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It is becoming widely acknowledged that lipids play key roles in cellular function,
regulating a variety of biological processes. Lately, a subclass of glycerophospholipids,
namely plasmalogens, has received increased attention due to their association
with several degenerative and metabolic disorders as well as aging. All these
pathophysiological conditions involve chronic inflammatory processes, which have
been linked with decreased levels of plasmalogens. Currently, there is a lack of full
understanding of the molecular mechanisms governing the association of plasmalogens
with inflammation. However, it has been shown that in inflammatory processes,
plasmalogens could trigger either an anti- or pro-inflammation response. While the
anti-inflammatory response seems to be linked to the entire plasmalogen molecule,
its pro-inflammatory response seems to be associated with plasmalogen hydrolysis,
i.e., the release of arachidonic acid, which, in turn, serves as a precursor to produce
pro-inflammatory lipid mediators. Moreover, as plasmalogens comprise a large fraction
of the total lipids in humans, changes in their levels have been shown to change
membrane properties and, therefore, signaling pathways involved in the inflammatory
cascade. Restoring plasmalogen levels by use of plasmalogen replacement therapy
has been shown to be a successful anti-inflammatory strategy as well as ameliorating
several pathological hallmarks of these diseases. The purpose of this review is to
highlight the emerging role of plasmalogens in chronic inflammatory disorders as
well as the promising role of plasmalogen replacement therapy in the treatment of
these pathologies.

Keywords: plasmalogen, polyunsaturated fatty acids, oxidative stress, inflammation, aging, degenerative
disorders, metabolic disorders, plasmalogen replacement therapy

PLASMALOGENS

Plasmalogens are among the most common glycerophospholipids. These lipids have a broad
phylogenetic distribution, being found in many biological membranes (bacteria, protozoa,
invertebrates, and mammals) (Braverman and Moser, 2012). In most mammalian membranes
they comprise approximately 15 to 20% of total membrane phospholipids (Han et al., 2001;

Abbreviations: Aβ, Beta amyloid peptides; AA, Arachidonic acid; AD, Alzheimer’s disease; AGPS, Alkyl-dihydroxyacetone
phosphate synthase; AG, Alkylglycerol; AMI, Acute myocardial infarction; BTHS, Barth Syndrome; CAD, Coronary
artery disease; CL, Cardiolipin; DHA, Docosahexaenoic acid; DHAP, Dihydroxyacetone phosphate; DHAP-AT,
Dihydroxyacetone phosphate acyltransferase; IL-1R, Interleukin-1 receptor; LPS, Lipopolysaccharides; MS, Multiple
sclerosis; PC, Phosphatidylcholine; PC-Pls, Plasmenylcholine; PD, Parkinson’s Disease; PE, Phosphatidylethanolamine; PE-
Pls, Plasmenylethanolamine; PKCδ, Protein kinase C delta; PLA2, Phospholipase A2; PRT, Plasmalogen replacement therapy;
PUFA, Polyunsaturated fatty acids; RCDP, Rhizomelic chondrodysplasia punctata; ROS, Reactive oxygen species; RNS,
Reactive nitrogen species; TLR, Toll-like receptors; TNFα, Tumor necrosis factor alpha; ZS, Zellweger’s syndrome.
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Braverman and Moser, 2012). Thus, plasmalogens are among
the major lipid components of these membranes. Despite their
abundance, plasmalogens had received relatively little attention
compared with many other lipid classes over the years. However,
lately, plasmalogens have begun to attract more attention due
to their association with several degenerative and metabolic
disorders as well as aging. In the present review, the focus will be
the role of plasmalogens in mammalian inflammatory processes.

Distribution Among Species
Plasmalogens have been found in bacteria, protozoa,
invertebrates, and mammals. However, they are not found
in plants and, likely, are not present in fungi (Horrocks and
Sharma, 1982; Felde and Spiteller, 1994). Among bacteria,
they are found in anaerobic bacteria but not in aerobic or
facultative aerobic bacteria. The chemical structure of bacterial
plasmalogens differs from that of mammals (see below).

Distribution Within the Organism
Plasmalogens are widely distributed within the mammalian
organism. They are found in a variety of organs, cells, and
other lipid-rich structures such as the myelin sheath and
lipoproteins (Table 1). The highest amount of plasmalogen is
found in the brain, while the liver has the lowest amount
of plasmalogens (Koch et al., 2020). Choline plasmalogens
(also called plasmenylcholine, PC-Pls) are highly enriched
in the heart and smooth muscle, while all other organs
are enriched with ethanolamine plasmalogens (also called
plasmenylethanolamine, PE-Pls).

Chemical Structure
The Enyl-Ether Linkage
Plasmalogens are a subclass of glycerophospholipids. As
such they have a similar chemical structure to diacyl
glycerophospholipids. The difference lies in the linkage at
the sn-1 position of the glycerol moiety (Figure 1). While diacyl
glycerophospholipids bear an ester bond, plasmalogens present
an ether bond. The ether bond links an alkyl chain to the glycerol
backbone. Plasmalogens, however, differ from other ether lipids
in having a double bond adjacent to the ether linkage, thus
making them enyl-ether (vinyl-ether) lipids (Figure 1). The
enyl-ether linkage imparts differences in the physical, chemical,
and biological properties of plasmalogens in comparison to their
diacyl counterparts (Nagan and Zoeller, 2001; Braverman and
Moser, 2012). From the chemical point of view, the enyl-ether
bond is (i) more hydrophobic, (ii) more acid labile, (iii) more
oxidation labile, as well as (iv) less involved in hydrogen bonding
than their diacyl counterparts (Gorgas et al., 2006).

The Alkyl Chain
The enyl-ether bond links an alkyl chain at the sn-1 position
of the glycerol moiety in plasmalogens (Figure 1). The most
abundant alkyl chains in plasmalogens, especially in mammals,
are 16 and 18 carbon atoms long (Koivuniemi, 2017; Koch et al.,
2020). These chains are, usually, saturated, or monounsaturated.
In bacteria, there are also chains with an odd number of carbon
atoms, as well as unsaturated alkyl chains at the sn-1 position

(Nagan and Zoeller, 2001; Řezanka et al., 2011; Farooqui and
Horrocks, 2012).

The Acyl Chain
As with their diacyl glycerophospholipid counterparts,
plasmalogens bear an acyl chain at the sn-2 position of the
glycerol backbone attached via an ester bond (Figure 1). The
predominant acyl chains are 20-22 carbon atoms long and
are polyunsaturated (Gorgas et al., 2006; Koivuniemi, 2017).
The two most common acyl chains in this position are the
polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA,
22:6, an ω-3 fatty acid) and arachidonic acid (AA, 20:4, an ω-6
fatty acid) (Fuchs, 2015; Koch et al., 2020). Plasmalogens from
the brain and heart are enriched with DHA, while the colon
and spleen are enriched with AA (Koch et al., 2020). In mice,
plasmalogens from the kidney are enriched with DHA in males
and AA in females (Koch et al., 2020). At the sn-2 position,
bacterial plasmalogens contains branched and saturated acyl
chains (Řezanka et al., 2011).

The Headgroup
The two most common alcohols that are linked to the sn-3
position of the glycerol moiety of plasmalogens are choline and
ethanolamine. In addition, small amounts of plasmalogens with
serine and inositol headgroups have been detected, but only
as minor components (Fuchs, 2015). In bacteria, in addition
to ethanolamine, serine and glycerol are also found as major
components (Řezanka et al., 2011, 2012). Additionally, the
plasmalogen form of cardiolipin has also been identified in
bacteria (Johnston and Goldfine, 1994).

Physical Properties
Plasmalogens have many effects on the physical properties of
biological membranes. For instance, they rigidify membranes,
lower the fluidity and stabilize the formation of membrane
domains as well as stabilize negatively curved surfaces. All of
which have been suggested to contribute to their cellular function.

The enyl-ether linkage has substantial effects on the
conformation and dynamics of plasmalogens (Koivuniemi,
2017). For instance, the enyl-ether bond changes the
conformation of the lipid headgroup. In PC-Pls this change
is reflected in the choline headgroup oriented more toward the
water than the bilayer-water interface when compared to its
diacyl counterpart (Han and Gross, 1990; Koivuniemi, 2017). The
enyl-ether bond also changes the conformation and dynamics
of the acyl chain at the sn-2 position of the glycerol. It has been
shown that this acyl chain in plasmalogens has greater motional
freedom compared with its diacyl counterpart. However, in PC-
Pls this increased motional freedom is lost at lower temperatures
or in the presence of cholesterol (Malthaner et al., 1987).

