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Abstract: Exosomes are nanosized lipid vesicles secreted into blood and other body fluids 

and serve as vehicles for intercellular communication. Despite being an important component 

of the tumor microenvironment (TME), exosomal targeting and uptake into recipient cells are 

still not fully understood. Few studies have looked at lymphoma exosomes and their interac-

tions with circulating blood cells. In this study, we examine the exosomal uptake distribution 

among peripheral blood leukocytes (PBLs) using vesicles derived from a diffuse large B cell 

lymphoma cell line, WSU-DLCL2. Lymphoma cells survive, proliferate, and are protected from 

the cytotoxic effects of chemotherapeutic agents by soluble factors or by direct contact with 

inflammatory and stromal cells within the TME. In an attempt to close the gap in knowledge 

concerning lymphoma TME immunosuppression, we have treated normal human PBLs with 

PKH67-labeled lymphoma exosomes and monitored the uptake by measuring fluorescence at 

different time points using flow cytometry and fluorescent microscopy. Our results show that of 

the four populations examined, B cells and monocytes demonstrated uptake of PKH67-labeled 

exosomes, while T cells and NK cells displayed significantly less uptake.
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Introduction
Diffuse large B cell lymphoma (DLCL) is an intermediate grade and the most com-

mon form of non-Hodgkin’s lymphoma (NHL), affecting 40–50% of adult lymphoma 

patients in the US.1 Chemokines, cytokines, and growth factors are critical for the 

growth and survival of these malignant B cells.2 In addition, specific oncogenes such 

as c-Myc have been shown to have proliferation regulatory ability in malignant B cells 

both ex vivo and in vivo.3 The cross talk between the tumor microenvironment (TME) 

and the DLCL cells is mainly mediated by direct cell-to-cell interactions but has recently 

been shown to be facilitated through extracellular vesicle-trafficked soluble factors.4,5

Exosomes are small 30–150 nm sized extracellular vesicles important in the inter-

cellular communication between cells.6–9 Communication can occur both by transfer 

of nucleic acids and proteins and by binding cell surface receptors and inducing cell 

signaling pathways. Both normal and tumor cells release exosomes, although tumor-

derived exosomes (TEXs) have been the subject of a wide range of studies. TEXs 

have been shown to be involved in many aspects of the TME, including immune 

suppression,10,11 antigen presentation,12–16 a means of acquiring chemotherapeutic 

resistance,17–21 as biomarker reservoirs,22–28 inducers of angiogenesis,29–31 and vehicles 

of niche preparation for metastasis.32–36
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However, the modes and mechanisms of uptake are not 

completely understood. Cells appear to internalize exosomes 

through several endocytic pathways, including clathrin- and 

caveolin-dependent endocytosis, phagocytosis, and lipid 

raft-mediated internalization. It is likely that cells utilize 

multiple routes to take up exosomes, depending on the pro-

teins, glycoproteins, and lipids found on the surface of the 

vesicles and the target cell itself.37 Numerous studies show 

proficient uptake of TEXs by endothelial cells,38–40 epithelial 

cells,41 fibroblasts,42 myeloid precursors in bone marrow,35,40 

mesenchymal stem cells,40 and other tumor cells.43

There have been few studies investigating uptake of exo-

somes by peripheral blood cell populations. Zech et al44 found 

that rat pancreatic adenocarcinoma exosomes could be taken 

up by all leukocyte subpopulations examined, with CD11b+ 

cells demonstrating higher internalization than T or B cells. 

At this time, there is only one other publication addressing 

peripheral blood uptake of lymphoma exosomes – a study by 

Hazan-Halevy et al45 looking at mantle cell lymphoma exo-

somes and their preferential uptake by B-lymphocytes. DLCL, 

an aggressive form of lymphoma representing >40% of adult 

lymphoma patients, has not been investigated. It is therefore 

important to investigate these interactions between the lym-

phoma cells and the TME in order to find and exploit new 

prognostic factors and to design new therapeutic approaches.

