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Canwe recognize faces with zero experience on faces? This question is critical because it

examines the role of experiences in the formation of domain-specificmodules in the brain.

Investigation with humans and non-human animals on this issue cannot easily dissociate

the effect of the visual experience from that of the hardwired domain-specificity.

Therefore, the present study built a model of selective deprivation of the experience on

faces with a representative deep convolutional neural network, AlexNet, by removing

all images containing faces from its training stimuli. This model did not show

significant deficits in face categorization and discrimination, and face-selective modules

automatically emerged. However, the deprivation reduced the domain-specificity of the

face module. In sum, our study provides empirical evidence on the role of nature vs.

nurture in developing the domain-specific modules that domain-specificity may evolve

from non-specific experience without genetic predisposition, and is further fine-tuned by

domain-specific experience.

Keywords: face perception, face domain, deep convolutional neural network, visual deprivation, experience

INTRODUCTION

A fundamental question in cognitive neuroscience is how nature and nurture form our cognitive
modules. In the center of the debate is the origin of face recognition ability. Numerous studies
have revealed both behavioral and neural signatures of face-specific processing, indicating a face
module in the brain (for reviews, see Kanwisher and Yovel, 2006; Freiwald et al., 2016). Further
studies from behavioral genetics revealed the contribution of genetics on the development of the
face-specific recognition ability in humans (Wilmer et al., 2010; Zhu et al., 2010). Collectively, these
studies suggest an innate domain-specific module for face cognition. However, it is unclear whether
the visual experience is also necessary for the development of the face module.

A direct approach to address this question is visual deprivation. Two studies on monkeys
selectively deprived the visual experience of faces since birth, while leaving the rest of experiences
untouched (Sugita, 2008; Arcaro et al., 2017). They report that face-deprived monkeys are still
capable of categorizing and discriminating faces (Sugita, 2008), though less prominent in selective
looking preference to faces over non-face objects (Arcaro et al., 2017). Further examination of the
brain of the experience-deprivedmonkeys fails to localize typical face-selective cortical regions with
the standard criterion; however, in the inferior temporal cortex where face-selective regions are
normally localized, weak and variable face-selective activation (i.e., neural responses to faces larger
than non-face objects) is observed (Arcaro et al., 2017). Taken together, without visual experiences
of faces, rudimental functions to process faces may still evolve to some extent.
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Two related but independent hypotheses may explain the
emergence of the face module without face experiences. An
intuitive answer is that the rudimental functions are hardwired in
the brain by genetic predisposition (Wilmer et al., 2010; McKone
et al., 2012). Alternatively, we argue that the face module may
emerge from experiences on non-face objects and related general-
purpose processes, because representations for faces may be
constructed by abundant features derived from non-face objects.
Unfortunately, studies on humans and monkeys are unable to
thoroughly decouple the effect of nature and nurture to test these
two hypotheses.

Recent advances in deep convolutional neural network
(DCNN) provide an ideal test platform to examine the
impact of visual experiences on face modules without genetic
predisposition. DCNNs are found similar to human visual cortex
both structurally and functionally (Kriegeskorte, 2015), but free
of any predisposition on functional modules. Therefore, with
DCNNs we can manipulate experiences without considering
interactions from genetic predisposition. In this study, we asked
whether DCNNs can achieve face-specific recognition ability
when visual experiences on faces were selectively deprived.

To do this, we trained a representative DCNN, AlexNet
(Krizhevsky et al., 2012), to categorize non-face objects with
face images carefully removed from the training dataset. Once
this face-deprived DCNN (d-AlexNet) was trained, we compared
its behavioral performance to that of a normal AlexNet of
the same architecture but with faces present during training.
Specifically, we examined their performance in both face
categorization (i.e., differentiating faces from non-face objects)
and discrimination (i.e., discriminating faces among different
individuals) tasks. We predicted that the d-AlexNet, though
without predisposition and experiences of faces, may still
develop face selectivity through its visual experiences of non-
face objects.

MATERIALS AND METHODS

Stimuli
Deprivation Dataset
The deprivation dataset was constructed to train the d-AlexNet.
It was based on the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) 2012 dataset (Deng et al., 2009), which
contains 1,281,167 images for training and 50,000 images for
validation, in 1,000 categories. These images were first subjected
to automated screening with an in-house face-detection toolbox
based on VGG-Face (Parkhi et al., 2015), and then further
screened by two human raters, who separately judged whether a
given image contains faces of humans or non-human primates
regardless of the orientation and intactness of the face, or
anthropopathic artwork, cartoons, and artifacts. We removed
images judged by either rater as containing any above-mentioned
contents. Finally, we removed categories whose remaining
images were <640 images (approximately half of the original
number of images in a category). The resultant dataset consists
of 736 categories, with 662,619 images for training and 33,897 for
testing the performance.

Classification Dataset
To train a classifier that can classify faces, we constructed
a classification dataset consisting of 204 categories of non-
face objects and one face category, each of 80 exemplars.
For the non-face categories, we manually screened Caltech-
256 (Griffin et al., 2007) to remove images containing human,
primate, or cartoon faces, and then removed categories whose
remaining images were <80. In each of the 204 remaining
non-face categories, we randomly chose 70 images for training
and another 10 for calculating classification accuracy. The face
category was constructed by randomly selecting 1,000 faces
images from Faces in the Wild (FITW) dataset (Berg et al., 2005).
Among them, 70 were used as training data and another 10
for classification accuracy. In addition, to characterize DCNN’s
ability in differentiating faces from object categories, we compiled
a second dataset consisting of all images in the face category
except those used in training.

