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Abstract

Bacterial plasmids play a large role in allowing bacteria to adapt to changing environments and can pose a significant risk to 
human health if they confer virulence and antimicrobial resistance (AMR). Plasmids differ significantly in the taxonomic breadth 
of host bacteria in which they can successfully replicate, this is commonly referred to as ‘host range’ and is usually described in 
qualitative terms of ‘narrow’ or ‘broad’. Understanding the host range potential of plasmids is of great interest due to their ability 
to disseminate traits such as AMR through bacterial populations and into human pathogens. We developed the MOB- suite to 
facilitate characterization of plasmids and introduced a whole- sequence- based classification system based on clustering com-
plete plasmid sequences using Mash distances (https:// github. com/ phac- nml/ mob- suite). We updated the MOB- suite database 
from 12 091 to 23 671 complete sequences, representing 17 779 unique plasmids. With advances in new algorithms for rapidly 
calculating average nucleotide identity (ANI), we compared clustering characteristics using two different distance measures – 
Mash and ANI – and three clustering algorithms on the unique set of plasmids. The plasmid nomenclature is designed to group 
highly similar plasmids together that are unlikely to have multiple representatives within a single cell. Based on our results, we 
determined that clusters generated using Mash and complete- linkage clustering at a Mash distance of 0.06 resulted in highly 
homogeneous clusters while maintaining cluster size. The taxonomic distribution of plasmid biomarker sequences for replica-
tion and relaxase typing, in combination with MOB- suite whole- sequence- based clusters have been examined in detail for all 
high- quality publicly available plasmid sequences. We have incorporated prediction of plasmid replication host range into the 
MOB- suite based on observed distributions of these sequence features in combination with known plasmid hosts from the lit-
erature. Host range is reported as the highest taxonomic rank that covers all of the plasmids which share replicon or relaxase 
biomarkers or belong to the same MOB- suite cluster code. Reporting host range based on these criteria allows for comparisons 
of host range between studies and provides information for plasmid surveillance.

DATA SUMMARY
(1) Supplementary tables and figures have been deposited in 

Figshare: https:// doi. org/ 10. 6084/ m9. figshare. 12678281. v1.
(2) Scripts used for cluster analysis have been deposited in 

GitHub: https:// github. com/ jrober84/ mobclustering.

INTRODUCTION
Plasmids are autonomously replicating mobile genetic 
elements that can provide advantageous traits which promote 
the survival of their host cells and are widely distributed in 
diverse bacterial species [1–4]. Plasmids are highly variable 

in gene content, replication mechanism and even confor-
mation. Most plasmids are circular, but linear plasmids 
have been described within Gram- positive and even some 
Gram- negative bacteria, such as Salmonella [1, 3–6]. Plasmid- 
mediated traits such as antimicrobial resistance (AMR) are 
of great public- health concern due to the increasing global 
prevalence of multidrug resistance in bacteria [7]. Plasmid 
identification is critical to understanding AMR transmission, 
since plasmids are the primary vectors for AMR dissemination 
in Enterobacteriaceae [2]. Knowing the prevalence of different 
plasmid ‘types’ and their associations with different resistance 
genes can inform our understanding of the epidemiology 
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and transmission of plasmid- mediated antibiotic resistance 
[2–4, 8, 9]. An improved understanding of the distribution 
of plasmids and their potential hosts is crucial in the develop-
ment of intervention strategies to prevent antibiotic- resistance 
gene spread.