Methods
Cell culture
Human lymphoma cell lines WSU-DLCL2 and WSU-FSCCL 

were developed at Wayne State University and are Epstein–Barr 

virus-negative.46 Cell lines were grown in Roswell Park Memo-

rial Institute (RPMI) 1640 media supplemented with 10% United 

States Department of Agriculture-sourced heat-inactivated fetal 

bovine serum (FBS; Mediatech, Manassas, VA, USA), 4 mM 

L-glutamine, 0.1 mg/mL streptomycin, and 100 units/ mL peni-

cillin and incubated at 37°C and 5% CO
2
. Trypan blue stain-

ing was used to measure cell density (confluent at 1×106 / mL) 

and viability (>90%).

Peripheral blood from healthy apheresis blood donors 

were obtained from the Life Stream Blood Bank (San Ber-

nardino, CA, USA) according to our approved Loma Linda 

University institutional review board (IRB) protocols. The red 

blood cells were lysed using an ACK lysis buffer containing 

8.3 g/L NH
4
Cl, 1 g/L KHCO

3
, and 1.8 mL 5% EDTA and 

centrifuged for 5 minutes at 1,500 rpm at 4°C in a Beckman 

Coulter Allegra X-15R centrifuge, equipped with an SX4750 

rotor to obtain a pellet of peripheral blood leukocytes (PBLs). 

These PBLs were allowed to rest overnight before exosome 

treatment in 5×106/mL complete RPMI, with or without 

100 IU/mL IL-2. This study, in its entirety, was approved by 

Loma Linda University’s IRB.

Exosome isolation
Lymphoma cells were cultured for 24 hours in media depleted 

of exosomes from FBS (Hyclone Laboratories, Inc., South 

Logan, Utah, USA) by overnight ultracentrifugation at 

100,000× g. This conditioned medium was subjected to 

serial centrifugation, removing cells (300× g, 5 minutes) and 

removing noncellular debris (2,000× g for 10 minutes). The 

supernatant was then centrifuged at 10,000× g for 30 minutes. 

Exosomes were isolated using the commercially available 

ExoQuick-TC™ (System Biosciences, Mountain View, CA, 

USA) at a 1:5 ratio of reagent to conditioned medium and 

incubated overnight at 4°C. A low speed spin at 1,500× g for 

30 minutes was sufficient to pellet the precipitated vesicles. 

Exosome pellets were resuspended in 40–70 μL PBS and 

protein quantified by bicinchoninic acid assay protein assay 

(#23225; Pierce/Thermo Scientific, Rockford, IL, USA). Size 

of the vesicles was examined using dynamic light scattering 

(DLS) with a Nicomp N3000 nanoparticle sizing instrument 

(Particle Sizing Systems, Port Richey, FL, USA).

Uptake of exosomes
The exosome pellet, obtained from ExoQuick isolation, was 

labeled with PKH67 Green Fluorescent Cell Linker Kit (Sigma 

Aldrich; Saint Louis, MO, USA) as per manufacturer’s protocol, 

with modifications. Briefly, exosomes in PBS corresponding to 

200 μg were added to 250 mL of diluent C. As a control, the same 

volume of PBS was also added to 250 mL of diluent C (no exo-

some control) and processed in parallel. The exosome suspen-

sion was added to an equal volume of 2× PKH67 dye mixture 

and mixed well for 4 minutes. The dye reaction was stopped 

by addition of 9 mL of media depleted of bovine exosomes by 

ultracentrifugation and then spun for 90 minutes at 110,000× 

g using an SW41 rotor. The pellet was washed in PBS with a 

second ultracentrifugation. The PKH67-labeled vesicles were 

incubated either with PBLs for 1, 4, or 24 hours for dose–curve 

experiments or with NK cells for 30, 60, or 240 minutes. Cells 

were washed with PBS, stained with surface marker antibod-

ies, and fixed in 2% paraformaldehyde before proceeding with 

further analysis by flow cytometry or microscopy.

