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Abstract

The increase in multidrug-resistant pathogenic bacteria has become a problem worldwide. Currently there is a strong focus
on the development of novel antimicrobials, including antimicrobial peptides (AMP) and antimicrobial antisense agents.
While the majority of AMP have membrane activity and kill bacteria through membrane disruption, non-lytic AMP are
non-membrane active, internalize and have intracellular targets. Antimicrobial antisense agents such as peptide nucleic acids
(PNA) and phosphorodiamidate morpholino oligomers (PMO), show great promise as novel antibacterial agents, killing
bacteria by inhibiting translation of essential target gene transcripts. However, naked PNA and PMO are unable to translocate
across the cell envelope of bacteria, to reach their target in the cytosol, and are conjugated to bacteria penetrating peptides
(BPP) for cytosolic delivery. Here, we discuss how non-lytic AMP and BPP-PMO/PNA conjugates translocate across the
cytoplasmic membrane via receptor-mediated transport, such as the cytoplasmic membrane transporters SbmA, MdtM/YjiL,
and/or YgdD, or via a less well described autonomous process.
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Introduction et al. 2018) and antimicrobial antisense agents (Hegarty

and Stewart 2018; Pifer and Greenberg 2020). AMPs are

Antimicrobial resistance is now a global problem, that pre-
dominantly is driven by the exaggerated use of antibiotics in
human medicine and agriculture (Davies et al. 2013). One
solution to ensure a viable option to treat bacterial infection
in the future is the discovery and development of novel anti-
biotics, including antimicrobial peptides (AMP) (Shagaghi
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structurally diverse and widespread peptides, many of which
are present in biological protection systems of a variety of
organisms including vertebrates, plants, fungi, and bacte-
ria, e.g. as an integral part of the innate immune system in
vertebrates. The majority of AMPs are membrane-active,
killing bacteria by membrane disruption, while a few non-
Iytic AMPs act on intracellular targets. It is well established
that non-membrane active AMP translocate across the bac-
terial cell envelope without causing damage (Boman et al.
1993; Casteels and Tempst 1994; Castle et al. 1999; Knappe
et al. 2010; Podda et al. 2006) before binding to intracellular
targets.

Antimicrobial antisense agents inhibit gene expression
at the translational level via specific binding to sequence
complementary mRNA of essential genes or to essential
sites of rRNA, leading to growth cessation. Due to their
biological stability, neutral charge, high binding affinity and
specificity for sequence complementary RNA, synthetic
nucleic acid analogs such as peptide nucleic acids (PNA)
or phosphorodiamidate morpholino oligomers (PMO) are
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preferred as antimicrobial antisense agents (Summerton and
Weller 1997; Good and Nielsen 1998a; WesolowsKki et al.
2011). Antimicrobial antisense PNAs and PMOs are usu-
ally 10-12 bp long (Dryselius et al. 2003; Deere et al. 2005;
Goltermann and Nielsen 2020), i.e., (MW > 3000), larger
than traditional small-molecule antibiotics (MW < 1000 Da),
and if unmodified are unable to pass through the cell enve-
lope (Wittung et al. 1995; Good and Nielsen 1998a, b; Good
et al. 2000). To improve cytosolic delivery antimicrobial
antisense agents can be covalently attached to bacteria-pene-
trating peptides (BPP) (Good et al. 2001; Geller et al. 2003).
BPP constitute a group of peptides of natural or synthetic
origin with bacterial membrane translocation capabilities,
usually sharing some common characteristics such as being
cationic, but also having a content of hydrophobic amino
acids. Indeed, these characteristics are to a large extent
shared with AMPs as well as with cell-penetrating peptides
[CPP, used for cytoplasmic delivery in eukaryotic cells (Rus-
eska and Zimmer 2020)], and most likely reflect physical
interaction with negatively charged cell membranes as a
common feature involved in the mechanism of action. Con-
sequently, a varying extent of functional overlap between
AMP, BPP and CPP is often observed, e.g. in the form of
cytotoxicity, but the detailed structure activity relationship
differences within and between the groups is quite subtle,
and far from fully understood.