The enyl-ether bond causes closer packing of the proximal
regions of the alkyl-acyl chains in PC-Pls in comparison to its
diacyl counterpart (Han and Gross, 1990). Monolayer studies
have shown a lower molecular area for PC-Pls compared with
the diacyl or alkyl/acyl (plasmanyl, an ether lipid without the
enyl-ether double bond) counterparts (Smaby et al., 1983). The
differences were less pronounced for PE-Pls. However, the reverse
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TABLE 1 | Variation of plasmalogen content among different mammalian organs/structures.

Organ/Cell/
Lipid-rich structure

Total Plasmalogen
(% of total phospholipid)

PE-Pls
(% of total phospholipid)

PC-Pls
(% of total phospholipid)

References

LDL 10 4 (60% of total PE) 4 (4% of total PC) Bräutigam et al., 1996;
Ikuta et al., 2019

HDL 10 5 (55% of total PE) 4 (5% of total PC)

Brain gray matter 10 10 (49% of total PE) N.D. O’brien et al., 1965

Brain white matter 12 12 (86% of total PE) N.D.

Myelin 12 12 (90% of total PE) N.D.

CNS cell culture 9 8 (49% of total PE) 1 (3% of total PC) Fitzner et al., 2020

Heart 32 15 (54% of total PE) 17 (42% of total PC) Hughes and Frais,
1967

Macrophages 15 13 (61% of total PE) 2 (6% of total PC) Sugiura et al., 1983

Spermatozoa 12 9 (30% of total PE) 3 (9% of total PC) Poulos and White,
1973

Total = PE-Pls + PC-Pls (other minor plasmalogens not considered).
N.D. = non-detected or trace amounts.
CNS = Central nervous system
CNS cell culture is the average of astrocytes, microglia, neurons, and oligodendrocytes.

FIGURE 1 | Predominant plasmalogen species in different organs. A cartoon
showing two organs, i.e., brain and heart, to exemplify the chemical structure
of the predominant plasmalogen species in those organs.
Plasmenylethanolamine [18:0/22:6 PE-Pls,
1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine]
is the predominant plasmalogen species in the brain and plasmenylcholine
[18:0/22:6 PC-Pls,
1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine]
the one in the heart (Koch et al., 2020). The chemical structure of their diacyl
counterparts is also shown for comparison. Ethanolamine and choline
headgroups are colored in dark and light blue, respectively. The ester and
vinyl-ether bonds are colored in red and purple, respectively. The remaining
chemical structures are in black. Schematic representations were generated
using Biorender (©BioRender - biorender.com).

order was found in molecular dynamic studies (Pietiläinen et al.,
2011; Rog and Koivuniemi, 2016). A possible cause for this
disagreement is that the monolayer studies were done using
plasmalogens with an arachidonoyl group (20:4) at the sn-2
position, but the molecular dynamics studies used an oleoyl
(18:1) acyl chain. The presence of cholesterol reduced the
difference in lateral pressure between the diacyl and enyl-ether
lipids. Molecular dynamics showed a high compression at the

glycerol backbone for the plasmalogens, resulting in a reduced
cross-sectional area of the headgroup (Janmey and Kinnunen,
2006). This results in a slightly thicker bilayer and lower area
per lipid molecule.

Simulations also show an increased orientational ordering
along the bilayer normal of both the sn-1 and sn-2 chains in PC-
Pls (Koivuniemi, 2017). These chains are more ordered resulting
in a more rigid bilayer. This is compatible with plasmalogens
being sequestered in liquid-ordered domains in membranes.
Indeed, there is evidence that plasmalogens are not distributed
uniformly along the plane of the membrane. For instance, they
have been shown to be highly enriched in raft-like domains (Pike
et al., 2002). Lipidomic analysis has suggested that plasmalogens
increase the stability of lipid domains in rat synaptosome
membranes (Tulodziecka et al., 2016). Plasmalogens also affect
membrane fluidity. Fluorescent probe studies using membranes
of Megasphaera elsdenii showed that membranes depleted
of plasmalogens have a lower order parameter than control
membranes (Kaufman et al., 1990). It has been shown that
plasmalogen-rich nematode exosomes had increased rigidity
compared with murine cells (Simbari et al., 2016).

The enyl-ether linkage is also less compatible with forming
hydrogen bonds with water, making the membrane surface
more hydrophobic, contributing to the tendency to form
inverted phases. This agrees with the studies of Lohner and
coworkers showing a lower bilayer to hexagonal phase transition
temperature of plasmalogens (Lohner et al., 1984, 1991; Lohner,
1996). Plasmalogens also are enriched in membrane regions with
high curvature, such as coated pits, the endoplasmic reticulum
(ER), and Golgi cisterna (Thai et al., 2001).

While a considerable understanding of plasmalogen
properties in model systems have been gathered, there are
certain factors that have not been completely studied. One
aspect is the dependence of the physical properties on specific
molecular species of plasmalogens. As is described above there
are many molecular species of plasmalogens. In many cases
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the effects of PC-Pls have been distinguished from those of
PE-Pls, but in general, the sensitivity of the physical property
to the nature of the acyl chain at the sn-2 position has not
been studied. In addition, most of the studies have been done
in vitro/in silico using pure plasmalogens or simple lipid
mixtures with only two or at most three lipid components,
compared with the complex lipid mixtures found in biological
membranes. Furthermore, biological membranes have an
asymmetric transbilayer distribution of lipids, which is known to
affect membrane properties and their interaction with proteins
(Bozelli et al., 2020a). However, most model system studies
used symmetrical bilayers that are easier to prepare. Finally,
biological membranes have a significant fraction of proteins
that can facilitate the formation of membrane domains or can
themselves affect membrane physical properties in a manner
that would be absent in a model system. Despite these caveats,
model system studies have clearly shown differences in the
effect of plasmalogens on the physical properties of membranes
and how their behavior differs from those of diacyl-lipids or
plasmanyl lipids. Changes in membrane physical properties that
are specific to plasmalogens must be considered as a possible
cause of changes observed in biological membranes resulting
from the presence of plasmalogens.

Biological Properties
These manifestations of the effects of plasmalogens on membrane
physical properties have been proposed to play a role in a
variety of biological functions. Because of the chemical lability
of the enyl-ether bond, plasmalogens are suggested to be
protective agents against oxidation, acting as scavengers of
radicals, such as reactive oxygen species (ROS) and reactive
nitrogen species (RNS) (Reiss et al., 1997; Hahnel et al.,
1999a; Zoeller et al., 2002). The ability to scavenger ROS/RNS
is ascribed to the oxidation-labile enyl-ether bond. In vitro
plasmalogens decrease the oxidative degradation of PUFA with
an efficacy like vitamin E (a mitochondrial antioxidant used
to prevent lipid peroxidation). Plasmalogens terminate lipid
peroxidation since the products of plasmalogen oxidation are
unable to further propagate oxidative reactions (Maulik et al.,
1994; Sindelar et al., 1999; Khan et al., 2008; Dott et al.,
2014). In cellula, plasmalogens increase the resistance of cells
to oxidative stress (Zoeller et al., 2002). In addition, in brain
white matter from cerebral adrenoleukodystrophy patients,
plasmalogen levels are inversely correlated with ROS levels, i.e.,
increased ROS leads to a decrease in plasmalogen (Khan et al.,
2008). Likewise, administering plasmalogen precursors, which
increased plasmalogen levels, to a rat model of reperfusion injury,
reduced lipid peroxidation (Maulik et al., 1994). Furthermore,
increasing plasmalogen levels protects human endothelial cells
during hypoxia (Zoeller et al., 2002).