Multiple methods for plasmid classification have been devel-
oped, but the two primary methods are replicon typing and 
relaxase typing, which provide largely complementary infor-
mation [1–3, 8]. Replication is the only critical function that 
all plasmids must be able to perform, and there are numerous 
strategies employed by plasmids to propagate themselves 
[9–11]. Due to the essential requirement of replication for 
all plasmids, a typing scheme of 18 incompatibility/replicon 
types was devised based on the molecular basis for replica-
tion using laborious mating experiments, where two plasmids 
were considered to be from the same incompatibility group 
if they were unable to be stably maintained in the same cell 
[12]. A high- throughput PCR assay was developed to rapidly 
classify plasmids into 18 replicon types, and it was later 
extended to identify 116 types using in silico detection with 
the PlasmidFinder tool [9, 11]. Plasmids frequently contain 
multiple replication systems, and this complicates tracking 
plasmids based on replicon typing [1, 8]. MOB- typing is a 
complementary typing system based on the relaxase sequence 
from the conjugation apparatus, which consists of six families 
[1, 4, 8, 13]. This coarse- grain typing system provides broader 
context for transmissible plasmids with the advantage that it is 
uncommon for a plasmid to contain multiple relaxases, some-
thing that is not true for replicons; however, this approach is 
not applicable to non- transmissible plasmids, which do not 
contain relaxase sequences [1, 4, 8, 13]. A PCR- based assay for 
MOB- typing made it possible to type isolated plasmids in the 
laboratory, but uptake of MOB- typing for sequenced plasmids 
was low due to the lack of tools to easily perform automated 
typing from sequence data until the inclusion of this feature 
within the MOB- suite [13, 14]. However, there remains a 
significant drawback to typing plasmids based on marker 
sequences, in that novel plasmid types require evaluation by 
experts in order to update repositories of marker sequences.

Plasmid typing information is used to make epidemiological 
inferences, and the utility of any particular scheme depends 
on the proportion of plasmids covered by the scheme and its 
ability to provide accurate information about the evolutionary 
relationships within and between plasmid types [8, 9, 11]. 
Both replicon and MOB- typing provide valuable insights into 
the distribution of plasmids, but neither approach is applicable 
to all plasmids [1, 8]. There are no universal marker sequences 
that are present across the diversity of plasmids and, due to 
their recombinogenic nature, there can be conflicting phylo-
genetic signals between different sections of the same plasmid 
[1, 6, 8, 9]. Phylogenetic inference methods depend on the 
strong vertical inheritance of sequence [15], and the mosaic 
nature of plasmids [16] presents a challenge to using these 
types of methods to understand the evolutionary history of 
plasmids. To address some of the limitations of these typing 
methodologies, the MOB- suite implements a scalable nomen-
clature for plasmid typing by estimating genomic distances 

based on Mash min- hashing [14, 17]. The MOB- suite clus-
tering approach could be considered analogous to an opera-
tional taxonomic unit in bacterial diversity studies, where 
each plasmid is assigned a cluster code based on a defined 
similarity threshold [14, 18]. The Mash distance threshold 
used in the MOB- suite was selected empirically to maximize 
the ability of the tool to accurately reconstruct individual 
plasmids within a sample [14]. It is possible for an individual 
plasmid to contain multiple replicon or relaxase biomarker 
sequences, and the MOB- suite implemented whole- sequence 
classification approach solves this problem since each plasmid 
can only be assigned to a single cluster [14].

Recently, new high- throughput methods for determining 
genetic distances for whole genomes that leverage the 
MinHash technique have been developed [17]. Mash was the 
first implementation of this approach applied to genomics 
data and can rapidly estimate the Jaccard index of similarity 
between genomes [17]. Mash is also the distance measure used 
by MOB- suite to develop and assign plasmids to MOB- cluster 
codes [14]. Average nucleotide identity (ANI) is another 
commonly used approach for estimating relatedness between 
organisms at the genomic level [19]. However, ANI suffered 
from poor scalability due to its reliance on alignment- based 
methods until fastANI was developed with the MinHash 
technique to rapidly determine ANI between genomes [19]. 
Mash and ANI are tightly correlated when comparing similar 
genomes within the range of 90–100 % ANI, but this correla-
tion becomes weaker with increasing divergence [17, 19]. ANI 

Impact Statement

Bacterial plasmids play a large role in allowing bacteria 
to adapt to changing environments and can pose a 
significant risk to human health if they confer virulence 
and antimicrobial resistance. Plasmid typing provides 
insights into the host- range distribution of plasmids 
in populations, as well as performing epidemiological 
surveillance. The two primary methods for typing are not 
universally applicable to all plasmids and provide limited 
resolution. With the advent of large- scale sequencing of 
complete plasmid sequences, it is possible to utilize the 
entire sequence of the plasmid in comparisons rather 
than relying solely on a small number of marker genes. 
The MOB- suite implemented a whole- sequence- based 
typing system that provides cluster codes for reconstruc-
tion and tracking of plasmids, but with advances in rapid 
genome comparison methods, we identified refinements 
that could be made to the approach to maximize concord-
ance with existing typing methods. We have leveraged 
this cluster information along with existing biomarker- 
based typing and literature evidence to provide predic-
tions of the taxonomic range in which a plasmid could 
replicate. This information will be valuable for building 
risk- based models on plasmid transmission.
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is calculated based on the sequences that are present in both 
genomes [17, 19], and so requires post- processing of results 
to determine whether a sufficient amount of the genome was 
considered in the comparison. Mash measures the shared 
number of k- mer sketches in relation to the entire unique 
set of k- mers in the two genomes being compared, and so 
the distance considers both shared and unique sequence data 
[19]. Due to the high sequence variability of plasmids, it is not 
known whether Mash or ANI distance measures are more 
reliable for delineating plasmid groups of epidemiological and 
biological relevance.