Flow cytometry
Antibodies directed against the following markers and 

directly labeled with indicated fluorophore were used to 

stain PBLs for flow cytometry analysis: CD3-PE, CD1a-PE 

(Becton, Dickinson [BD] Biosciences, San Diego, CA, USA); 

CD14-antigen-presenting cells (APC, M5E2; BioLegend; 
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San Diego, CA, USA); CD56-APC (MY31; Tonbo; San 

Diego, CA, USA); and CD19-APC (H1B19). Live cell exo-

some binding was distinguished from dead cells using fixable 

viability dye eFluor 780 (eBioscience; San Diego, CA, USA). 

Cells were run on MACSQuant Analyzer (Miltenyi Biotec; 

Bergisch Gladbach, Germany) and data analyzed using 

FlowJo software (Tree Star; Ashland, OR, USA). The percent-

age of cells positive for PKH67+ exosomes was determined 

for each cell population. The gating strategy used to assess 

uptake of PKH67-labeled exosomes is shown in Figure S2.

Microscopy
Samples were spun onto poly-l-lysine slides using StatSpin 

CytoFuge 2 (Beckman Coulter; Brea, CA USA) set at 

800 rpm for 4 minutes. One drop of mounting medium 

containing 4′,6-diamidino-2-phenylindole (DAPI) stain to 

visualize nuclear structures (Vectashield, Vector Laborato-

ries, Burlingame, CA, USA) was placed onto the glass slide 

before adding glass coverslip and sealing with nail polish. 

Slides were imaged using a fluorescence light microscope 

(BIOREVO BZ7000; Keyence; Osaka, Japan) and a Zeiss 

LSM 710 NLO confocal microscope.

Statistical analysis
All the quantitative data of this study were expressed as 

mean ± SD, and statistical analysis was conducted using 

GraphPad Prism software v.5.01 for Windows (San Diego, 

CA, USA). To test for statistical significance, nonparametric 

two-tailed Mann–Whitney analysis was performed. Compari-

sons between groups were performed using Student’s t-test 

with probability p<0.05 considered to indicate a statistically 

significant difference. Each experiment was repeated at least 

twice to assess the level of reproducibility.

Results
Cellular uptake characterization of 
DLCL2 exosomes
Exosome uptake by peripheral blood cells was measured 

using flow cytometry and fluorescent microscopy, with 

demonstrated uptake differing between cell lineages and 

in a dose- and time-dependent manner. Specifically, to 

study the uptake of lymphoma-derived exosomes by PBLs, 

vesicles were isolated from the conditioned media from the 

WSU-DLCL2 cell line. Vesicle size was evaluated by DLS 

and confirmed to be consistently in the reported range of 

exosomes (30–150 nm; Figure S1).

The exosomes were labeled with a lipophilic dye, PKH67, 

after which 25, 50, 100, 200, or 400 mg of these exosomes were 

incubated with PBLs for 1, 4, and 24 hours. Internalization by 

confocal microscopy was performed and analyzed. Exosomal 

internalization was observed as early as 1 hour postincubation 

with longer incubation times and higher concentrations resulting 

in higher accumulation of exosomes inside the cells (Figure 1).