Discrimination Dataset
To train a classifier that can discriminate faces at individual level,
we constructed a discrimination dataset consisting of face images
of 133 individuals, 300 images each, selected from the Casia-
WebFace database (Yi et al., 2014). For each individual in the
dataset, 250 were randomly chosen for training and another 50
for calculating discrimination accuracy.

Representation Dataset
To examine representational similarity of faces and non-
face images between the d-AlexNet and the normal one, we
constructed a representation dataset with two categories, faces
and bowling pins as an “unseen” non-face object category that
was not presented to the DCNNs during training. Each category
consisted of 80 images. The face images were a random subset of
FITW, and images of bowling pins were randomly chosen from
the corresponding category in Caltech-256.

Movies Clips for DCNN-Brain Correspondence

Analysis
We examined the correspondence between the face-selective
response of the DCNNs and brain activity using a set of 18 clips of
8-min natural color videos from the Internet that are diverse yet
representative of real-life visual experiences (Wen et al., 2017).

The Deep Convolutional Neural Network
Our model of selective deprivation, the d-AlexNet, was built
with the architecture of the well-known DCNN “AlexNet”
(Krizhevsky et al., 2012, see Figure 1A for illustration). AlexNet
is a feed-forward hierarchical convolutional neural network
consisting of five convolutional layers (denoted as Conv1–
Conv5, respectively) and three fully connected layers denoted as
FC1–FC3. Each convolutional layer consists of a convolutional
sublayer, followed by a ReLU sublayer, and Conv1, 2, and 5
are further followed by a pooling sublayer. Each convolutional
sublayer consists of a set of distinct channels. Each channel
convolves the input with a distinct linear filter (kernel) which
extracts filtered outputs from all locations within the input
with a particular stride size. FC1–FC3 are fully connected
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FIGURE 1 | (A) An illustration of the screening to remove images containing faces for the d-AlexNet. The “faces” shown in the figure were AI-generated for illustration

purpose only, and therefore have no relation to real person. In the experiment, face images were from the ImageNet, with real persons’ faces. (B) The classification

performance across categories of the two DCNNs was comparable. (C) Both DCNNs achieved high accuracy in categorizing faces from other images. (D) Both

DCNNs’ performance in discriminating faces was above the chance level, and the d-AlexNet’s accuracy was significantly higher than that of the AlexNet. The error

bars in (B) denote the standard error of the mean across the 205 categories in the Classification dataset. The error bars in (D) denote the standard error of the mean

across the 133 identities in the Discrimination dataset. The asterisk denotes statistical significance (α = 0.05). n.s. denotes no significance.

layers. FC3 is followed by a sublayer using a softmax function
to output a vector that represents the probability of the
visual input containing the corresponding object category
(Krizhevsky et al., 2012).

The d-AlexNet used the architecture of AlexNet but changed
the number of units in FC3 to 736 and changed the following
softmax function accordingly to match the number of categories
in the deprivation dataset. The d-AlexNet was initialized with
values drawn from a uniform distribution, and was then trained
on the deprivation dataset following the approach specified
in Krizhevsky (2014). We used the pre-trained AlexNet from
pytorch 1.2.0 as the normal DCNN, referred to as the AlexNet
in this paper for brevity.

The present study referred to channels in the convolutional
sublayers by the layer they belong to and a channel index,
following the convention of pytorch 1.2.0. For instance, Layer
5-Ch256 refers to the 256th convolutional channel of Layer 5.

To test the generalizability of the main findings of the
present study, we also applied the same deprivation on another
well-known DCNN, “ResNet-18” (He et al., 2016). ResNet-18
introduces residual learning blocks in a DCNN to overcome the
degradation problem in the training of DCNNs, and achieves
even better performance than AlexNet in object categorization
task with a deeper architecture. The d-ResNet used the
architecture of ResNet-18 but changed the number of units in
the FC layer to 736 and changed the following softmax function
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accordingly to match the number of categories in the deprivation
dataset. The d-ResNet was trained on the deprivation dataset
following the same approach specified above. For comparison, we
used the pre-trained ResNet-18 from pytorch 1.2.0 as the normal
DCNN, referred to as the ResNet in this study for brevity.

Transfer Learning for Classification and
Discrimination
To examine to what extent our manipulation of the visual
experience affected the categorical processing of faces, we
replaced the fully-connected layers of each DCNN with a two-
layer face-classification classifier. The first layer was a fully
connected layer with 43,264 units as inputs and 4,096 units
as outputs with sigmoid activation function, and the second
was a fully connected layer with 4,096 units as inputs and 205
units as outputs, each of which corresponded to one category
of the classification dataset. This classifier, therefore, classified
each image into one category of the classification dataset. The
face-classification classifier was trained for each DCNN with the
training images in the classification dataset for 90 epochs.