Plasmid host range, in the context of the present work, 
describes the hosts in which a plasmid can replicate success-
fully. Plasmid host range is a complex trait and depends on the 
molecular basis for plasmid replication and maintenance, as 
well as capacity for horizontal transfer [20–23]. The taxonomic 
breadth in which a given plasmid can be transferred and 
successfully established varies wildly between plasmids, but is 
qualitatively categorized as either ‘broad’ or ‘narrow’ [20–23]. 
The terms broad and narrow are used to describe plasmids 
with compatible hosts across very different taxonomic ranges, 
a broad host range plasmid could be known to be compatible 
with bacteria from the same order (e.g. Enterobacteriales) or 
even with bacteria from separate kingdoms. As a result, the 
qualitative labels broad and narrow by themselves cannot be 
used to infer the possible bacterial hosts for a given plasmid.

Understanding the host- range potential of plasmids is of 
great interest due to the ability of plasmids to disseminate 
traits such as AMR through bacterial populations and into 
human pathogens [2, 20]. Numerous laboratory experiments 
have been performed using representatives from diverse sets 
of taxa and provide valuable insights into the potential host 
range [20–23]; however, testing all of the potential hosts 
for a plasmid under the variety of experimental conditions 
required, in order to assay host range exhaustively, is an intrac-
table challenge. Sequence- based approaches for assessing 
replication host range are an attractive alternative, and it 
has been previously demonstrated that there are measurable 
differences in genomic signatures between narrow and broad 
host range plasmids compared to their corresponding host 
chromosome [24]. This genomic signature- based approach 
will identify taxa where the chromosome and plasmid signa-
tures are similar as potential hosts in which the plasmid has 
evolved [24]. However, this approach likely reflects only the 
evolutionary hosts of a plasmid and may not reflect all the 
potential hosts in which a plasmid could currently replicate.

Routine analysis of human pathogens using whole- genome 
sequencing (WGS) generates large volumes of sequence data 
that can be exploited to examine the distribution of plasmids 
in pathogens of interest [25]. Plasmid host distributions 
have been examined using complete plasmid and relaxase 
sequences as queries in more than 449 000 WGS samples [25]. 
This empirical observation of complete plasmid and marker 
sequences is an attractive approach to predicting host range, 
since it leverages existing data generated for other applica-
tions. For epidemiological applications, an understanding of 

which hosts a plasmid can successfully transfer into and repli-
cate in will inform outbreak and surveillance investigations 
of potential risks, such as emergence of highly antimicrobial- 
resistant human pathogens or potential outbreak onset. 
However, estimates of host range based on data within the 
National Center for Biotechnology Information (NCBI) 
database will be biased towards culturable bacterial species 
of health concern, research interest or industrial applications 
[26].

Here, we have evaluated Mash- and ANI- based distance 
measures for delineating plasmid groups. We have also 
refined clustering within the MOB- suite to provide a plasmid 
nomenclature giving insight into the distribution and trans-
mission dynamics of plasmids at epidemiological relevant 
timescales. If the distance threshold used to generate the 
clusters is set too low, then a single cluster will potentially 
contain multiple distinct plasmids from the same host cell 
(violating the plasmid incompatibility requirement), limiting 
the usefulness of the cluster as a biologically relevant identi-
fier. However, if the threshold is set too stringent, then a draft 
plasmid may end up in a separate cluster from its complete 
sequence. Within this range, we determined an optimal 
threshold that provides the best trade- offs between cluster 
size and concordance with traditional typing. Replicon and 
MOB- typing schemes will continue to be useful, since they 
provide meaningful contextual and functional information 
about the plasmid clusters. MOB- suite’s clustering approach 
is an attractive complementary typing approach, especially for 
plasmids that are not typeable using the existing approaches.