The formation and properties of lipid domains is under
active investigation (Bozelli and Epand, 2018). Lipid domains
are thicker than the surrounding membrane and they are
in the liquid-ordered state that would favor the presence of
plasmalogens. It is generally agreed, however, that these domains,
in addition to plasmalogens, are also enriched in cholesterol and
sphingomyelin and that these domains are of small size and are

transient. There is also considerable evidence that lipid domains
play an important role in many signal transduction pathways
(Bozelli and Epand, 2018). Signal transduction can also occur
due to the production of plasmalogen-derived lipid messengers,
such as AA. The finding that lipid domains also have a high
content of plasmalogens suggests a mechanism for their role in
inflammation (Brites et al., 2004). Thus, in addition to the direct
effects of plasmalogens on membrane physical properties, it is
also likely that plasmalogens have a role in signal transduction
(Dorninger et al., 2020).

Negative curvature lipids, particularly PE-Pls, increase the
rate of fusion and stimulate extracellular and intracellular vesicle
trafficking, particularly for synaptic vesicles (Glaser and Gross,
1994, 1995). There is also evidence that PE-Pls plays a role in
the fusion of enveloped viruses with cell membranes (van Meer
et al., 2008). This is the case for cytomegalovirus and influenza
virus (Liu et al., 2011; Gerl and Sampaio, 2012). The membranes
of some parasites are also enriched in plasmalogens (Brouwers
et al., 1998; Villas Bôas et al., 1999; Simbari et al., 2016).
Exosomes of parasites also contain high levels of plasmalogens
in their membranes as do extracellular vesicles from platelets
(Pienimaeki-Roemer et al., 2013). Plasmalogens in these vesicles
may increase the rate of membrane fusion, however, the
sequestration of plasmalogens in lipid domains may alter certain
signaling pathways. Feeding PC-3 cells, a metabolic precursor of
plasmalogens, hexadecyl-glycerol, causes a large increase in the
release of exosomes (Phuyal et al., 2015). Plasmalogens cause the
number of caveolae to be reduced and their size becomes smaller,
and this lipid also affects axonal sorting and myelin formation
(Gorgas et al., 2006; da Silva et al., 2014).

The small change in the chemical functional group from an
ester to an enyl-ether, found in plasmalogens, has a dramatic
impact on the effect of plasmalogens on membrane physical
properties. Hence, both the chemistry, and physical properties
of plasmalogens contribute to their role in a variety of cell
biology phenomena.

METABOLISM OF PLASMALOGENS

Biosynthesis
The de novo biosynthesis pathway of plasmalogens comprises
enzymatic reactions that take place on both peroxisomes and
ER (Figure 2) (Nagan and Zoeller, 2001; Wanders, 2014).
The biosynthesis of PE-Pls is the best characterized one. Most
evidence suggests that PC-Pls is formed from PE-Pls via
headgroup transfer and/or remodeling and, therefore, both lipids
have common biosynthetic pathways. PE-Pls biosynthesis is
initiated in the peroxisome where dihydroxyacetone phosphate
(DHAP) is esterified with acyl-CoA by a matrix peroxisomal
enzyme, dihydroxyacetone phosphate acyltransferase (DHAP-
AT) (Nagan and Zoeller, 2001; Wanders, 2014). The next enzyme
in the pathway for the biosynthesis of PE-Pls, namely alkyl-
DHAP synthase (AGPS), catalyzes the replacement of the fatty
acid with a fatty alcohol attached to the sn-1 position via an
ether bond. DHAP-AT and AGPS form a heterotrimeric complex,
which is believed to facilitate substrate channeling. Both these
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FIGURE 2 | Plasmalogen de novo biosynthesis. On the left panel, a cartoon of a cell with a focus on the organelles where plasmalogen de novo biosynthesis takes
place, i.e., peroxisomes and endoplasmic reticulum. On the right panel, the enzymatic reactions of plasmalogen de novo biosynthetic pathway are separated by the
organelles where they take place. The reader is referred to the text for the names of the enzymes. Schematic representations were generated using Biorender
(©BioRender - biorender.com).

enzymes are imported into the peroxisomal matrix via peptide
signals in their sequences, which depend on transmembrane
peroxisomal transporter pathways. The fatty alcohol is provided
by a fatty acyl-CoA reductase, Far1, which is anchored to
the cytoplasmic face of the peroxisomal membrane. The third
reaction is catalyzed by an enzyme found at both peroxisome
and ER and is a common point between the biosynthesis of both
plasmalogens and diacyl phospholipids. This enzyme, acyl/alkyl-
DHAP reductase (AADHAP-R) forms 1-alkyl-2-lyso-sn-glycero-
3-phosphate by reducing the ketone at sn-2 position. All the
remaining reactions take place in the ER (Nagan and Zoeller,
2001; Wanders, 2014). The first reaction at the ER is catalyzed by
the lysophosphatidate acyltransferases (AAG3P-AT), which links
an acyl chain from acyl-CoA to the position sn-2 of the glycerol
moiety. In the following step, phosphatidate phosphohydrolase
1 (PAP-1) removes the phosphate of 1-alkyl-2-acyl-sn-glycero-
3-phosphate. Next, phosphoethanolamine (coming from CDP-
ethanolamine) is attached to the hydroxyl group at position

sn-3 of the glycerol moiety by the enzymatic action of
ethanolamine phosphotransferase, EPT, yielding plasmanyl-PE.
From that, PE-Pls is formed via oxidation catalyzed by an
ER desaturase to form the vinyl double bond. Recently, the
gene that encodes plasmenylethanolamine desaturase in humans
has been identified as transmembrane protein 189 (TMEM189)
(Werner et al., 2020).

Plasmalogen biosynthesis has been proposed to be regulated
by the modulation of the rate-limiting reaction, that is, the
one catalyzed by Far1. This is supported by the findings that
Far1 levels (but not those of DHAP-AT, AGPS, or AADHAP-
R) are elevated in plasmalogen-deficient cells (Honsho et al.,
2010; Honsho and Fujiki, 2017; Kimura et al., 2018). That
is, plasmalogen levels are regulated by a negative feedback
mechanism. It has been shown that Far1 protein levels decrease
at normal plasmalogen levels but increase significantly upon
decrease in plasmalogen content (Honsho et al., 2010; Honsho
and Fujiki, 2017; Kimura et al., 2018). This is not a result
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of a change in Far1 expression, but rather in the rate of
degradation of Far1, which is increased via a mechanism
dependent on posttranslational modification (Honsho et al.,
2017). It has been recently proposed that the levels of Far1
are regulated by sensing the content of PE-Pls in the inner
leaflet of the plasma membrane in cultured cells (Honsho et al.,
2017). Bypassing the peroxisomal reactions by administration
of a plasmalogen precursor, an alkylglycerol (AG), increased
plasmalogen biosynthesis and induced the degradation of Far1
(Nagan et al., 1997; Nagan and Zoeller, 2001; Honsho et al., 2008,
2010, 2013; Bozelli et al., 2020b). Administration of AG to young
rats shows restoration of plasmalogen levels in all tissues but the
brain (Das et al., 1992). The regulation of the biosynthesis in
tissues is less well characterized. While it is reasonable to propose
that the regulation of plasmalogen synthesis in tissues would
occur by a negative feedback mechanism, as the one reported in
cultured cells, in tissues there is the possibility that the regulation
might involve other mechanisms.

Degradation
The steady state levels of plasmalogens are a result of their rate
of biosynthesis and degradation. In the brain, one of the organs
with highest PE-Pls content, it seems that there are two pools of
PE-Pls. In white matter, PE-Pls are mainly found in the myelin
sheath where its content is kept at a relatively constant level
(Rosenberger et al., 2002). In gray matter, PE-Pls present a high
turnover rate with a half-life of ca. 20 min. There are several ways
that could lead to the degradation of plasmalogens, these include
(i) removal of headgroup, (ii) oxidation of the enyl-ether bond,
and hydrolysis of the (iii) alkyl chain and (iv) acyl chain.