To study the kinetics of exosome accumulation, we per-

formed quantitative flow cytometry. PKH67-labeled DLCL2 

exosomes were incubated with PBLs, and the fluorescence 

intensity was detected. Uptake was most prominent by B cells 

and myeloid-derived cells and less so in T cells and NK cells 

(Figure 2). The uptake of exosomes from healthy B cells was 

rapid in the higher exosome concentrations, with 28% positive 

after 1 hour at 400 mg/mL (Figure 2A and B) and increasing 

to 69% at 24 hours at 400 mg/mL (Figure 2B). Cell specificity 

for uptake of DLCL2-derived exosomes was further studied in 

a single experiment using B cells (CD19+), T cells (CD3+), 

NK cells (CD56+), and monocytes (CD14+; Figure 2C and 

S3). Compared to B cells where 28% to 70% of cells showed 

exosome uptake in the 400 mg/mL exosomes over the 24-hour 

study, NK cells, monocytes, and T cells only maximized 6%, 

8%, and 3% uptake, respectively (Figure 2C and S3). After 

a second independent experiment was concluded, CD19+ B 

cells and CD14+ monocytes maximized nearly 40% in the 

400 mg/mL incubation while CD3+ T cells and CD 56+ NK 

cells only proved to be able to uptake nearly 10% (Figure 2D).

The specificity of DLCL2 exosomes was further tested 

using exosomes derived from FSCCL and HeLa cells. Cocul-

ture of B cells and NK cells with 200 mg/mL PKH67-labeled 

DLCL2, FSCCL, and HeLa-derived exosomes for 1-hour 

1 h

No exosome
control

4 h

24 h

25 µg 50 µg 100 µg 200 µg 400 µg
Exosomes (µg/mL)

Figure 1 Peripheral blood leukocytes take up DLCL2 exosomes. 
Notes: Peripheral blood leukocytes were treated with DLCL2 exosomes 
(25–400 mg/mL) and harvested at 1, 4, and 24 hours. Cells were cytospun onto 
poly-l-lysine-coated slides. Microscopy images acquired with BIOREVO BZ7000 
fluorescent microscope (Keyence), 20× magnification. Nucleic acids are stained 
with DAPI (blue), and exosomes bind and internalization is visualized with PKH67 
(green). Cells without the addition of exosomes were used as a negative control. 
Several fields were analyzed for each labeling condition, and representative results 
are presented. The data are representative of two independent experiments.
Abbreviations: DLCL, diffuse large B cell lymphoma; DAPI, 4′,6-diamidino-2-
phenylindole; h, hour.
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Figure 2 Uptake of PKH67-labeled exosomes in a time- and dose-dependent manner. 
Notes: DLCL2 exosomes were labeled with PKH67 and then added to peripheral blood cells for various lengths of time (1, 4, and 24 hours) and treatment amounts (25, 
50, 100, 200, and 400 mg/mL). As measured by flow cytometry, the uptake of labeled exosomes proceeded in a time- and dose-dependent manner. (A) Uptake of PKH67-
labeled exosomes after 4 hours by CD19-APC cells (red). Microscopy images acquired with Zeiss LSM 710 NLO confocal microscope, 60× magnification. (B) Representative 
flow cytometry data of CD19+ cells. (C) Graphical representation of the percentage of PKH+ cells in each of the four lineages derived from one donor: B cells (CD19+), 
monocytes (CD14+), NK cells (CD56+), and T cells (CD3+). (D) Combined data from two separate experiments depicting the disparity in uptake between each cell 
population. Results are expressed as mean ± SD.
Abbreviations: DLCL, diffuse large B cell lymphoma; APC, antigen-presenting cells; h, hours.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Blood and Lymphatic Cancer: Targets and Therapy 2017:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

13

Peripheral blood uptake of lymphoma exosomes

and 4-hour time points showed very similar results to those 

previously recorded using DLCL2 exosome (Figure 3). In 

this study, B cells were able to rapidly and preferentially take 

up PKH67-stained DLCL2, FSCCL, and HeLa cell-derived 

exosomes in a time-dependent manner, while the NK cells 

were significantly less capable of this internalization. Four 

hours postincubation, 22%±8, 20%±10, and 12%±9 of B 

cells had taken up DLCL2, FSCCL, and HeLa exosomes, 

respectively (Figure 3).