METHODS
Expanding MOB-suite's internal database of high-
quality plasmids
The MOB- suite v. 1 database contains 12 091 complete plas-
mids, and due to the increased number of plasmid sequences 
made available since the original publication, we expanded 
the database using new data from the NCBI utilizing the same 
approach described in the supplementary materials of the 
MOB- suite paper [14]. The NCBI Entrez nucleotide database 
was queried in November 2019 with the query ‘plasmid’ AND 
‘complete sequence’ AND ‘bacteria [organism]’. The results 
were then filtered for sequences between 1500 to 400 000 bp in 
length, with ‘plasmid’ as the genetic compartment and limited 
to the INSDC (International Nucleotide Sequence Database 
Collaboration). This yielded an initial set of 33 875 sequences 
that were then typed using MOB- typer v. 2.1.0 (Table S1, 
available with the online version of this article). Records were 
excluded due to the presence of any of the following terms in 
the title or description: gene, cds, protein, transposon, inser-
tion, protein, region, operon, pseudogene, integrase, trans-
posase, integron, partial, shotgun. The remaining set of 23 280 
sequences was then merged with the MOB- suite v.1 database 
plasmids, which were then de- duplicated by clustering plas-
mids that had a Mash v. 2.2.2 [17] distance of 0 and selecting 
a single representative for subsequent analyses (Table S2). A 
priority was given to those plasmids that were part of the 
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initial construction of the MOB- suite clusters, which resulted 
in a total of 17 779 records. The database exhibits a strong bias 
towards plasmids from Enterobacteriaceae (35 %) as shown in 
a Krona plot of the plasmid dataset taxonomic composition 
(Fig. S1). This has the consequence that the threshold optimi-
zation may not be fully representative of the underrepresented 
taxonomic groups.

Identification of initial Mash threshold range
Clustering thresholds used by MOB- suite were designed to 
be specific enough as to not result in multiple representa-
tives of the same cluster arising from a single host cell, and 
broad enough to include draft and closed versions of the same 
plasmid in the same cluster [14]. The first constraint being 
necessary to remain consistent with the definition of an Inc 
group and the second necessary to give the tool the flexibility 
needed to work with draft genomic data. We determined an 
effective threshold range empirically using the closed genome 
set previously employed to benchmark MOB- suite [14]. Mash 
distances are sensitive to k- mer and sketch sizes, and so we 
examined the effects of these parameters on generated clus-
ters over a range of thresholds (0 to 0.1). We tested pairwise 
combinations of k- mer sizes 12–21 and sketch sizes 400, 1000 
and 2000, and calculated the adjusted rand index of cluster 
concordance for all combinations within a single cluster 
threshold. Violin plots of the results are available in Fig. S2. 
For our dataset, we found the worst concordance of 0.79 at a 
distance threshold of 0 when comparing the smallest k- mer 
and sketch (k=12, sketch=400) against the largest (k=21, 
sketch=2000). Altering sketch and k- mer sizes has an effect 
on the resulting clusters, and we chose to use the default 
settings for Mash (k=21, sketch=1000), since the developers 
identified high concordance with Mash and ANI using these 
parameters [17].

This set consisted of 133 closed genomes with 377 associated 
plasmids, which were sequenced using PacBio and Illumina 
technologies and previously used to validate the MOB- suite 
plasmid reconstruction [14] (Table S3). We determined the 
minimum Mash v. 2.2.2 distance between all pairs of plasmid 
sequences in a genome to identify the maximum threshold 
that could be used before genomes would contain multiple 
representative plasmids from the same cluster. Since the Mash 
distances consider all of the k- mers present in both plasmid 
sequences, it was used to construct the initial clustering 
boundaries. We discounted the use of ANI for this particular 
analysis since it will only consider what is shared and, thus, 
is not appropriate for comparing sequences that have nothing 
in common. We determined the lowest threshold possible 
that would not assign a draft version of a plasmid to a 
different cluster by comparing the Mash distances between 
draft assembly versions of the plasmids and their completed 
sequence. The Illumina data was assembled using Unicycler 
v. 0.4.4 with the default parameters and the resulting assem-
blies were assigned to the reference using blastn v. 2.6.0 [27] 
with the following options: -max_hsps 1 -num_alignments 
1 -perc_identity 50 -qcov_hsp_perc 50. A separate fasta 
file was constructed for the chromosome and each plasmid, 

and the Jaccard distance was estimated using Mash v. 2.2.2 
between the draft and completed versions of each molecule 
with the default parameters.