Degradation of plasmalogen could occur by removal
of the headgroup by a phospholipase C or D. It has been
shown that PE-Pls can be the substrate of a phospholipase
C, which yields 1-alkenyl-2-acyl-sn-glycerol (Wolfs et al.,
1985). While the action of phospholipase D on PE-Pls yields
1-alkenyl-2-acyl-sn-phosphatidic acid (plasmenylphosphatidate)
(van Iderstine et al., 1997). The enyl-ether bond can also
be a site of action for plasmalogen degradation. It has been
reported that the enyl-ether bond is sensitive to radical
attack (by ROS and RNS) upon oxidative stress (Nagan
and Zoeller, 2001; Zoeller et al., 2002). The major products
of radical attack are eicosatetraenoic acid hydroxylated, 2-
monoacylglycerol phospholipid, pentadecanol, formic acid,
α-hydroxyaldehyde of various chain lengths, 1-formyl-2-
arachidonoyl glycerophospholipid, and lysophospholipid
(Gorgas et al., 2006). In addition, the enyl-ether bond can be
attacked by cytochrome c upon oxidative stress leading to the
formation of α-hydroxy fatty aldehydes and 2-arachidonoyl-
lysophospholipid (Jenkins et al., 2018). Finally, plasmalogen
can be degraded by the action of phospholipases A2 (PLA2),
which cleaves the acyl chain at the sn-2 position yielding
free fatty acid and lysoplasmalogen (Yang et al., 1996). Since
plasmalogens are usually enriched with PUFA at the sn-2
position, which themselves are lipid bioactive molecules,
the action of PLA2 has received special attention. There
has been the identification of plasmalogen-selective PLA2,
including one from rat pancreas, which is selective for AA

(Hazen et al., 1990; Ford et al., 1991; Yang et al., 1996,
1997). Lysoplasmalogens may, then, be further degraded by
lysoplasmalogenases or reacylated to restore plasmalogens
(Arthur et al., 1986; Jurkowitz-Alexander et al., 1989;
Jurkowitz-Alexander and Horrocks, 1991).

CHRONIC INFLAMMATION AND
PLASMALOGEN

Inflammation is an important immune response that our body
uses to protect itself from infection and injury (Medzhitov,
2008). Inflammation localized inside the brain and spinal cord is
generally described as neuroinflammation (Figure 3) (DiSabato
et al., 2016). Dysregulation of inflammation leads to chronic
inflammation. Chronic inflammation has been identified as
a common element in pathophysiological conditions where
plasmalogens levels were reported to be decreased.

The inflammatory pathway is coordinated by complex
regulatory networks that rely on signals coming from 4 distinct
functional groups, those are: the (i) inducer (initiate the cascade
of both cellular and molecular events), (ii) sensor (activated by
the inducer), (iii) mediator (produced upon sensor activation),
and (iv) effector (tissues/organs with functional states altered by
the mediator to elicit the desired inflammatory response). For

FIGURE 3 | Neuroinflammation. Cartoon summarizing the key events that
lead to neuroinflammation. Neuroinflammation begins with microglia and
astroglia activation (step 1) that stimulates the release of various cytokines and
chemokines (step 2). The cytokine and chemokine production leads to the
recruitment of monocytes and lymphocytes and their subsequent infiltration
into the parenchyma (step 3), allowing these immune cells to perform their
necessary functions in the process of neuroinflammation. Schematic
representations were generated using Biorender (©BioRender -
biorender.com).
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instance, in the case of neuroinflammation triggered by bacterial
infection, receptors of the innate immune system (such as Toll-
like receptors, TLRs – the sensor) on microglia and astrocytes
recognize bacteria (the inducer) (Figure 3) (Medzhitov, 2008).
Toll-like receptors activation leads to a coordinated cascade of
events via the production of mediators, which culminates in the
recruitment of leukocytes (such as monocytes and lymphocytes –
the effectors) at the site of infection (Figure 3) (Zhou et al.,
2006). In this process, various mediators are produced including
cytokines, chemokines, and lipid mediators that will allow
leukocytes to become activated to fight the pathogen at the
infection site. Once the pathogens are defeated by the immune
system, there is a switch from pro-inflammatory to anti-
inflammatory response (the resolution phase). This simplified
sequence of events depicts a successful acute inflammatory
response (Medzhitov, 2008). However, if the acute inflammatory
response fails, a chronic inflammatory state develops.

Lipid mediators are crucial signaling molecules involved in the
inflammatory response and its resolution (the return of tissue
to homeostasis). Hence, any dysregulation in the production
of these lipid mediators could lead to chronic inflammation
and excessive tissue damage, which, in turn, would lead to a
disease state (Fullerton et al., 2014). Several lipid mediators are
derived from the metabolism of PUFA such as AA, DHA, and
eicosapentaenoic acid (EA, ω-3, 20:5). For instance, oxidation of
AA to produce prostaglandins, thromboxanes, and leukotrienes
are involved in pro-inflammatory response, while the metabolism
of AA to yield lipoxins, and that of DHA and EA to yield
resolvins, protectins, and maresins are involved in the anti-
inflammatory response (Denisenko et al., 2020). These PUFA
are essential fatty acids and need to be obtained through diet.
However, they are not found in the body in their free acid
form, rather esterified to glycerophospholipids. Plasmalogens are
predominantly enriched with AA and DHA at the sn-2 position of
the glycerol moiety and, therefore, they are proposed to play a role
in inflammation by acting as reservoirs of these important lipid
mediators. For example, up to 40% of the PE-Pls in macrophages
and neutrophils (immune cells important in the inflammation
process) contain AA at the sn-2 position, which constitutes
75% of AA in these cells (Sugiura et al., 1983; Kayganich and
Murphy, 1992). Upon lipopolysaccharide (LPS) stimulation (an
inflammatory inducer), plasmalogens from macrophage cells are
prone to hydrolysis to release AA to produce pro-inflammatory
eicosanoids (Gil-de-Gómez et al., 2017).

Plasmalogens could also contribute to inflammation via
modulation of membrane physical properties. For instance,
plasmalogens have been shown to be critical in determining
proper membrane fluidity and lipid domain formation for
efficient signal transduction events (Rubio et al., 2018). In the
brains of Alzheimer’s disease mice models, it has been reported
that plasmalogens function by modulating TLR4 endocytosis
and, consequently, decreasing the production of inflammatory
cytokines, which, in turn, reduces the inflammatory phenotype
(Ali et al., 2019). It was proposed that this role was due
to either inhibition of clathrin-dependent endocytosis and/or
enhancement of caveolin/lipid raft-mediated endocytosis (Cai
et al., 2013; Ali et al., 2019). In addition, lysoplasmalogens

(produced via the hydrolysis of the acyl chain at the sn-2 position
of plasmalogens) have been proposed to actively participate in
the inflammatory process via promotion of neutrophil adherence
to the endothelium (White et al., 2007). PE-Pls containing
AA can also act as an intermediate in the production of
anandamide (arachidonoyl ethanolamine, an endocannabinoid),
which has anti-inflammatory properties mediated by binding
to cannabinoid receptors in the brain (Rettori et al., 2012).
Anandamide can also serve as a reservoir of AA and, therefore,
the production of eicosanoids (Cravatt et al., 1996). It, thus,
seems reasonable that a decrease in plasmalogen levels could
impair the inflammatory response by a variety of molecular
mechanisms ranging from specific interactions to secondary
effects on membrane physical properties.

LOWERED PLASMALOGEN LEVELS IN
PATHOPHYSIOLOGICAL CONDITIONS

Recently, there has been an increased attention devoted to
plasmalogens. This is a consequence of the identification that in
several pathophysiological conditions the levels of plasmalogens
are altered. In conditions ranging from aging to degenerative
and metabolic disorders it has been shown that the levels
of plasmalogens are decreased. However, it is not completely
understood at present the molecular mechanisms governing
the decrease of plasmalogen levels in these pathophysiological
conditions. In this section we will discuss the plasmalogen-related
changes in some of these conditions.

Aging
Aging in humans is accompanied by a host of molecular
and cellular changes that could lead to impaired cell function
and organ failure, which, in turn, could trigger degenerative
processes (Giorgi et al., 2018). For instance, as one ages
mitochondrial function decreases and oxidative stress increases
(Boss and Seegmiller, 1981; Bektas et al., 2018; Giorgi et al.,
2018; Liguori et al., 2018). In addition, in older individuals
chronic inflammation develops (Ferrucci and Fabbri, 2018).
Several mechanisms lead to inflammatory processes upon aging
including genetic, cellular malfunction, and oxidative stress
caused by defective mitochondria (Boss and Seegmiller, 1981;
Bektas et al., 2018; Ferrucci and Fabbri, 2018; Giorgi et al.,
2018; Liguori et al., 2018). Plasmalogen levels also change as
a function of human age (Table 2). Plasmalogen content in
newborns is extremely small (ca. 7% of the total phospholipid
mass in the brain) (Farooqui et al., 2008). In the first year of
life there is a dramatic increase (8-fold) in PE-Pls in brain white
matter (Farooqui et al., 2008). Plasmalogen levels keep increasing
linearly up to 30–40 years of age and then, at 70 years of age a
significant (linear) decrease in their levels is observed (Rouser
and Yamamoto, 1968). Indeed, with elderly individuals (70 years
of age), it has been shown that PC-Pls and PE-Pls content in the
serum (present within lipoproteins for transport from the liver
to other organs) dropped 40% in comparison to healthy young
controls (Maeba et al., 2007). This correlation between decreased
plasmalogen levels and aging was also confirmed in studies
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TABLE 2 | Plasmalogen-related abnormalities in different pathophysiological conditions.