The outer membrane of Gram-negative bacteria and the
cell wall of Gram-positive bacteria present two different
obstacles for peptide translocation. In Gram-positive bac-
teria AMP and BPP most likely diffuse through undefined
pores in the peptidoglycan (Malanovic and Lohner 2016),
while in Gram-negative bacteria they are believed to have
a poorly understood autonomous uptake, likely involving
interactions with lipopolysaccharide, possible outer-mem-
brane bound proteins and/or phospholipids (Li et al. 2017).
However, for most non-lytic AMP and BPP the rate-limiting
step for translocation to the cytosol is the cytoplasmic mem-
brane (Li et al. 2017). At the cytoplasmic membrane, the
molecules enter either via autonomous membrane transloca-
tion and/or via a specific transporter mechanism. Here, we
focus on translocation across the cytoplasmic membrane,
with a special emphasis on uptake of non-lytic AMP/BPP in
the Gram-negative bacterium Escherichia coli.

Receptor-mediated uptake
through the cytoplasmic membrane

The most well-described receptor-mediated uptake mecha-
nism of non-lytic AMPs and BPPs is through the cyto-
plasmic membrane ABC transporters SbmA and BacA,
belonging to the peptide uptake permease family (Saier
2000). These are found in distantly related species. For
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instance, SbmA is found in Enterobacteriaceae (Corba-
lan et al. 2013), and BacA in the genus Mycobacterium
(incl. M. tuberculosis) (Domenech et al. 2009) and the
alphaproteobacteria Brucella abortus and Sinorhizobium
meliloti (Glazebrook et al. 1993; LeVier et al. 2000). In
E. coli the 406 amino acid SbmA protein consists of eight
transmembrane domains and peptide transport is driven
by the electrochemical gradient (Runti et al. 2013). BacA
shares high sequence similarity to SbmA (Glazebrook
et al. 1993; Ichige and Walker 1997) and a sbmA-deficient
E. coli mutant can be complemented by the bacA gene
from S. meliloti or M. tyberculosis, indicating functional
similarity as transporters (Ichige and Walker 1997; Dome-
nech et al. 2009). While SbmA is a non-essential protein
in laboratory settings (Pranting et al. 2008), it has been
identified as a virulence factor in E. coli (APEC)(Li et al.
2005), and BacA is required for Rhizobium meliloti sym-
biosis establishment in plants (Glazebrook et al. 1993)
and prolonged B. abortus and M. tuberculosis infections
in mice (LeVier et al. 2000; Domenech et al. 2009).

The uptake mechanism for proline-rich AMP has in E.
coli primarily been ascribed to transport via SbmA. These
peptides include arasin (Paulsen et al. 2016), apidaecin
(Mattiuzzo et al. 2007; Krizsan et al. 2015), Bac7 (Mat-
tiuzzo et al. 2007; Runti et al. 2013; Guida et al. 2015),
drosocin (Krizsan et al. 2015), oncocin (Krizsan et al. 2015),
pyrrhocoricin (Narayanan et al. 2014), PR-39 (Mattiuzzo
et al. 2007; Pranting et al. 2008) and Turl A (Mardirossian
et al. 2018) (Fig. 1). Analogously, BacA transports proline-
rich AMPs across the cytoplasmic membrane at least in S.
meliloti (Marlow et al. 2009; Wehmeier et al. 2010). In E.
coli proline-rich AMPs depend on SbmA for full activity.
However, additional cytoplasmic membrane transporters
such as the drug/H + antiporter MdtM and the cytoplasmic
membrane transporter YgdD play an accessory role to SbhmA
in the uptake of Turl A/Bac7/oncocin and arasin, respec-
tively (Krizsan et al. 2015; Paulsen et al. 2016). Thus, bacte-
rial species, most commonly Gram-negative bacteria, con-
taining SbmA/BacA are susceptible to proline-rich AMPs
(Marlow et al. 2009). Conversely, species deficient of SbmA/
BacA, such as Pseudomonas aeruginosa, are less susceptible
to this class of AMPs (Benincasa et al. 2004; Paulsen et al.
2013; Narayanan et al. 2014; Bluhm et al. 2015; Knappe
et al. 2016; Runti et al. 2017). This could also explain why
Gram-positive bacteria, in general, are resistant to these. In
addition, SbmA transports microcins B17 and B25 (Lavina
et al. 1986; Salomon and Farias 1995) as well as the gly-
copeptide bleomycin (Yorgey et al. 1994; Mattiuzzo et al.
2007) in E. coli, while BacA transports microcins B17 and
B25 in S. meliloti (Ichige and Walker 1997) and bleomycin
in both S. meliloti (Ichige and Walker 1997) and M. tuber-
culosis (Domenech et al. 2009).
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Fig.1 Uptake of non-lytic AMP across the cytoplasmic membrane.
A schematic presentation of the periplasm (P), cytosolic membrane
(CP), and cytosol (C) in E. coli. From the periplasm the proline-rich
AMP oncocin, Bac7, arasin, apidaecin, PR-39, pyrrhocoricin (PYR),
drosocin, and TurlA translocate across the cytosolic membrane
primarily through SbmA (indicated by the full line). MdtM/YjiL
plays an accessory role for TurlA, Bac7, and oncocin, while YgdD
plays an accessory role for arasin. Microcins J25 (MccJ25) and B17
(MccB17) and the glycopeptide bleomycin (BLM) are translocated
across the cytoplasmic membrane by SbmA. Indolicidin (INDO) and
buforin II (BUF) are proposed to translocate across the outer mem-
brane and cytoplasmic membrane by autonomous uptake. In the cyto-