Selecting an optimal threshold for clustering
Pairwise ANI was calculated over the set of 17 779 putative 
plasmid sequences using fastANI v. 1.3 with the following 
parameters: -k 21, -t 32, --fragLen 500, --minFrag 1 [19]. 
These fastANI parameters were selected so that both large and 
small plasmids could be analysed together, and such that the 
k- mer length used between Mash and fastANI would be the 
same when comparing these two algorithms. ANI results were 
then filtered using a Python script to set ANI to zero when 
there was less than 50 % overlap between sequences being 
compared (https:// github. com/ jrober84/ mobclustering). In 
order to compare Mash and ANI distances, the obtained ANI 
values were converted to Jaccard distances by the following 
equation (1 − ANI), as was done elsewhere [17]. Mash v. 2.2.2 
was used to calculate the distance between sequences using 
the default parameters. Clustering on each of the distance 
measures was performed across thresholds ranging from 0 to 
0.1, with an increment of 0.01 between steps. Three different 
linkage methods were used to cluster the plasmids at each 
threshold: complete, single and average (implemented via 
SciPy v. 1.4.1). The cluster membership information was 
overlaid with the replicon and relaxase information.

Each clustering was evaluated by computing the properties 
of its component clusters. The component clusters were 
evaluated for size and purity with respect to either replicon 
or relaxase types. Purity was captured in two ways: using the 
Shannon entropy (Equation 1) to measure the diversity of 
each cluster, along with counts of the number of replicon/
relaxase types present in each cluster (https:// github. com/ 
jrober84/ mobclustering).

The Shannon entropy is computed as S = −
∑

i  PilogPi, where 
 Pi  is the probability of each replicon or relaxase type occurring 
in a cluster (Equation 1).

For an individual clustering, at a given threshold, the distribu-
tion of cluster sizes, entropies and contained types are often 
not normally distributed. This means that simply averaging 
the properties (i.e. cluster size) will yield a deceptive answer. 
Consider a clustering of 10 isolates that resulted in four 
clusters: one cluster of size 7 and three clusters of size 1. The 
mean cluster size for this clustering is 2.5, which gives the 
impression that the clustering consists of a number of smaller 
clusters when most of the isolates are in one large cluster. 
In our approach, we weighted cluster size by the number 
of isolates contained in the cluster. An isolate that was the 
member of a cluster with a size of 7 would be given a score of 
7 for computation of the mean cluster size. This would result 
a mean of 5.2 instead of 2.5, which is a better representation 
of the state of the average isolate.

In order to determine an optimal threshold for clustering 
plasmids, we considered the sum of each of the means of each 
of the three properties (Equation 2). We normalized cluster 
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size and number of types within a cluster to be within the 
range 0 to 1 (Equation 3). Since we were interested in mini-
mizing the Shannon entropy and the number of types within 
a cluster, we took (1 − property) for each of those properties.

Score(t, m) = (1 − AvgEntropy(t, m)) + AvgClusterSize(t, m) 
+ (1 − AvgNumberTypes(t, m)) (Equation 2).

 xi =
xi−xmin

xmax−xmin , where i is the cluster size or number of types 
for an individual sequence (Equation 3).

The AvgEntropy is the weighted mean of the Shannon entro-
pies of each cluster for a given threshold (t) and clustering 
method (m). The AvgClusterSize and AvgNumberTypes 
are the weighted means of the cluster sizes and number of 
replicon/relaxase types in each cluster, respectively.

Taxonomic analysis
Host range was determined by using the taxonomic hierarchy 
associated with the NCBI records. Plasmids were grouped by 
replicon type, relaxase ID and MOB- cluster code, and the 
taxonomic point of convergence was determined as the taxon 
that was parent to all of the different taxa associated with a 
given type. For example, the replicon type ‘Col(YF27601)’ 
was associated with three records assigned to two species: 
Yersinia frederiksenii and Yersinia kristensenii. The taxonomic 
convergence for this replicon would be at the genus level. 
Individual query relaxase sequence IDs were used in place 

of relaxase types, since the majority of the types resolved at 
the level of the NCBI taxon rank of superkingdom. We are 
using the NCBI taxonomy for comparisons, but in traditional 
taxonomy ‘bacteria’ has the rank of kingdom.