To examine to what extent our manipulation of the
visual experience affected face discrimination, we similarly
replaced the fully connected layers of each DCNN with a
discrimination classifier. The discrimination classifier differed
from the classification classifier only in its second layer,
which had 133 units instead as outputs, each corresponding
to one individual in the discrimination dataset. The face-
discrimination classifier was trained for each DCNN with the
training images in the discrimination dataset for 90 epochs. The
same transfer learning was applied to the d-ResNet and the
pre-trained ResNet-18.

The Face Selective Channels in DCNNs
To identify the channels selectively responsive to faces, we
submitted images in the classification dataset to each DCNN,
recorded the average activation in each channel of Conv5 after
ReLU in response to each image, and then averaged the channel-
wise activation within each category. We selected channels
where the face category evoked the highest activation, and used
the Mann-Whitney U test to examine the activation difference
between faces and objects that had the second-highest activation
in these channels (p< 0.05, Bonferroni corrected). The selectivity
of each face channel thus identified was indexed by the selective
ratio. The selective ratio was calculated by dividing the face
activation by the second-highest activation. In addition, we
measured the lifetime sparseness of each face-selective channel
as an index for selectivity of faces among all non-face objects. We
first normalized the mean activations of a face channel in Layer5
to all the categories to the range of 0–1, and then calculated
lifetime sparseness with the formula:

S =

(
∑

i=1,n ri/n
)2

∑

i=1,n

(

ri2/n
)

where ri is the normalized activations to the ith object category.
The smaller this value is, the higher the selectivity is.

To confirm the face selectivity of the selected channels, we also
tested their categorical selectivity with the fMRI localizer stimuli
typically used to identify face-selective regions. More specifically,
we recorded each channels’ responses to the localizer stimuli
from the face and the tool condition of the Human Connectome
Project dataset (Van Essen et al., 2013), and examined the
significance of face selectivity of each face channel by comparing
the activation in the face condition and that of the tool condition
in this channel using the Mann-Whitney U test described above.

Since we found face-selective channels in the d-AlexNet and
reduced face selectivity of these channels comparing with face-
selective channels in the AlexNet, we proceeded to test the
robustness of these findings. Another five instances of face-
deprived AlexNet were each independently trained in the same
way as the d-AlexNet. In these instances, we searched for face-
selective channels, computed their face selectivity, and examined
the significance of their face selectivity by the Mann-Whitney
U test on their responses to the classification dataset as well
as on the fMRI localizer stimuli, in the same way as we did
in the d-AlexNet and the AlexNet. The same procedure of
channel identification was also applied to the d-ResNet and the
pre-trained ResNet-18.

DCNN-Brain Correspondence
We submitted the movie clips to the DCNNs. Following Wen
et al. (2017)’s approach, we extracted and log-transformed the
channel-wise output (the average activation after ReLU) of each
face-selective channel using the toolbox DNNBrain (Chen et al.,
2020), and then convolved it with a canonical hemodynamic
response function (HRF) with a positive peak at 4 s. The
HRF convolved channel-wise activity was then down-sampled
to match the sampling rate of functional magnetic resonance
imaging (fMRI) and the resultant timeseries was standardized
before further analysis.

Neural activation in the brain was derived from the
preprocessed data in Wen et al. (2017). The fMRI data were
recorded while human participants viewed each movie clips
twice. We averaged the standardized time series across repetition
and across subjects for each clip. Then, for each DCNN, we
conducted multiple regression for each clip, with the activation
time series of each brain vertex as the dependent variable and
that of face-selective channels in this network as independent
variables. For the d-AlexNet, all face-selective channels were
included. For the AlexNet, we included the same number of face-
selective channels with the highest face selectivity to match the
complexity of the regression model. We used the R2 of each
vertex as the index of the overall Goodness of fit of the regression
in that vertex. The R2 values were then averaged across clips.
The larger the R2 value, the higher correspondence between the
DCNN and the brain in response to movie clips.

To test whether the correspondence changes between
networks reflected an overall increase in the correspondence
between fMRI signal and the activation of the face channels
of the AlexNet comparing with the d-AlexNet (in contrast to
an increase selectively within the face-selective regions), we
delineated the face-selective regions and the object-selective
regions and compared the correspondence between the top two
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face channels of each network and the face- and the object-
selective regions. The face- and the object- selective regions
were defined by functional localizer data of Human Connectome
Project (Van Essen et al., 2013). Two hundred vertexes of
the highest Z value in the tool-avg contrast were delineated
as the object-selective ROIs, and two hundred vertexes of
the highest Z value in the face-tool contrast were delineated
as the face-selective ROIs. The channel-brain correspondence
of each vertex with the ROIs was indexed by R2 of the
regression with the fMRI time series of this vertex as the
dependent variable and the time series of the top-two face
channels as the independent variables. A two-way ANOVA
with visual experiences (d-AlexNet vs. AlexNet) and categorical
selectivity (the object-selective regions vs. the face-selective
regions) as independent variables was conducted to examine the
difference between the channel-brain correspondence between
the categorical-selective regions and the face-selective channels
of the d-AlexNet and the AlexNet.