Control Aging RCDP ZS AD PD MS BTHS CAD

Plasmalogen
Biosynthesis

N N D D D N N N N

Plasmalogen
Degradation

N D N N D D D D D

Proposed
mechanism of
plasmalogen
content change

- Increased
turnover
Increased
oxidative stress

RCDP1: Defect
in PEX7 gene
RCDP2: Lower
activity in
DHAP-AT
RCDP3: Lower
activity in AGPS

Absence of
peroxisomes

Decreased
peroxisomes in
neurites
Increased
oxidative stress

Increased
oxidative stress

Increased
oxidative stress
MS-related
demyelination

Increased
expression of
iPLA2β

Increased
oxidative stress

Reported
plasmalogen
content

- Approximately
40% lower in
elderly

Variable
decrease in
plasmalogen
content
depending on
disease severity

Near absence
plasmalogens

40 mol% loss in
white matter
10 mol% loss in
gray matter
30 mol% loss in
gray matter in
severe
dementia

20% - 60%
plasmalogen
loss

General
decrease in
plasmalogen
content

10% - 28%
ethanolamine
plasmalogen
loss. Highest
decrease seen
in liver (28%)
and BTHS
lymphoblasts
(25%)

General
decrease in
plasmalogen
content

Plasmalogen
species
affected

- Both
ethanolamine
and choline
plasmalogens
affected

Primarily
ethanolamine
plasmalogens
affected

Both
ethanolamine
and choline
plasmalogens
near absent

Primarily
ethanolamine
plasmalogens
affected

Primarily
Ethanolamine
plasmalogens
affected

Both choline
and
ethanolamine
plasmalogens
affected

Choline
plasmalogens
affected in
heart
Ethanolamine
plasmalogens
affected in
other organs

Primarily
choline
plasmalogens
affected

Reference - Terlecky et al.,
2006; Maeba
et al., 2007;
Jenkins et al.,
2018

Itzkovitz et al.,
2012;
Dorninger et al.,
2014; Noguchi
et al., 2014

Itzkovitz et al.,
2012;
Dorninger et al.,
2014; Noguchi
et al., 2014

Ginsberg et al.,
1995; Han
et al., 2001;
Igarashi et al.,
2011; Sachdev
et al., 2013

Fabelo et al.,
2011; van
Horssen et al.,
2019; Mawatari
et al., 2020;
Patergnani
et al., 2021

Fabelo et al.,
2011; van
Horssen et al.,
2019; Mawatari
et al., 2020;
Patergnani
et al., 2021

Kimura et al.,
2018, 2019;
Bargiela and
Chinnery, 2019

Meikle et al.,
2011;
Christodoulidis
et al., 2014;
Sutter et al.,
2016

An outline of different pathophysiological conditions where plasmalogens levels have been reported to be decreased and the proposed effect on plasmalogen biosynthesis, degradation, and mechanism of
plasmalogen content change. RCDP, Rhizomelic chondrodysplasia punctata; ZS, Zellweger’s syndrome; AD, Alzheimer’s disease; PD, Parkinson’s disease; MS, Multiple sclerosis; BTHS, Barth syndrome; CAD,
Coronary artery disease.
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examining mammalian tissue (Brosche and Platt, 1998). While
there is no present explanation for the molecular mechanisms
leading to lower plasmalogen levels upon aging, it has been noted
that aging cause lower plasmalogen levels by either impairing
the biosynthesis and/or increasing degradation (likely, caused by
oxidative stress) (Terlecky et al., 2006; Jenkins et al., 2018).

Peroxisomes Diseases
Peroxisomes are organelles that play an important role in
the metabolism of lipids and radical species (ROS/RNS) and,
therefore, are modulators of a variety of signaling pathways
dependent on them, including inflammation and immune
response (Fransen et al., 2017). Peroxisomes de novo biogenesis
emerges from a hybrid of mitochondrial and ER-derived pre-
peroxisomes (Sugiura et al., 2017). Furthermore, peroxisomes
act in concert with mitochondria in several metabolic processes
(Sugiura et al., 2017). Therefore, it is not unexpected that
dysfunction in one organelle tends to affect the other. Peroxisome
diseases are the name given to the collection of pathologies
caused by mutations in the genes encoding proteins involved in
either peroxisomes biogenesis or function. Since, peroxisomes
are the place where the de novo biosynthesis of plasmalogens is
started, it is not surprising that in peroxisome diseases there is
a decrease in plasmalogen levels. In mice models of peroxisomal
deficiency diseases, neuroinflammation is an established feature,
suggesting that peroxisomes play an important role against
degeneration and inflammation in the brain (Kassmann et al.,
2007). Below a discussion of the plasmalogen-related changes in
two peroxisomal deficiency diseases will be made.

Zellweger’s Syndrome
Zellweger’s Syndrome (ZS) is a rare autosomal recessive
disorder characterized by a defective peroxisome biogenesis,
a consequence of mutations in one of the 13 PEX genes
that are responsible for peroxisome formation and function
(Steinberg et al., 2020). In ZS, peroxisomes are deficient,
mitochondria dysfunctional, oxidative stress increased, and
there is neuroinflammation (Heymans et al., 1983; Baumgart
et al., 2001; Kassmann et al., 2007). In post-mortem tissue of
infants with ZS, plasmalogen levels are decreased significantly
in comparison to controls (Table 2) (Heymans et al., 1983,
1984). The extent of decrease varies with tissue and could be
as low as 10% of that found in controls. In the brain, kidney,
and liver of ZS patients PE-Pls is the plasmalogen species
affected, while in muscle and heart PC-Pls is the species affected
(Heymans et al., 1983, 1984).

Rhizomelic Chondrodysplasia Punctata
Rhizomelic Chondrodysplasia Punctata (RCDP) is a rare
autosomal recessive disorder characterized by defective
plasmalogen biosynthesis, a consequence of mutations in
peroxisomal enzymes involved in this pathway (Table 2) (Bams-
Mengerink et al., 2013). The most common type of RCDP
(RCDP1) has been associated with defects in the PEX7 gene,
that encodes a peroxisome import receptor responsible for the
proper targeting of PTS2-proteins into peroxisomes (Itzkovitz
et al., 2012). Defects in enzymatic function or expression levels

of peroxisomal enzymes responsible for initiating plasmalogen
synthesis, DHAP-AT and ADHAP-S, are also associated with less
frequent RCDP2 and RCDP3, respectively (Itzkovitz et al., 2012;
Noguchi et al., 2014). The severity of RCDP phenotype seems to
correlate with plasmalogen content in fibroblasts derived from
RCDP patients (Dorninger et al., 2014). For a non-severe RCDP,
a 40% reduction in PE-Pls content was reported, while that value
increased to more than 70% in the severe phenotype (Dorninger
et al., 2014). Hence, in the case of RCDP it has been proposed
that the low plasmalogen levels might be responsible for the
symptoms of RCDP (Braverman et al., 2002; Itzkovitz et al., 2012;
Bams-Mengerink et al., 2013; Duker et al., 2017).

Neurodegenerative Disorders
Neurodegenerative disorders are diseases that involve the
deterioration of the brain due to the progressive loss of
structure and/or function of neurons, which might lead to cell
death. Diseases that occur because of neurodegeneration include
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Multiple
sclerosis (MS) (Gitler et al., 2017). Mitochondrial dysfunction
and oxidative stress are key players in neurodegeneration
(van Horssen et al., 2019; Patergnani et al., 2021). In
neurodegeneration, mitochondrial-derived RNS/ROS can trigger
inflammation as well as stimulate immune signaling cascades
to intensify the inflammatory process (Heneka et al., 2014;
Patergnani et al., 2021). In addition, one observation that has
started to gain increased interest is the fact that in several
neurodegenerative disorders a marked decrease in plasmalogen
levels has been reported. This opens a new and exciting avenue of
research in the field of neurodegenerative disorders. This section
will expand on the relationship between plasmalogen loss and
different neurodegenerative disorders.