Glycopeptide
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sol oncocin, Bac7, apidaecin, PYR, drosocin, and Turl A binds to the
ribosome (Krizsan et al. 2014; Gagnon et al. 2016; Mardirossian et al.
2014, 2018) and with the exception of TurlA also DnaK [REF (Czi-
hal et al. 2012; Knappe et al. 2011; Kragol et al. 2001; Otvos et al.
2000; Scocchi et al. 2009; Zahn et al. 2014; Zhou Y and W N Chen.
2011)] PR-39, indolicidin, buforin II and BLM to DNA (Yamamoto
et al. 1984; Boman et al. 1993; Subbalakshmi and Sitaram 1998; Park
et al. 2000; Kosa et al. 2004; Hsu et al. 2005), MccJ25 to the RNA
polymerase, and MccB17 to gyrase (Baquero et al. 2019), which in
all cases leads to growth arrest. So far, the cytosolic target of arasin
has not been elucidated (Paulsen et al. 2013). See text and for details
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PNA conjugated to the lysine/phenylalanine containing
BPP (KFF); K-egl' and PMO conjugated to the arginine/
phenylalanine containing BPP (RFF);R-Ahx-B-alanine” are
transported across the cytoplasmic membrane by SbmA
in E. coli (Puckett et al. 2012; Ghosal et al. 2013). The
(KFF); K-egl BPP is instrumental for translocation across
the outer membrane but has very limited biostability in the
periplasm, resulting in peptide-truncation (Yavari et al.
2021). These truncated peptide-PNA conjugates, require
SbmA-dependent uptake across the cytoplasmic mem-
brane, while the enzymatically stable D-form of full length
(KFF); K-egl-PNA is able to cross in an SbmA-independ-
ent manner (visualized in Fig. 2) (Yavari et al. 2021). Argi-
nine containing BPPs usually have an autonomous uptake
across the cytoplasmic membrane (see below), suggesting
that (RFF);R-Ahx-p-alanine might face similar biostability
issues in the periplasm as (KFF); K-egl. Compared to the
straightforward resistance development to (KFF); K-egl-
PNA, through loss of SbmA (Ghosal et al. 2013), resist-
ance development to peptide-PNA translocating through an
autonomous uptake in E. coli requires multiple mutations
and are difficult to obtain(Frimodt-Mgller et al. 2021). Thus,
emphasizing the importance of improving carrier stabil-
ity when optimizing/designing BPPs for delivery of antimi-
crobial peptides in bacteria.