To examine whether the channel-brain correspondence
changed in different face-selective regions equally, we delineated
the bilateral fusiform face areas (FFA) and the occipital
face area (OFA) with the maximum-probability atlas of
face-selective regions (Zhen et al., 2015). Two hundred of
vertexes of the highest probability of the left FFA and
200 of the right FFA were included in the ROI of FFA,
and the ROI of OFA was delineated in the same way.
The correspondence with brain activation in each ROI
and the impact of the visual experience was examined
by submitting the vertex-wise R2 into a two-way ANOVA
with visual experience (d-AlexNet vs. AlexNet) as within-
subject factor and regional correspondence (OFA and FFA) as
between-subject factor.

Face Inversion Effect in DCNNs
The average activation amplitude of the top two face-selective
channels of each DCNN in response to upright and inverted
version of 20 faces from the Reconstructing Faces dataset
(VanRullen and Reddy, 2019) was measured. The inverted faces
were generated by vertically flipping the upright ones. The face
inversion effect in the d-AlexNet was measured with paired
sample t-tests (two-tailed) and the impact of the experience on
the face inversion effect was examined by two-way ANOVAs with
visual experience (d-AlexNet vs. AlexNet) and inversion (upright
vs. inverted) as within-subject factors.

Representational Similarity Analysis
To examine whether faces in the d-AlexNet were processed
in an object-like fashion, we compared the within-category
representational similarity of faces to that of bowling pins,
an “unseen” non-face object category never exposed to either
DCNN. Specifically, for each image in the representation dataset,
we arranged the average activations of each channel of Conv5
after ReLU into vectors, and then for each pair of images
we calculated and then Fisher-z transformed the correlation
between their vectors, which served as an index of pairwise
representational similarity. Within-category similarity between
pairs of face images and that between pairs of object images

were calculated separately. A 2 × 2 ANOVA was conducted with
visual experience (d-AlexNet vs. AlexNet) and category (face
vs. object) as independent factors. In addition, cross-category
similarity between faces and bowling pins was also calculated
for each DCNN, and a paired sample t-test (two-tailed) on two
DCNNs was conducted.

Sparse Coding and Empirical Receptive
Field
To quantify the degree of sparseness of the face-selective channels
in representing faces, we submitted the same set of 20 natural
images containing faces from FITW to each DCNN, and
measured the number of activated units (i.e., the units showing
above-zero activation) in the face-selective channels. The more
non-zero units observed in the face-selective channels, the less
sparse the representation for faces is. The coding sparseness of
the two DCNNs was compared with a paired-sample t-test.

We also calculated the size of the empirical receptive field
of the face-selective channels. Specifically, we obtained the
activation maps of 1,000 images randomly chosen from FITW.
Using the toolbox DNNBrain (Chen et al., 2020), we up-sampled
each activation map to the same size of the input. For each image,
we averaged the up-sampled activation within the theoretical
receptive field of each unit (the part of the image covered by
the convolution of this unit and the preceding computation,
decided by the network architecture), and selected the unit with
the highest average activation. We then cropped the up-sampled
activation map by the theoretical receptive field of this unit, to
locate the image part that activated this channel most across all
the units. Then, we averaged corresponding cropped activation
maps across all the face images, and the resultant map denotes the
empirical receptive field of this channel, delineating the part of
the theoretical receptive field that causes this channel to respond
strongly in viewing its preferred stimuli.

RESULTS

The d-AlexNet was trained with a dataset of 662,619 non-
face images consisting of 736 non-face categories, generated by
removing images containing faces from the ILSVRC 2012 dataset
(Figure 1A). The d-AlexNet was initialized and trained in the
same way as the AlexNet. Both networks were trained following
the approach specified in Krizhevsky (2014). The resultant top-
1 accuracy (57.29%) and the top-5 accuracy (80.11%) were
comparable with the pre-trained AlexNet.

We first examined the performance of the d-AlexNet in
two representative tasks of face processing, face categorization
(i.e., differentiating faces from non-face objects) and face
discrimination (i.e., identifying different individuals). The output
of Conv5 after ReLU of the d-AlexNet was used to classify objects
in the classification dataset (see Materials and Methods). The
averaged categorization accuracy of the d-AlexNet (67.40%) was
well above the chance level (0.49%), and comparable to that in
the AlexNet [68.60%, t(204) = 1.26, p = 0.209, Cohen’s d =

0.007, Figure 1B]. Critically, the d-AlexNet, although with no
experience on faces, succeeded in the face categorization task,
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with an accuracy of 86.50% in categorizing faces from non-face
objects. Note that the accuracy was numerically smaller than
the AlexNet’s accuracy in categorizing faces (93.90%) though
(Figure 1C).

A similar pattern was observed in the face discrimination task.
In this task, the output of Conv5 after ReLU of each DCNN
was used to identify 33,250 face images into 133 identities in
the discrimination dataset (see section Materials and Methods).
As expected, the AlexNet was capable of face discrimination
(65.9%), well above the chance level (0.75%), consistent with
previous studies (AbdAlmageed et al., 2016; Grundstrom et al.,
2016). Critically, the d-AlexNet also showed the capability of
discriminating faces, with an accuracy of 69.30% that was even
significantly higher than that of the AlexNet, t(132) = 3.16,
p = 0.002, Cohen’s d = 0.20, (Figure 1D). Taken together, visual
experiences on faces seemed not necessary for developing basic
functions of processing faces.