Alzheimer’s Disease
Alzheimer’s Disease (AD) is a neurodegenerative disorder
characterized by the presence of neurofibrillary tangles, amyloid-
β plaques, synaptic loss, and abnormal Tau proteins in the
brain (Ginsberg et al., 1995; Guan et al., 1999; Han et al.,
2001). These molecular changes result in progressive memory
loss alongside mitochondria dysfunction and oxidative and
inflammatory damage to the brain (Ginsberg et al., 1995; Guan
et al., 1999; Han et al., 2001; Braverman and Moser, 2012). Post-
mortem analyses of the brains of AD patients have shown a
decrease in PE-Pls and PC-Pls in both gray and white matter
of their brains (Table 2) (Ginsberg et al., 1995; Igarashi et al.,
2011). At the earlier stage of the disease, the loss of plasmalogen
in AD patients is higher in white matter (40 mol%) than in gray
matter (10 mol%) (Han et al., 2001). As the disease progresses
to severe dementia, the gray matter plasmalogen loss increases
to around 30 mol% (Han et al., 2001). Given that AD is
primarily a disease of gray matter, a positive correlation between
disease progression and plasmalogen loss is seen (Han et al.,
2001; Sachdev et al., 2013). However, the correlation between
plasmalogen loss and AD has been questioned by a recent study
where it has been shown a lack of correlation between low
plasmalogen levels and the ApoE4, a biomarker of AD (Han,
2005; Braverman and Moser, 2012).
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Parkinson’s Disease
Parkinson’s Disease (PD) is a neurodegenerative disease
characterized by the presence of fibrillar aggregates of
α-synuclein within Lewy bodies and the associated loss of
dopaminergic cells within the basal ganglia of patients, which
leads to motor function impairment (Olanow et al., 2009;
Miller and O’Callaghan, 2015; Powers et al., 2017; Bozelli et al.,
2021). The progression of PD is associated with dysfunctional
mitochondria, increased oxidative stress, and neuroinflammation
(van Horssen et al., 2019; Patergnani et al., 2021). Recent
literature examining PD patients has identified the presence of
altered plasmalogen levels (Table 2). Although not as excessive
of a decrease as in AD, ethanolamine head group-containing
ether lipids decreased 30% in both plasma and erythrocytes of
PD patients (Mawatari et al., 2020). It has been proposed that in
PD, plasmalogen loss at lipid domains from cortical gray matter
could lead to impaired cellular signaling (Fabelo et al., 2011).

Multiple Sclerosis
Multiple Sclerosis (MS) is a chronic neurodegenerative
disease of the central nervous system (Huang et al., 2017).
Believed to be an autoimmune disorder, it occurs due to
infiltration of autoreactive lymphocytes across the blood brain
barrier into the central nervous system (Trapp and Nave,
2008). Autoreactive lymphocyte invasion leads to localized
inflammation, demyelination, axonal loss, and gliotic scarring
(Trapp and Nave, 2008). In MS, mitochondrial dysfunction drives
neuroinflammation, likely via an oxidative stress mechanism
(Bargiela and Chinnery, 2019). While the plasmalogen-specific
literature surrounding MS is inchoate, recently a marked
decrease in plasmalogen (PC-Pls and PE-Pls) content in the
serum of MS patients experiencing both remission and relapse of
MS has been reported (Table 2) (Ferreira et al., 2021). It has been
proposed that this decline in plasmalogen species in MS patients
might have various causes, including (i) increased immune
system stress contributing to the reduction of plasmalogen via its
oxidation, and (ii) MS-related demyelination, which might also
contribute to plasmalogen loss as the myelin sheath is enriched
in plasmalogen species (Ferreira et al., 2021).

Heart Diseases
Heart diseases are the first cause of death in western countries.
These are a group of conditions that affect the structure and
function of the heart, which could arise due to different molecular
and cellular events. The heart is an organ that relies heavily on
aerobic metabolism and, therefore, mitochondrial dysfunction
plays a crucial role in many heart diseases (Martín-Fernández and
Gredilla, 2016). Mitochondria dysfunction can increase oxidative
stress, which can activate the inflammasome and lead to chronic
inflammation in cardiometabolic diseases (Patergnani et al.,
2021). Inflammation and oxidative stress have been proposed
to play a role in the initiation, progression, and complications
of cardiometabolic diseases (Tousoulis et al., 2008). Recently,
the involvement of plasmalogen in heart diseases has started
to emerge; specifically, the decrease in PC-Pls, which is the
main plasmalogen in the heart and could constitute up to
40 mol% of the total choline phospholipids (Heymans et al.,

1983; Diagne et al., 1984; Kimura et al., 2016). In this section, a
discussion of plasmalogen-related changes in a couple of heart
diseases will be made.

Barth Syndrome
Barth Syndrome (BTHS) is a rare genetic disorder, which mainly
affects the heart, but also muscles, the immune system, and
growth. BTHS is characterized by mutations in tafazzin, a
phospholipid-lysophospholipid transacylase that is involved in
the last step of the de novo biosynthesis of the mitochondrial-
specific lipid cardiolipin (CL) (Barth et al., 1996; Bione et al.,
1996; Vreken et al., 2000; Schlame et al., 2003). Barth Syndrome
patients present altered content and molecular species of CL as
well as abnormal mitochondrial structure and function (Vreken
et al., 2000; Schlame et al., 2003; Valianpour et al., 2005; Xu
et al., 2005; Gonzalvez et al., 2013; Wang et al., 2014; Goncalves
et al., 2021). Moreover, a link has been reported between
inflammation and mitochondria in the pathology of BTHS
(Wilson et al., 2012). While alterations in CL and mitochondria
have been the focus in BTHS research, lately it has been
acknowledged that there are more widespread lipid changes
in BTHS. A particularly important one is the observation that
plasmalogen levels decreased markedly in several organs (brain,
heart, and liver) of a tafazzin knockdown mouse model of the
disease as well as in lymphoblast cells derived from BTHS patients
(Table 2) (Kimura et al., 2018, 2019). The changes in plasmalogen
are much higher than those observed for CL. In the heart, PC-Pls
is the plasmalogen affected, while in brain, liver, and lymphoblasts
derived from BTHS patients PE-Pls is the lipid species affected
most (Kimura et al., 2018, 2019). The exact reason for this PC-
Pls deficiency is unknown; however, it has been suggested that
it might be related to the observed increase in the expression
of iPLA2β (a calcium-independent phospholipase A2 that is
plasmalogen-selective), in the hearts of tafazzin knockdown mice
(Kimura et al., 2018).

Coronary Artery Disease
Coronary Artery Disease (CAD) is the most common type of
heart disease. It is caused by the development of atherosclerotic
plaques (lipid deposits, mainly cholesterol) inside arterial
walls over time, which could end up in occlusion and,
consequently, acute myocardial infarction (AMI) (Sutter et al.,
2016). While lipid accumulation has been the major focus of
the research on plaque formation and destabilization, more
recently literature has emphasized the key roles of chronic
inflammation, mitochondria dysfunction, and oxidative stress
on these processes (Christodoulidis et al., 2014). Previous data
has shown that lipids such as cholesterol, glycerophospholipids,
sphingolipids, and triacylglycerols are important risk factors for
atherogenesis (Sutter et al., 2016). Plasmalogens have also been
reported to be altered in CAD (Table 2). It has been reported
that PC-Pls levels are decreased in the plasma of CAD patients,
specifically four molecular species of PC-Pls (33:1, 33:2, 33:3, and
35:3) were reduced (Meikle et al., 2011; Sutter et al., 2016).

As illustrated by the discussion above, the recent interest
in plasmalogens by the scientific community is not surprising.
While the relationship between plasmalogen loss and these
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various pathophysiological conditions is clear, there is a lack
of understanding of the molecular mechanisms. However, in
some of these conditions a common scenario has started to
emerge; that is, mitochondria dysfunction triggers oxidative
stress, which, in turn, leads to depleted plasmalogens and
chronic inflammation. Hence, it seems reasonable to propose
that a decrease in plasmalogen levels is tightly linked with these
biological processes. The literature has established general roles
that plasmalogens play within the cellular environment; however,
more in-depth analysis of these functions is necessary as well
as the dependence on their molecular species (Dean and Lodhi,
2018). This data could provide a means of diagnosis, prognosis,
and/or treatment.

