pancreas has been
demonstrated to derive from the blood component using blood
suppression techniques (78). Furthermore, IVIM parameters
agree with PET and microsphere measurements of pancreas
perfusion (77). Repeatability and reproducibility of pancreas
IVIM is influenced by both image acquisition and processing
techniques (79). Currently, acquisition and processing of IVIM
are complex techniques which are not well standardized
across studies.

Blood Oxygen Level Dependent (BOLD)
BOLD imaging is widely used in neuroscience to image brain
activity. BOLD reflects the accumulation of deoxyhemoglobin in
response to oxygen consumption (which in the brain is posited to
be a surrogate for neural activation). Fewer BOLD applications
have been performed outside the central nervous system,
although there are studies exploring renal oxygenation using
BOLD (80). Similarly to IVIM, studies in individuals with
diabetes are lacking, but there is a report showing alterations
in BOLD MRI in the pancreas after glucose ingestion (81).

Decades after its first use, the biological basis of BOLDMRI is
still under investigation. The biological correlate of BOLD signal
in the pancreas, as well as its repeatability and reproducibility are
not well characterized.
MAGNETIC RESONANCE
ELASTOGRAPHY (MRE)

Magnetic resonance elastography (MRE) consists of imaging
performed while a tissue is subjected to high frequency
vibrations. MRE interrogates the movement of vibration-
induced shear waves through the body; these waves move
slower in stiffer tissues. The primary clinical application of
MRE currently is detecting fibrosis and cirrhosis in chronic
liver disease. Applications to the pancreas are limited by the
small size of the pancreas, but have found increased stiffness in
chronic pancreatitis (82). Similar to perfusion measurements,
MRE has been performed after glucose bolus which led to
pancreas stiffening (83). Additionally, individuals with diabetes
Frontiers in Endocrinology | www.frontiersin.org 7
have been found to have higher pancreas stiffness than controls
(84), as shown in Figure 6.

Histological studies of resected pancreata found a correlation
between MRE-derived stiffness and both fibrosis and acinar
atrophy (85). MRE measurements of pancreas stiffness are
repeatable in test-retest studies, but are dependent on the
vibration frequency used (83) and the age of the individual (86).
RADIOMICS: ACCOUNTING FOR
HETEROGENEITY THROUGHOUT
THE PANCREAS

MRI of the pancreas interrogates the complex structure of the
pancreas encompassing islets, acinar cells, and the ductal
network. There are known differences across the pancreas in
the relative concentration of these components, with higher
relative numbers of islet in the pancreas tail (87). A common
theme throughout the MRI techniques introduced in this
review is that they were frequently different in the pancreas
head, body, and tail of the same individual. This was seen for
measurements of fat fraction (38), diffusion (57), and perfusion
measured by DCE (69) or ASL (74). Furthermore, spatial
heterogeneity of the pancreas is further altered in diabetes, as
has long been appreciated in autopsy studies of the pancreas
from donors with diabetes (88). In T1D, there is marked spatial
heterogeneity in the presence of the immune infiltrate
characteristic of T1D (10) as well as individuals at risk for
disease (89). Similarly, the islet amyloids and corresponding
exocrine fibrosis found in T2D show lobular distribution
throughout the pancreas (11, 12). The heterogeneity of
quantitative MRI parameters throughout the pancreas is
evident in Figures 2–6.

The spatial heterogeneity in MRI measures of the pancreas in
general, and in the diabetic pancreas specifically, has important
implications when quantifying MRI parameters. MRI analysis is
commonly performed using a regions-of-interest (ROI) placed
over a section of the pancreas, as demonstrated in Figures 2 and
3. However, in a mosaic tissue such as the pancreas the choice of
ROI placement can influence the parameter of interest. An ROI
placed in the same individual’s pancreas may have significantly
different values if it is placed in the pancreas head versus tail.
FIGURE 6 | Representative pancreatic axial magnitude images (A, pancreas outlined in blue) and elastograms (B, pancreas outlined in yellow). Box plot in (C) compares
pancreas stiffness in individuals with a history of diabetes versus controls. Figure adapted from reference (84) with permission, © 2020 John Wiley & Sons, Inc.
December 2020 | Volume 11 | Article 592349

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Virostko MRI of Human Diabetic Pancreas
Even within the same region of the pancreas, ROI-based
calculations may be dependent on the proportion of endocrine,
ductal, or fatty infiltrate encompassed in the ROI. A helpful
analogy can be found in histology, where analyzing only a
single section of a slide induces sampling bias. Averaging
measurements over multiple sections and slides gives more
robust analysis of histological samples. Similarly, one can
average MRI parameters over the entire pancreas, although this
technique may be insensitive to sparse alterations, such as those
found using DWI in T1D (20). For instance, if only a small
portion of the pancreas is affected but the entire pancreas is
averaged together, then the preponderance of similar intensity
voxels can average out sparse voxels with significantly higher or
lower intensities.

The insufficiency of ROI or whole organ-based analyses
coupled with advances in high performance computing has led
to so-called “radiomic” analysis of medical image data. The field
of radiomics, excellently reviewed by Gillies et al. (90), couples
high throughput feature extraction from quantitative imaging
data with multi-dimensional texture, histogram, shape, and
wavelet analysis. These radiomic features are uniquely suited to
quantify spatially variant organs, such as the different habitats
present in tumors (91). Likewise, radiomic analysis show great
promise for characterizing and quantifying the spatial
heterogeneity of the diabetic pancreas. For example, we have
Frontiers in Endocrinology | www.frontiersin.org 8
demonstrated that histogram analysis of the pancreas of
individuals with T1D identifies differences in DWI that is not
evident when averaging the whole pancreas (20). The relative
advantages and disadvantages of image analysis techniques for
pancreas MRI are summarized in Table 2. Radiomic analysis of
the diabetic pancreas has not been well characterized and
represents a promising new direction in the field.
CONCLUSION

Quantitative MRI techniques have been rapidly integrated into
clinical practice across a number of medical specialties. Their
contribution to endocrinology and the study of the pancreas in
diabetes is still under investigation. A number of techniques
display promise for improving our understanding of diabetes
pathogenesis in the pancreas and evaluating response to therapy.
The flexibility of MRI, which gives rise to a plethora of
techniques interrogating different aspects of disease, is also a
hindrance, in that imaging protocols employ different acquisition
and processing techniques. Thus, comparing studies across sites
can be difficult. Standardized imaging and processing pipelines
are needed in order to compare studies and perform multisite
clinical trials. Analysis of quantitative MRI studies of the
pancreas will be aided by radiomic analysis in order to account
for pancreas heterogeneity, especially the heterogeneity
characteristic of the diabetic pancreas.
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