Building the literature database
There is a wealth of knowledge on plasmid biology contained 
within the literature, which provides valuable insights into the 
potential host ranges of the plasmids within the MOB- suite 
database. Therefore, we utilized a literature mining approach 
to select publications with information about plasmid host 
range. We performed a search of publications associated with 
plasmid accession numbers in our reference database and 
identified 64 unique publications that had information about 
plasmid host range. Host- range information was extracted 
manually from each article and added to the literature data-
base to provide users with relevant publication details.

Host-range module workflow description
MOB- suite leverages the typing information provided by 
MOB- typer to query a literature database of reported host 
ranges and the internal MOB- suite database of closed plas-
mids based on replicon type, relaxase accession number and 
MOB- cluster ID. The taxa associated with each of the three 
queries are aggregated together and the host range is reported 
as the taxon and rank that contains all of the associated taxa. 
This process is illustrated in Fig. 1 with a simplified example 

Fig. 1. A simplified example of the host- range prediction feature implemented within MOB- typer. Host- range prediction uses replicon 
type, relaxase biomarker accession number and MOB- cluster to individually query a literature database of publications associated 
with plasmids and the MOB- suite plasmid database. The taxonomy associated with each of the records is aggregated and placed into a 
taxonomic hierarchy. The hierarchy is then processed to identify the point of taxonomic convergence, the lowest taxonomic rank that is 
parent to all of the taxa involved. Both the literature host range and the plasmid database convergence ranks are reported to the user.
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where MOB- typer has identified a plasmid as belonging to 
the IncFIB replicon type, possessing a MOB001 relaxase 
and assigned to MOB- cluster AA087. Both the literature 
and plasmid databases contain additional information, but 
only the information relevant to identifying the host range 
is shown in the diagram. Within the literature database, it 
is possible to have multiple taxa associated with a single 
record, since these experiments would test the capability 
of that plasmid to be transferred into multiple hosts. The 
reference plasmid database, however, will only contain a 
single taxon, the taxon associated with the record in the 
NCBI database.

In each case, the list of taxa is then aggregated together, 
and using the NCBI taxonomic hierarchy, each taxon is 
placed on a tree and the point of convergence for the set 
of taxa is identified as the closest parent taxonomic rank 
that contains all of the listed taxa. When a plasmid is only 
observed within a single species, the prediction is moved 
up to the genus level to account for some ambiguities in 
species assignments. In the case of the literature database, 
the taxonomic rank that contains all of the taxa is at the 
family level and the specific taxon is Enterobacteriaceae 
(Fig. 1). In the case of the plasmid database, the point of 
convergence for the set of taxa is Enterobacterales at the 
order level (Fig. 1). MOB- typer will provide the reported 
host range based on the literature, as well as an observed 
host range based on the MOB- suite plasmid database. The 
reported and observed host ranges are combined, and the 
highest rank is reported as the predicted host range.

Assembly, reconstruction and typing of plasmids
Illumina reads and metadata were downloaded from NCBI 
BioProject PRJNA285421 and assembled using Unicycler v. 
0.4.4, plasmids were reconstructed using MOB- recon and 
typing information was obtained using MOB- typer v. 3.0.0.

RESULTS
Analysis of closed genomes to identify initial 
threshold ranges for MOB-cluster development
A strong motivator for the development of a nomenclature 
within the MOB- suite is to develop groupings where it is 
unlikely to have two plasmids of the same type within the 
same cell, so that they could be used for reconstruction of indi-
vidual plasmids from draft assemblies. In order to determine 
the window of valid thresholds for these purposes, we utilized 
the closed benchmarking genomes from the MOB- suite paper 
[14]. Since our goal was to have an approach that could be 
applied to draft and incomplete plasmids, we examined the 
distribution of Mash distances between the deposited closed 
sequences and their corresponding draft assemblies. A violin 
plot of the distances observed for plasmids and chromosomes 
within the 133 genomes is presented in Fig. 2. The full list of 
strains and genomes used for these comparisons is available in 
Table S3. The highest distance observed between pairs of draft 
and complete chromosome sequences was 0.005, which was 
considerably lower than the Mash distance of 0.025 observed 
as the maximum distance between pairs of draft and complete 
plasmids. Given that plasmids are much smaller than chro-
mosomes in this set, it follows that even small amounts of 
missing sequence data would have a much larger impact on 
the distances obtained. As it is the maximum observed Mash 
distance between a draft plasmid and its complete sequence 
counterpart, we chose 0.025 as the lower bound for our 
threshold.