Was a face module formed in the d-AlexNet to support
these functions? To answer this question, we searched all
the channels in Conv5 of the d-AlexNet, where face-selective
channels have been previously identified in the AlexNet (Baek
et al., 2019). To do this, we calculated the activation of each
channel in Conv5 after ReLU in response to each category of the
classification dataset, and then identified channels that showed
significantly higher response to faces than non-face images with
Mann-Whitney U test (ps < 0.05, Bonferroni corrected). Two
face-selective channels (Ch29 and Ch50) met this criterion in
the d-AlexNet (for an example channel, see Figure 2A, right),
whereas four face-selective channels (Ch185, Ch125, Ch60, and
Ch187) were identified in the AlexNet (for an example channel,
see Figure 2A, left). The face-selective channels in two DCNNs
differed in selectivity. The averaged selective ratio, the ratio of
the activation magnitude to faces by that to the most activated
non-face object category, was 1.29 (range: 1.22–1.36) in the d-
AlexNet, much lower than that in the AlexNet (average ratio:
3.63, range: 1.43–6.66). The lifetime sparseness, which measures
the breadth of tuning of a channel in response to a set of
categories, also showed a similar result. The average lifetime
sparseness index of the face channels in the AlexNet (mean =

0.25, range: 0.11–0.51) was smaller than that in the d-AlexNet
(mean= 0.71, range: 0.70–0.71), indicating higher face selectivity
in the AlexNet than that in the d-AlexNet. To confirm that the
emergence of the face-selective channels in the d-AlexNet was
not because of chance factors in network training, another five
instances of face-deprived networks were independently initiated
and trained respectively. One or two face-selective channels
emerged in each of these face-deprived network instances,
though the level of face selectivity was lower as compared to the
AlexNet. In addition, we tested the face selectivity of the face
channels in all face-deprived networks with the stimuli used to
localize face-selective regions in fMRI studies, and found that
the responses in these face-selective channels were significantly
higher to the faces than those to the objects (Mann-Whitney
U test, ps < 0.05, Bonferroni corrected). Taken together, this
finding suggested that the face-selective channels indeed emerged
in the d-AlexNet, though the face selectivity was weaker than
the AlexNet.

To test the generalizability of these findings, we applied
the same deprivation manipulation to another representative
DCNN architecture, the ResNet-18, and the resultant d-ResNet
reached top-1 accuracy (69.57%) and the top-5 accuracy
(89.47%), comparable with those of the ResNet. Further,
the face categorization accuracy of the d-ResNet (92.90%)
was comparable to that of the ResNet (96.02%), and the
discrimination accuracy of d-ResNet (65.34%) comparable to
that of the pre-trained ResNet (59.80%). These findings were
similar to those achieved with the d-AlexNet and the AlexNet.

How did the face-selective channels correspond to face-
selective cortical regions in humans, such as the FFA and
OFA? To answer this question, we calculated the coefficient of
determination (R2) of the multiple regression with the output
of the face-selective channels as regressors and the fMRI signals
from human visual cortex in response to movies on natural
vision as the regressand (see section Materials and Methods). As
shown in Figure 2B (right), the face-selective channels identified
in the d-AlexNet corresponded to the bilateral FFA, OFA, and the
posterior superior temporal sulcus face area (pSTS-FA). Similar
correspondence was also found with the top two face-selective
channels in the AlexNet (Figure 2B, left). Direct visual inspection
revealed that the deprivation weakened the correspondence
between the face-selective channels and face-selective regions
in human brain. The increased channel-brain correspondence
in the face-selective regions in the AlexNet compared with
the d-AlexNet was confirmed by a two-way ANOVA of visual
experience (d-AlexNet vs. AlexNet) by categorical selectivity
(fMRI defined object-selective vs. face-selective regions, see
section Methods). In addition to a main effect of categorical
selectivity [F(1, 398) = 53.04, p < 0.001, partial η2 = 0.12], we
also observed a two-way interaction [F(1, 398) = 79.99, p < 0.001,
partial η2 = 0.17]. Follow-up simple effect analyses revealed that
the correspondence to the face-selective regions decreased in the
d-AlexNet as compared with the AlexNet in the face-selective
regions (MD = −0.01, p < 0.001), but increased in the object-
selective regions (MD= 0.013, p< 0.001), further indicating that
the changes between the face-selective channels and human face-
selective regions cannot be attributed to a global decrease in the
channel-brain correspondence in the d-AlexNet comparing with
the AlexNet.

We then examined whether this decrease in channel-brain
correspondence affected different face-selective regions equally.
A two-way ANOVA of visual experience (d-AlexNet vs. AlexNet)
by regional correspondence (the OFA vs. the FFA) confirmed
the decrease of channel-brain correspondence in the d-AlexNet
compared with the AlexNet with a significant main effect of
visual experiences [F(1, 798) = 161.97, p < 0.001, partial η2 =

0.17]. In addition, the main effect of the regional correspondence
showed that the response profile of the face-selective channels
in the DCNNs fitted better with the activation of the FFA than
that of the OFA [F(1, 798) = 98.69, p = 0.001, partial η2

= 0.11],
suggesting that the face-selective channels in DCNNs may in
general tend to process faces as a whole than face parts. Critically,
the two-way interaction was significant [F(1, 798) = 84.9, p <