Discussion
Although the spleen, liver, and lymph nodes take up the 

majority of exosomes produced by organs and hematopoi-

etic cells, plasma and other body fluids still contain large 

quantities of exosomes.47 Cancer cells in particular secrete 

large quantities of TEXs, which can be found in peripherally 

circulating blood.48 Consequently, blood cells are exposed 

to many exosomes from both normal and malignant cells,49 

which play key roles in modulating the immune system.8

While previous studies have investigated exosomal inter-

actions with leukocytes in lymphoid organs, such as APCs 

in the spleen50 and follicular dendritic cells (DCs) in the 

lymph nodes,51,52 there is less work done regarding uptake of 

exosomes by peripheral blood cell populations.

In this study, we tested the hypothesis that some popula-

tions of white blood cells will be more receptive to interact 

with B cell lymphoma exosomes and, therefore, will be more 

vulnerable to TME modulating effects of these vesicles. In 

an attempt to close the gap in knowledge concerning lym-

phoma TME immunosuppression, we have treated normal 

human PBLs with PKH67-labeled lymphoma exosomes and 

monitored uptake by measuring fluorescence at different 

time points using flow cytometry and fluorescent micros-

copy. We expected to observe a disparity in exosome uptake 

between blood cells of lymphoid and myeloid lineages that 

we hypothesized was perhaps due to myeloid-derived cells 

such as monocytes and macrophages, being better equipped 

for exosome uptake than lymphocytes such as B cells, T cells, 

and NK cells. However, this was not what we observed with 

B cells being the most effective and efficient at TEX uptake.

Our data are not consistent with those of previous studies, 

which show a disparity in uptake between myeloid-derived 

cells and lymphocytes.44,53 We demonstrated that NK and T 

cells have lower levels of internalization than monocytes and 

Figure 3 Differences in uptake by NK cells and B cells are not unique to DLCL2 exosomes. 
Notes: DLCL2, FSCCL,  and HeLa cell-derived exosomes were labeled with PKH67 and then added to peripheral blood for 1 and 4 hours at 200 mg/mL. As measured by 
flow cytometry, the uptake of labeled exosomes proceeded in a time- and dose-dependent manner as before in lymphocyte lineage B cells but not the NK cells.
Abbreviations: DLCL, diffuse large B cell lymphoma; h, hours.
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B cells. In our study model, B cells showed a high level of 

uptake, possibly due to the B cell origin of the lymphoma 

exosomes, supporting the idea of uptake specificity given 

the exosomes were collected primarily from cells originating 

from B cell lymphoma disease. These findings are in line 

with those of Hazan-Halevy et al45 and Gutzeit et al54 con-

cerning B cells and Riches et al55 in their work with breast 

tissue. In this study, we observed that DLCL2 exosomes were 

taken up rapidly and preferentially into CD19+ B lympho-

cytes and CD14+ monocytes. Only a small percentage of 

T cells and NK cells showed internalization or binding to 

exosomes, even after 24-hour incubations. We have further 

investigated to see if the origin of the exosome would influ-

ence the preference or rate of uptake on the peripheral cell 

(Figure 3). Exosomes were taken from two lymphoma cell 

lines (DLCL2 and FSCCL) and from the cervical cancer cell 

line HeLa. In our hands there was little difference recorded 

in exosomal uptake. This may indicate that the uptake is 

controlled by something specific to the exosome rather than 

the cell of origin.

The mechanisms of uptake into B lymphocytes remain to 

be elucidated, whether it be caveolin, clathrin, cholesterol, 

lipid-raft, or receptor-mediated endocytosis, or something 

completely novel and not proposed. In this work, we have 

demonstrated a natural preference of TEXs to B cells, 

further supporting the concept of targeting therapy to this 

lymphocyte population. However, to fully appreciate and 

dissect the mechanism, many more cell line-derived as 

well as patient-procured exosomes, from varying patholo-

gies, will need to be investigated, a process that has only 

just begun in our laboratory. Understanding the structure 

and marker/receptor profiles on the exosome, the cell of 

origin as well as the recipient cell’s membranes and the 

protein, RNA, and DNA contents from within the exosome 

will further the ability to regulate the role of TEXs in the 

pathobiology of hematologic malignancies and to identify 

novel therapeutic approaches.