Autonomous uptake across the cytoplasmic
membrane

Some non-lytic AMPs and BPPs do not internalize through a
receptor-mediated uptake. Hypothesis derived from in silico
and in vitro studies has been put forward to explain this
autonomous translocation (Rothbard et al. 2004; Stanzl et al.
2013; Herce et al. 2014; Li et al. 2017), including the “self-
promoted uptake” model proposed by Hancock and Chappel
(Hancock and Chapple 1999). Nonetheless, it remains poorly
understood how these molecules reach the cytosol in bacte-
ria. The non-lytic AMPs indolicidin, a tryptophan/proline-
rich AMP (Selsted et al. 1992), and buforin II (Park et al.
1996) enters the cytoplasm without disrupting membrane

! K refers to lysine, F refers phenylalanine, and egl refers to
8-amino-3,6-dioxaoctanoic acid.

2 R refers arginine and Ahx refers to 6-aminohexanoic acid.
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integrity (Fig. 1). Buforin II although non-proline-rich has
a proline residue at position 11 (Yi et al. 1996), which plays
a key role in effective translocation (Kobayashi et al. 2004).

Uptake mechanisms for arginine-rich peptides differ sig-
nificantly between mammalian and bacterial cells, as endo-
cytosis (for which no analogue exists in bacteria) is the
predominant uptake pathway in mammalian cells (Ruseska
and Zimmer 2020). However, very recent results are begin-
ning to shed new light on the SbmA independent, autono-
mous uptake of at least arginine-rich BPPs and AMPs. Here,
an activated Cpx-response was shown to confer resistance
to the (R-X-R),-Ahx-p-alanine-PNA conjugate in E. coli
(Frimodt-Mgller et al. 2021). The activated Cpx-response
resulted in the downregulation of respiratory genes lead-
ing to a decreased cytoplasmic membrane potential. This
indicates an indirect autonomous but energy-dependent
uptake mechanism, relying on a high membrane potential,
for antimicrobials conjugated to such an arginine-rich BPP
(Fig. 2) (Frimodt-Mgller et al. 2021). In agreement, an acti-
vated Cpx-response also conferred a decreased susceptibil-
ity to aminoglycosides and another arginine-rich BPP (R,)
conjugated to a peptide targeting the DNA sliding clamp
(Frimodt-Mgller et al. 2021).

These findings are of general interest for several reasons.
First of all, they confirm and stress, that also for cationic
peptides with autonomous, and thus transporter independent
uptake, crossing the inner membrane is the main barrier in
(Gram-negative) bacteria. Furthermore, the findings shed
important light on the mechanism for crossing the inner
membrane, by demonstrating that this requires a significant
negative membrane potential to energetically drive the pas-
sage. Resistance development towards receptor translocated
AMPs and BPPs are in many cases straightforward, ex. by
loss of the transporter/receptor (Ghosal et al. 2013). Con-
versely, resistance development towards non-receptor trans-
located BPPs (and AMPs) are difficult to obtain and come
with a high fitness cost (Frimodt-Moller et al. 2021). Thus,
the uptake route is an important parameter to consider when
designing/searching for novel non-lytic AMPs or BPPs, pref-
erable pursuing a non-receptor mediated uptake.
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Fig.2 Uptake of PNA/PMO-BPP across the cell envelope. A sche-
matic presentation of the outer membrane (OM), periplasm (P),
cytosolic membrane (CP), and cytosol (C) in E. coli. The biostability
of PNA conjugated to (KFF); K-egl (PNA-KFF), and possible also
PMO conjugated to (RFF);R-Ahx-f-alanine (indicated by a dashed
line), is limited leading to truncated peptide-PNA conjugants in the
periplasm. Truncated PNA-KFF conjugates and truncated/full-length
PMO conjugated to (RFF);R-Ahx-f-alanine are translocated across
the cytoplasmic membrane by SbmA. The PNA conjugated to the
D-form of (KFF); K-egl (PNA-D-KFF) has highly increased bio-

RNA polymerase

stability compared to the L-form, and this peptide-PNA conjugate is
believed to translocate across the cytoplasmic membrane by autono-
mous uptake (indicated by a full line). However, uptake through
SbmA cannot be excluded (indicated by a dashed line). PNA con-
jugated to (R-X-R),-Ahx-p-alanine (PNA-RXR) requires a high A¥
across the cytoplasmic membrane to translocate, while a low AY¥
results in a decreased uptake. In the cytosol PNA/PMO-BPP binds to
the mRNA of an essential gene, which leads to growth arrest. See text
for details
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