0.001, partial η2 = 0.10], indicating that the experience affected
the correspondence to the FFA and OFA disproportionally. A
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FIGURE 2 | (A) The category-wise activation profiles of example face-selective channels of the AlexNet (left) and the d-AlexNet (right). The “faces” shown here were

AI-generated for illustration purpose only. (B) The R2 maps of the regression with the activation of the d-AlexNet’s (right) or the AlexNet’s face-selective channels (left)

as the independent variables. The higher R2 in multiple regression, the better correspondence between the face channels in the DCNNs and the face-selective regions

in the human brain. The crimson lines delineate the ROIs of the OFA and the FFA. (C) The face-channels of both DCNNs corresponded better with the FFA than the

OFA, and the difference between the AlexNet and the d-AlexNet was larger in the FFA. (D) Face inversion effect. The average activation amplitude of the top two

face-selective channels differed in response to upright and inverted faces in the AlexNet but not the d-AlexNet. The error bar denotes standard error. The asterisk

denotes statistical significance (α = 0.05). n.s. denotes no significance.

simple effect analysis revealed that the correspondence to the
FFA (MD = 0.023, p < 0.001) was increased by face-specific
experiences to a significantly larger extent than that to the OFA

(MD = 0.004, p = 0.013, Figure 2C). Since the FFA is more
involved in holistic processing of faces and the OFA is more
dedicated to the part-based analysis, the disproportional decrease
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in correspondence between the face-selective channels in the d-
AlexNet and the FFA implied that the role of the experience on
faces was to facilitate the processing of faces as a whole.

To test this conjecture, we examined whether the d-AlexNet
responded stronger to upright than inverted faces, since human
studies suggested that the upright faces were processed in a more
holistic manner than inverted faces. As expected, there was a face
inversion effect in the AlexNet’s face-selective channels, with the
magnitude of the activation to upright faces significantly larger
than that to inverted faces [t(19) = 6.45, p < 0.001, Cohen’s
d= 1.44] (Figure 2D). However, no inversion effect was observed
in the d-AlexNet, as the magnitude of the activation to upright
faces was not significantly larger than that to inverted faces
[t(19) = 0.86, p = 0.40]. The lack of the inversion effect in
the d-AlexNet was further supported by a two-way interaction
of visual experience by orientation of faces, [F(1, 19) = 7.79,
p = 0.012, partial η

2
= 0.29]. That is, unlike the AlexNet,

the d-AlexNet processed upright faces in the same fashion as
inverted faces.

Previous studies on human suggested that inverted faces are
processed in an object-like fashion. That is, it relies more on
the parts-based analysis than the holistic processing. Therefore,
we speculated that in the d-AlexNet faces were also represented
more like non-face objects. To test this speculation, we first
compared the representational similarity among responses in
Conv5 to faces and bowling-pins, which were not present as a
category in the training dataset of either DCNNs, and therefore
alien to both DCNNs. As expected, the two-way interaction
of experience (AlexNet vs. d-AlexNet) by category (faces vs.
bowling-pins) was significant [F(1, 6,318) = 4,110.88, p < 0.001,
partial η

2
= 0.39], and the simple effect analysis suggested that

the representation for faces in the AlexNet was more similar
between each other than in the d-AlexNet (MD = 0.16, p <

0.001), whereas the within-category representation similarity for
bowling-pins showed the same but numerically smaller between-
DCNN difference (MD= 0.005, p= 0.002) (Figure 3A).

A more critical test was to examine how face-specific
experiences made faces being processed differently from objects.
Here we calculated between-category similarities between faces
and bowling-pins.We found that the between-category similarity
between faces and bowling-pins was significantly higher in the d-
AlexNet than that in the AlexNet [t(3,159) = 42.42, MD = 0.07,
p < 0.001, Cohen’s d = 0.76] (Figure 3B), suggesting that faces
in the d-AlexNet were indeed represented more like objects. In
short, although d-AlexNet was able to perform face tasks similar
to the one with face-specific experiences, it represented faces in
an object-like fashion.

Finally, we asked how faceness was achieved in DCNNs
with face-specific experiences. Neurophysiological studies on
monkeys demonstrate experience-associated sharpening of
neural response, with fewer neurons activated after learning.
Here we performed a similar analysis by measuring the number
of non-zero units (i.e., units with above-zero activation) of the
face-selective channels activated by natural images containing
faces. As shown in the activation map (Figure 3C), a smaller
number of units were activated by faces in the AlexNet than
that in the d-AlexNet [t(19) = 3.317, MD = 15.78, Cohen’s d =

0.74] (Figure 3D), suggesting that the experience on faces made
the representation to faces sparser, and thus allowing for more
efficient coding. Another effect of visual experiences observed
in neurophysiological studies is that experiences reduce the size
of neurons’ receptive field. Here we also mapped the empirical
receptive field of the face-selective channels (see sectionMaterials
and Methods). Similarly, we found that the empirical receptive
field of the AlexNet was smaller than that of the d-AlexNet.
That is, within the theoretical receptive field, the empirical
receptive field of the face-selective channels in the AlexNet was
tuned to focus on a smaller region by face-specific experiences
(Figure 3E).