In addition to the indirect effects of exosomes through 

interactions with APCs, and the limited ability of NK cells 

and T cells for exosome uptake, these cell populations seem 

to have a wide variety of responses to direct exposure to 

exosomes. Whether these responses are the result of surface 

interactions rather than uptake or due to secondary effects 

from other cells which more readily internalize exosomes 

is not always apparent. There has been evidence for both 

possibilities, and it is likely that exosomes interacting with 

lymphocytes deliver signals by direct surface contact more 

frequently than internalization.42,56 The surface  interactions 

between exosomes and recipient cells can occur via mem-

brane-bound activating or inhibitory proteins that directly 

signal through relevant receptors and initiating downstream 

pathways. TEXs are enriched in proteins specialized for 

surface interactions, such as integrins, MHC class I and 

II molecules, co-stimulatory molecules (CD40, CD86), 

various growth factor receptors, such as epidermal growth 

factor receptor (EGFR) and human epidermal growth 

factor receptor 2 (HER-2), death receptor ligands such as 

Fas ligand (FasL), tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL), and programmed cell death ligand 

1 (PDL-1) and inhibitory factors such as prostaglandin 

E2 (PGE2). Therefore, uptake is not necessary for a cell 

to be altered by exosomes, and may likely be the case for 

changes induced by exosomes in T cells and NK cells. In 

fact, much of the immune suppression mediated by TEXs 

occurs through surface molecules such as FasL, TGF-β1, 

and IL-10.57–59

Perhaps an equally important aspect could be that exo-

some uptake has downstream direct and indirect effects on 

PBLs. Through producing cytokines like TNFα, presenting 

antigen on MHC I and II, and providing costimulatory signals 

via CD80/CD86 and CD40,53,60 many of the exosomal effects 

observed in T and NK cells may be an indirect result from 

primary changes induced in macrophages, monocytes, B 

cells, and DCs, which actually internalize the vesicles. Uptake 

of exosomes induces monocytes to produce TNFα,53 macro-

phages and DCs capture and present antigen to T cells,60 and 

B cells can be activated by antigen-carrying exosomes with 

subsequent Th1 cell stimulation.61 Antigen-bearing TEXs 

seem to require uptake and processing by DCs before they 

can efficiently stimulate a specific cytotoxic T lymphocyte 

response.12,62 The exosomes from DCs carry MHC I, MHC 

II, CD80, and CD86 and are therefore equipped to elicit T 

cell activation through surface interactions.63

To summarize, in the present study, we characterized 

DLCL2 cell line-derived exosomes on different PBL popu-

lations showing that there is preference of targeted uptake. 

However, it is still not clear whether exosomes are still induc-

ing cellular signaling pathways in the T cell and NK cells 

through direct cell to cell contact. From these findings, we 

hope a better understanding of tumor cell/TME communica-

tion may result, further leading to increased knowledge of 

how the tumor cells communicate with and manipulate the 

TME. By better understanding these signaling pathways, we 

may better prepare therapeutic modalities to enhance immune 

cell surveillance and killing of these tumors, which up to 

now seem immune.
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Figure S1 Size determination of WSU-DLCL2 exosomes. 
Notes: Number–weight distribution of EV size using dynamic light scattering analysis with Nicomp BZ3000 instrument. Sample was read every minute for 30 minutes, with 
a calculated average diameter of 117 nm. One representative diameter histogram is shown.
Abbreviations: DLCL, diffuse large B cell lymphoma; Diam, Diameter; EV, extracellular vesicle.
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Figure S2 Gating strategy used to assess binding of PKH67-labeled exosomes to human T cells (CD3+), NK cells (CD56+), B cells (CD19+), and monocytes (CD14+) within 
the peripheral blood leukocytes. 
Note: One representative dot plot is shown from two independent experiments.
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Figure S3 (Continued)
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Figure S3 Internalization of PKH67-labeled exosomes by healthy PBLs. 
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