RESTORING PLASMALOGEN LEVELS AS
A THERAPEUTIC STRATEGY

In conditions with altered lipid metabolism, a therapeutic
strategy that has been considered involves the use of small
molecules that could restore lipid homeostasis. Hence, the
observation that plasmalogen levels are decreased in several
pathophysiological conditions opens a new avenue for the
development of potential therapies to these conditions, that
is, plasmalogen replacement therapy (PRT). The idea behind
PRT is to administer purified plasmalogens and/or plasmalogen
precursors to normalize plasmalogen levels.

Administration of plasmalogen and/or its precursors has been
utilized in different clinical settings to increase plasmalogen levels
as well as a strategy to prevent/attenuate different pathological
conditions (Das et al., 1992; Marigny et al., 2002; Brites et al.,
2011; Bozelli et al., 2020b). One of the most used small molecules
in PRT is AG, which is a plasmalogen precursors that enters
the biosynthesis pathway in the ER after being phosphorylated
in the cytosol (Synder, 1992; Braverman and Moser, 2012). For
instance, AG has been shown to restore plasmalogen levels in
fibroblast cells derived from ZS and RCDP patients (Brites et al.,
2004). Administration of AG to a cell model of BTHS restored
plasmalogen level and partly CL levels as well as improved
mitochondria fitness (Bozelli et al., 2020b). In a mouse model
of RCDP (Pex7hypo/null) ingestion of a synthetic vinyl-ether
plasmalogen restored plasmalogen levels in the plasma and
increased the content at different extents in other tissues (with
exception of the brain, lung, and kidney) (Fallatah et al., 2020).
In addition, the treatment normalized the hyperactive behavior
of Pex7hypo/null (Fallatah et al., 2020). In the brain of the Pex7
knockout mice, AG diet also did not rescue plasmalogen levels
(Brites et al., 2011). However, DHA-enriched lipids have been
shown to increase PE-Pls levels in the brain and, consequently,
ameliorate the phenotype in a dementia mice model (Zhao
et al., 2020). In a rat model of AD, ingestion of purified
PE-Pls derived from Ascidia viscera improved cognition and
learning ability (Yamashita et al., 2017). In mice models of PD,
ingestion of plasmalogens or their precursors led to improved
neuroprotection and immunomodulation as well as reduced
neuroinflammation (Hossain et al., 2018; Nadeau et al., 2019). In
ZS, PRT has been used in two patients where it has been shown

to increase the levels of plasmalogen upon AG ingestion (Wilson
et al., 1986). In addition, it also has been reported that memory
function of AD patients with mild symptoms can be improved
upon ingestion of scallop-derived plasmalogens (Fujino et al.,
2017). In PD patients, ingestion of scallop-derived plasmalogens
increased blood plasmalogen concentration as well as improved
non-motor symptoms of PD (Mawatari et al., 2020).

The reported changes in plasmalogen levels in several diseases
where chronic inflammation plays a key role opens a new avenue
for their treatment. Contrary to the manipulation of the levels
of other phospholipids, restoring plasmalogen levels via the use
of PRT has been shown to be very successful in several disease
models studied. It is crucial to understand both how plasmalogen
levels are decreased as well as how their levels could be restored
at the molecular level for the design of better, more potent, small
molecules in clinical applications of PRT.

LOWERING PLASMALOGENS IN
DISEASE: CAUSE OR EFFECT?

The steady-levels of plasmalogens are determined by their rate
of biosynthesis and degradation. Alterations in plasmalogen
metabolism and/or catabolism are, therefore, associated with
changes in their levels. While this is a reasonable generic
explanation for the alteration in plasmalogen content, the
exact molecular mechanism varies with the pathophysiological
condition. For instance, in peroxisome diseases plasmalogen
content loss is, usually, a result of impaired biosynthesis.
In ZS plasmalogen biosynthesis is deficient due to a lack
of functional peroxisomes, while in RCDP the impaired
biosynthesis is a consequence of mislocalization and/or absence
of functional peroxisomal enzymes responsible to initiate
plasmalogen biosynthesis, such as DHAP-AT and AGPS (Nagan
and Zoeller, 2001; Brites et al., 2004). On the other hand, during
aging as well as in degenerative (AD, PD, MS) and metabolic
(BTHS, CAD) diseases, it seems that plasmalogen degradation
enhancement is responsible for the lowering in plasmalogen
levels. In all these conditions, mitochondria are dysfunctional,
and there is an increase in the inflammatory response and
oxidative stress. One way to degrade plasmalogens is via the
oxidation of the enyl-ether bond, a condition that is favored upon
increasing oxidative stress in the cell (Hahnel et al., 1999b; Zoeller
et al., 2002). In addition, it has been reported that there is a
link between oxidative stress and the activity of enzymes along
the plasmalogen degradation pathways, such as cytochrome c
(which acts as a plasmalogenase cleaving the enyl-ether bond)
and cytosolic PLA2 (which hydrolyzes AA at the sn-2 position
to produce eicosanoids) (Chuang et al., 2015; Jenkins et al., 2018;
Kimura et al., 2018).

There is a good correlation between diseases with chronic
inflammation and a lower level of plasmalogens (Wang, 1999;
Spiteller, 2006). Conversely, administration of plasmalogens
to individuals with these diseases reduces the extent of
inflammation. Inflammation is a factor in aging, and it
has been shown to play a key role in degenerative and
metabolic diseases. One of the best studied examples is AD.
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It has been shown in postmortem brains that there is a
60% decrease in PE-Pls relative to PE in affected brain
regions of AD patients. Furthermore, this decrease in PE-
Pls was specific to brain regions with histological damage
characteristic of the disease and not in unaffected regions
of the brain of the same individual (Ginsberg et al., 1995).
This lower level of PE-Pls is, however, not limited to
regions of the brain where there is morphological damage
but is even seen in the levels of PE-Pls in circulation,
which correlated with a characteristic AD biomarker, i.e.,
an increased level of the protein Tau in the cerebrospinal
fluid (Kling et al., 2020). The role of plasmalogens in AD
has been recently reviewed (Su et al., 2019). Inflammation
caused by the administration of bacterial LPS resulted in a
decreased level of plasmalogen in the brain as well as the
accumulation of Aβ peptides. These changes were reversed
by the administration of plasmalogens (Ifuku et al., 2012). In
addition to AD, other neurodegenerative diseases are associated
with aging that results in the decline of plasmalogen levels
caused by defects in the ability of peroxisomes to synthesize
plasmalogens (Jo and Cho, 2019). Peroxisomes also contribute
to the production of cytokines during inflammation (di Cara
et al., 2017). Peroxisomal lipid synthesis regulates inflammation
by sustaining neutrophil membrane phospholipid composition
and viability (Lodhi et al., 2015). Peroxisomal alterations
in the brains of patients with AD and with PD suggest
that peroxisomal defects may facilitate the development of
neurodegenerative disorders (Cipolla and Lodhi, 2017; Deori
et al., 2018). Neurodegenerative diseases are strongly associated
with oxidative stress (Wanders, 2014; Cipolla and Lodhi,
2017). Several reviews have appeared associating oxidative stress
with neurodegenerative diseases (Jiang et al., 2016; Kamat
et al., 2016; Puspita et al., 2017). Neuroinflammation results
in the accumulation of 2-chlorohexadecane in brain lipids of
endotoxin-treated mice indicating that inflammatory conditions
may deplete plasmalogen levels (Üllen et al., 2010).