DISCUSSION

This study presented a DCNN model of selective visual
deprivation of faces. Specifically, we chose the AlexNet as a
test platform because of the functional correspondence along
the hierarchy between the AlexNet and primates’ ventral visual
pathway (e.g., Krizhevsky et al., 2012; Cadieu et al., 2014;
Wen et al., 2017; Pospisil et al., 2018; Baek et al., 2019). We
found that without genetic predisposition and face-specific visual
experiences, DCNNs were still capable of face perception. In
addition, face-selective channels were also present in the d-
AlexNet, which corresponded to human face-selective regions.
That is, the visual experience of faces was not necessary for an
intelligent system to develop a face-selective module. On the
other hand, besides the slightly compromised selectivity of the
module, the deprivation led the d-AlexNet to process faces in
a fashion more similar to that of processing objects. Indeed,
unlike the AlexNet, face inversion did not affect the response
magnitude of the face-selective channels in the d-AlexNet, and
the representation of faces was more similar to objects as
compared to the AlexNet. Finally, face-specific experiences might
affect face processing by fine-tuning the sparse coding and the
size of the receptive field of the face-selective channels. In sum,
our study addressed a long-standing debate on nature vs. nurture
in developing the face-specific module, and illuminated the role
of visual experiences in shaping the module.

Given the main-stream viewpoint that faces are special and
therefore cannot be compensated by the presence of non-
face objects, it may seem surprising that without domain-
specific visual experience, the face-selective processing and
modules still emerged in the d-AlexNet. These observations were
further replicated with another well-known DCNN architecture,
the ResNet-18, suggesting the generalizability of our findings.
However, our finding is consistent with previous studies on
non-human primates and new-born human infants (Bushneil
et al., 1989; Valenza et al., 1996; Sugita, 2008), where the face-
specific experience is found not necessary for face detection and
recognition. Therefore, our study argues against the experience-
independent hypothesis that face specificity is largely attributed
to either innate face-specific mechanisms (Morton and Johnson,
1991; McKone et al., 2012) or domain-general processing with
predisposed biases (Simion et al., 2001; Simion and Di Giorgio,
2015). Our study argues against this conjecture, because unlike
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FIGURE 3 | (A) The within-category similarity in the face category and an unseen non-face category (bowling pins) in the DCNNs. (B) The between-category similarity

between faces and bowling pins. (C) The activation maps of a typical face-selective channel of each DCNN in responses to natural images containing faces. Each

pixel denotes activation in one unit. The color denotes the activation amplitude (a.u.). (D) The extent of activation of the face-selective channels of each DCNN in

responses to natural images containing faces. (E) The empirical receptive fields of the top two face-selective channels of each DCNN. The color denotes the average

activation amplitude (a.u, see section Sparse Coding and Empirical Receptive Field). The error bar denotes standard error. The asterisk denotes statistical significance

(α = 0.05). The real faces used in this figure are adapted from the FITW dataset.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 May 2021 | Volume 15 | Article 626259

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Xu et al. Face Module in Face-Deprived DCNN

any biological system, DCNNs have no domain-specific genetic
inheritance or processing biases. Therefore, the face-specific
processing observed in DCNNs had to derive from domain-
general factors. From this sense, the present study provides one
of the first direct evidence against themain-stream viewpoint and
suggests that face specificity may emerge from domain-general
visual experience.

We speculated that the face-selective processing and module
in the d-AlexNet may result from the rich features represented
in the multiple layers of the network; face-like features might be
utilized when the neural network was forced to categorize faces
even though these features were not learned for this purpose.
In fact, previous studies on DCNNs have shown that DCNN’s
lower layers showed sensitivity to myriad visual features similar
to primates’ primary visual cortex (Krizhevsky et al., 2012), while
the higher layers are tuned to complex features resembling those
represented in the ventral visual pathway (Yamins et al., 2014;
Güçlü and van Gerven, 2015). With such a repertoire of rich
features, a representational space for faces, or any natural object,
may be constructed by selecting features that are potentially
useful in face tasks. With such repertoire of rich features, a
representational space for faces, or for any natural object, may
be constructed by selecting features that are potentially useful in
face tasks.

Supporting evidence for this conjecture came from the
observation that the d-AlexNet processed faces in an object-
like fashion. For example, the face inversion effect, a signature
of face-specific processing in human (Yin, 1969; Kanwisher
et al., 1998) was absent in the d-AlexNet. Distinct from other
non-face stimuli, faces are recognized better when they are
upright than inverted (Yin, 1969), and the neural response
to upright faces is stronger than that to inverted ones (e.g.,
Kanwisher et al., 1998; Rossion and Gauthier, 2002). This
face inversion effect is attributed to that face processing relies
particularly heavily on configural processing—processing of the
relations among features instead of individual features. Since the
configural information is difficult to perceive in inverted faces
in a system with face specificity, inverted faces cannot engage
face-specific processing as upright faces. Therefore, the finding
of the lack of the face inversion effect in the DNN without
face experience strengthened our argument that the lack of face
experience leads to the compromise of face specificity. That is,
similar to inverted faces, upright faces may also be processed
like objects in the d-AlexNet. A more direct illustration of the
object-like representation of faces came from the analysis of
the representational similarity between faces and objects. As
compared to the AlexNet, faces in the representational space
of the d-AlexNet were less congregated among each other;
instead they were more intermingled with non-face object
categories. The finding that face representation was no longer
qualitatively different from object representation may help to
explain the performance of the d-AlexNet. Because faces were
less segregated from objects in the representational space, the
d-AlexNet’s accuracy of face categorization was worse than that
of the AlexNet. In contrast, within the face category, individual
faces were less congregated in the representational space;
therefore, the discrimination of individual faces became easier

instead, suggested by the slightly higher face discrimination
accuracy in the d-AlexNet than the AlexNet. In short, when the
representational space of the d-AlexNet was formed exclusively
based on features from non-face stimuli, faces were represented
no longer qualitatively different from non-face objects, which
inevitably led to “object-like” face processing.

The face-specific processing is likely achieved through prior
exposure to faces. At first glance, the effect of face-specific
experiences seemed quantitative, as in the AlexNet, both the
selectivity to faces and the number of the face-selective channels
were increased, and the correspondence between the face-
selective channels and the face-selective regions in human
brain was tighter. However, careful scrutiny of the difference
between the two DCNNs revealed that the changes led by the
experience may be qualitative. For example, the deprivation of
visual experiences disproportionally weakened the DCNN-brain
correspondence in the FFA as comparing to the OFA, and the
FFA is engaged more in the configural processing and the OFA
in parts-based analysis (Liu et al., 2010; Nichols et al., 2010;
Zhao et al., 2014). Therefore, the “face-like” face processing
may come from the fact that face-specific experiences led the
representation of faces more congregated within face category
and more separable from the representation of non-face objects
stimuli (see also Gomez et al., 2019). In this way, a relative
encapsulated representation may help developing a unique way
of processing faces, qualitatively different from non-face objects.

The computational transparency of DCNNsmay shed light on
the development of domain specificity of the face module. First,
we found that face-specific experiences increased the sparseness
of face representation, as fewer units of the face channels were
activated by faces in the AlexNet. The experience-dependent
sparse coding has been widely discovered in the visual cortex
(for reviews, see Desimone, 1996; Grill-Spector et al., 2006). The
experience-induced increase of sparseness is thought to reflect
a preference-narrowing process that tunes neurons to a smaller
range of stimuli (Kohn and Movshon, 2004); therefore, with
sparse coding faces are less likely to be intermingled with non-
face objects, whichmay lead tomore congregated representations
in the representational space in the AlexNet, as compared to
the d-AlexNet. Second, we found that the empirical receptive
field of the face channels in the AlexNet was smaller than
that in the d-AlexNet, suggesting that the visual experience
on faces decreased the size of the receptive field of the face
channels. This finding fits perfectly with neurophysiological
studies that the size of receptive fields of visual neurons is
reduced after eye-opening (Braastad and Heggelund, 1985;
Tavazoie and Reid, 2000; Cantrell et al., 2010). Importantly,
along with the refined receptive fields, the selectivity of neurons
increases (Spilmann, 2014), possibly because neurons can avoid
distracting information by focusing on a more restricted part of
stimuli, which may further allowed finer representation of the
selected regions. This is especially important for processing faces
because faces are highly homogeneous, and some information
is identical across faces, such as parts composition (eyes, noses,
and mouth) and their configural arrangements. Therefore, the
reduced receptive field of the face channels may facilitate selective
analyses of discriminative face features while avoiding irrelevant
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information. Further, the sharpening of the receptive field and
the fine-tuned selectivity may result in superior discrimination
ability on faces, and allow faces to be processed at the sub-
ordinate level (i.e., identification), whereas the rest of objects are
largely processed at the basic level (i.e., categorization).

It has long been assumed that domain-specific visual
experiences and inheritance are the pre-requisites in the
development of the face module in the brain. In our study
with DCNN as a model, we completely decoupled the genetic
predisposition and face-specific visual experiences, and found
that the representation for faces can be constructed with
features from non-face objects to realize basic functions
for face recognition. Therefore, in many situations, the
difference between faces and objects is “quantitative” rather than
“qualitative,” as they are represented in a continuum of the
representational space. In addition, we also found that face-
specific experiences likely fine-tuned the face representation, and
thus transformed the “object-like” face processing into “face-
specific” processing. However, we shall be cautious that our
findingmay not be applicable for the development of facemodule
in human, as in the biological brain experience-induced changes
are partly attributed to the inhibition from lateral connections
(Norman and O’Reilly, 2003; Grill-Spector et al., 2006), whereas
there is no lateral or feedback connection in DCNNs. However,
despite structural differences, recent studies have shown similar
representation for faces between DCNNs and humans (Song
et al., 2021), suggesting that a common mechanism may be
shared by both artificial and biological intelligent systems. Future
studies are needed to examine the applicability of our finding
to humans. In addition, higher cognitive functions such as
attractiveness judgement and social-traits inference are also
important components of face processing, but the present study
followed the literature on face deprivation in humans and non-
human primates and therefore focused on the sensory and
perceptual stages of face processing. Future study may consider
investigating the experiential effects on the social and affective
aspects of face processing to comprehensively understand the
effect of experience.

On the other hand, our study illustrated the advantages
of using DCNN as a model to understand human mind

because of its computational transparency and its dissociation

of factors in nature and nurture. Thus, our study invites future
studies with DCNNs to understand the development of domain
specificity in particular and a broad range of cognitive modules
in general.
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