The series of events that results in lowering plasmalogen
levels in the brain is believed to be associated with an
oxidation process (Senanayake and Goodenowe, 2019). Damaged
peroxisomal functions as well as higher levels of H2O2
potentially cause permanent plasmalogen deficiency that led to
membrane changes, signaling abnormalities, neurotransmission
deficits, and lowering antioxidant defenses (Braverman and
Moser, 2012). Oxidative stress associated with inflammation can
accelerate plasmalogen degradation by cleaving the vinyl-ether
bond, further reducing the anti-inflammatory and antioxidative
capacity of the tissues initiating an irrevocable vicious cycle
that progresses to pathological abnormalities (Su et al.,
2019). It has been proposed that cytochrome c-mediated
degradation of plasmalogens due to increased oxidative stress
as a potential mechanism responsible for the decrease in
plasmalogens (Jenkins et al., 2018). Thus, relating oxidative
stress with the loss of plasmalogens leading to disease
(Jenkins et al., 2018).

Elevated levels of plasmalogen peroxides relative to
plasmalogens can be detected in aging brains and in AD-
affected brains providing further evidence of the significance

of the maintenance of plasmalogens in the intact state of
the brain (Weisser et al., 1997). Inflammation has been
shown to be related to apoptosis and the generation of
inflammatory caspases (Davies et al., 2021). Caspases are
initiators of apoptosis and neurodegeneration (Budihardjo
et al., 1999). Caspases are also associated with inflammation
(Wu et al., 2009). TNFα (tumor necrosis factor α), a signaling
molecule produced in inflammatory conditions, induces
caspase-dependent inflammation in renal endothelial cells
through a Rho- and myosin light chain kinase-dependent
mechanisms. Among different caspases, caspase-3 is of
particular interest because it is found to be associated with
the pathologies of neurodegenerative diseases, such as AD
(Su et al., 2001; D’Amelio et al., 2011). Recent studies also
reported that caspase-3 is associated with the formation of
amyloid-β (Aβ) by processing of amyloid precursor protein
(Stone et al., 2002). Caspase-8 and caspase-3 have been
implicated in microglial activation by regulating protein
kinase C (Burguillos et al., 2011). Plasmalogens inhibit
LPS-induced Aβ formation and microglial activation in the
mouse brain cortex (Ifuku et al., 2012). Plasmalogens also
suppress apoptosis in intestinal tract cells by attenuating
induced inflammatory stress (Nguma et al., 2021b). Dietary
PE-Pls has been shown to reduce intestinal inflammation,
oxidative stress, and the expression of apoptosis-related
proteins in the colon mucosa (Nguma et al., 2021a).
Inflammation has also been suggested to play a role in cancer
(Lan et al., 2021).

In cancer and degenerative diseases, ferroptosis (an iron-
dependent, non-apoptotic cell death process) plays an important
role (Stockwell et al., 2017). The increase in the levels of
peroxidized intracellular lipids due to the oxidation of PUFA
moieties in membrane phospholipids is responsible for triggering
ferroptosis (Conrad and Pratt, 2019). Recently, it has been
shown that plasmalogens, which are enriched in PUFA, can
induce ferroptosis by providing PUFA for lipid peroxidation
(Zou et al., 2020). Likewise, plasmalogen biosynthesis has
been reported to mediate a new axis of ferroptosis, which is
dependent on long-chain saturated fatty acids (Cui et al., 2021).
It has been shown that the enzymes Far1 and TMEM189,
which catalyze reactions in plasmalogen biosynthesis (see
above), can mediate the new axis of ferroptosis (Cui et al.,
2021). Both ferroptosis and plasmalogens play a role in
inflammatory processes (Braverman and Moser, 2012; Sun
et al., 2020). However, it is not currently understood the
molecular mechanisms of the interplay between ferroptosis and
plasmalogens in inflammatory processes. Future research in
the field will help expand our understanding of the role of
plasmalogens in inflammation.

Phagocytosis by macrophages plays an important role
in controlling inflammation. Brain inflammation may be a
consequence of attack by macrophages (Xiong et al., 2016).
Cells deficient in PE-Pls have a reduced ability to phagocytize
opsonized zymosan particles (Rubio et al., 2018). This defect
can be reversed by incubating the plasmalogen deficient cells
with lysoplasmalogen, which, presumably, acts as a metabolic
precursor to plasmalogens. Because of the increased level of
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plasmalogens the number and size of lipid domains in the
membrane is increased, membrane fluidity is lowered to levels
found in cells containing normal plasmalogen levels, and
receptor-mediated signaling becomes more efficient.

Activation of protein kinase C delta (PKCδ) is linked to
neuroinflammation. Knocking out PKCδ in mice results in
resistance to inflammation, while upregulation of PKCδ in
microglial cells promotes neuroinflammation (Ren et al., 2014;
Gordon et al., 2016). Microglial activation is a pathological
feature of many neurodegenerative diseases (Ali et al., 2019).
The presence of activated microglia and reactive astrocytes
that produce cytokines are associated with AD pathologies
(Apelt and Schliebs, 2001; Tahara et al., 2006; Salminen et al.,
2008). Plasmalogens have been shown to inhibit neuronal cell
death by suppressing an intrinsic apoptotic pathway, which is
characterized by the activation of caspase-9 (Hossain et al.,
2013). It was also found that the systemic LPS-induced activation
of microglial cells and the expression of pro-inflammatory
cytokines were significantly attenuated by the administration of
plasmalogens (Ifuku et al., 2012).

Toll-like receptors (TLR) plays a wide role in innate and
adaptive immune responses upon stimulation by exogenous
and endogenous TLR ligands. Among TLR, the TLR4 has
attracted increased attention due to its ability to recruit
different adaptor proteins. LPS-induced inflammatory signaling
is associated with the endocytosis of TLR4. The pretreatment of
cells with plasmalogens attenuated the LPS-induced signaling
by inhibiting the dynamin-dependent internalization of
TLR4. Knockdown of the plasmalogen synthesizing enzyme,
DHAP-AT, by lentiviral vectors encoding short hairpin-RNA
against DHAP-AT resulted in the increased activation of
caspases and the endocytosis of TLR4, which was reversed
by the ingestion of plasmalogens (Ali et al., 2019). The
LPS-TLR4 complex initiates the TLR4 endocytosis, which
is believed to play a major role in regulating inflammatory
signals to induce cytokine expression by activating the
Toll/interleukin-1 receptor domain-containing adaptor protein
and the MyD88 adaptor proteins, as well as Toll/IL-1R
domain-containing adaptor inducing type I interferons-
mediated pathways in mouse macrophages and Ba/F3 cells
(Akira and Takeda, 2004; Kagan et al., 2008; Wong et al.,
2009). The internalization of TLR4 has been reported to be
mediated by clathrin-dependent endocytosis in HEK 293 cells,
lipid domain-mediated endocytosis in CHO cells, and both
clathrin-dependent and lipid domain-mediated endocytosis in
cortical astrocytes (Shuto et al., 2005; Husebye et al., 2006;
Pascual-Lucas et al., 2014).

Inflammation is accompanied by many changes as outlined
above. These include mitochondria dysfunction, oxidative
stress, apoptosis and the increased expression of caspases,
phagocytosis by macrophages, activation of PKCδ, stimulation
of microglia with the generation of inflammatory cytokines,
and TLR signaling. Many of these processes are associated
with pathologies caused by inflammation and are reversed
by administering plasmalogens and/or plasmalogen precursors.
Plasmalogen levels are reduced in diseases that affect these
processes. More complicated, however, is determining which of
the processes cause the dysfunctions and which are consequences
of the inflammatory process itself. It can be concluded that
plasmalogens are at least protective against cell or tissue damage
caused by inflammation. This is supported by the finding
that in many examples of pathologies caused by inflammation,
there is a loss of plasmalogens. Furthermore, administration
of plasmalogens or plasmalogen precursors can prevent tissue
damage caused by inflammation. A mechanism can be proposed
to explain the protective effect of plasmalogens. Inflammation is
often accompanied by the production of ROS causing oxidative
damage to tissues. Plasmalogens are protective against oxidative
damage because of their enyl-ether linkage that is highly
susceptible to oxidation by ROS, thus preventing ROS from
attacking at other sites. Deciding if the loss of plasmalogens
is a cause or a consequence is to some extent a matter of
definitions and will vary from one disease to another. In some
cases, the loss of plasmalogens is the primary defect, such as
inflammation related to aging in which the ability to synthesize
plasmalogens is decreased. However, in other cases, such as
the production of inflammatory cytokines, other processes may
occur first. Nevertheless, even in these cases, plasmalogens play a
protective role and can prevent inflammation. In that sense, even
when the loss of plasmalogens is not the first event, their presence
or absence can determine the course of inflammation.
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