We examined the pairwise intra- genomic distance for all 
sequences (plasmid and chromosome) within each complete 
genome to determine the distribution of minimal Mash 
distances observed within a single genome. We observed 
that there were few cases where the minimum Mash distance 
approached zero, with most intra- genomic distances being 0.1 
and above (data not shown). We could not use the absolute 
minimum Mash distance observed (0) as an upper bound, 
as it would allow for no meaningful clustering threshold to 
be chosen, since it is lower than our chosen lower bound 
threshold of 0.025. Since we are comparing the performance 
of Mash and ANI, we selected the upper bound to be 0.1, as 
it has been established previously that they are highly compa-
rable over the range of 0–0.1.

Benchmarking the performance of Mash- and ANI-
based distances for clustering complete plasmid 
sequences
Using our de- duplicated dataset of 17 779 closed NCBI plas-
mids, we determined what would be an optimal threshold 
for MOB- suite cluster codes with respect to size of clusters, 
along with adherence to existing replicon- and relaxase- 
based typing schemes. Concordance with traditional typing 
was examined using the mean Shannon entropy along with 
the mean number of types found within a cluster. These two 
measures are interrelated, but we chose to examine both due 
to the fact that our dataset is biased to contain a small number 
of highly abundant types and this can artificially decrease 

Fig. 2. Violin plot of the Mash distances between complete and draft 
versions of plasmid and chromosomes.
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entropy. Due to the popularity of ANI for species delinea-
tion and the development of a fast approach for calculating 
ANI, we benchmarked plasmid clustering using both ANI 
and Mash distance measures with three different clustering 
algorithms to determine which method would optimally 
partition the data. The clusters were designed to minimize 
variability in typing information within a cluster to maximize 
concordance with existing methods, while maximizing the 
number of members within a cluster. We examined replicon 
and relaxase typing information independently, since each 
method is applicable to a different number of plasmids.

Of the 17 779 putative plasmid sequences, 12 802 records 
could be classified using replicon typing and these were 
used to examine the clustering dynamics over the selected 
Jaccard distance thresholds (Fig. 3). Single- linkage clustering 
produced results that were highly divergent from those 
obtained by complete- and average- linkage clustering across all 
of the measured attributes when either Mash or ANI distances 
were used (Fig. 3). Single- linkage clustering produced larger 
clusters compared to the other algorithms, but also produced 
clusters with a much higher entropy and containing a much 
higher number of replicon types (Fig. 3). Complete- linkage 
clustering displayed a much more conservative behaviour 
by producing smaller clusters with lower entropy and fewer 
replicon types (Fig. 3). Average- linkage clustering displayed 
an intermediate behaviour between the other two methods, 
but the results much more closely resembled those obtained 
with the complete- linkage algorithm (Fig. 3).

The same analyses were repeated on the 9640 plasmids that 
could be classified by relaxase- typing, and similar results were 
observed for the three algorithms (Fig. 4). The plots for the 
plasmids classified by relaxase typing mirror what was seen for 
those classified by replicon typing for each of the three algo-
rithms tested and for both distance measures used (Fig. 4). 
However, the magnitude of variation for Shannon entropy 
and number of types is much smaller given that there are only 
six defined classes of relaxases versus the 1770 replicon types 
defined within the MOB- suite replicon database. For both 
replicons and relaxases, the slope for Mash was higher than 
for ANI (Figs 3 and 4), which is likely due to our requirement 
that for sequences to be comparable via ANI, there needs to 
be at least a 50 % overlap.

Identification of the optimal distance measure, 
threshold and clustering algorithm for MOB-cluster
Selecting the optimal distance threshold for partitioning our 
data is a multi- criteria optimization problem where we are 
attempting to maximize both cluster purity and cluster size. 
As described in Methods, we developed a scoring function 
for each distance threshold based on three factors that were 
weighted equally: cluster size, number of types and entropy. 
The measures for both the cluster size and for the number 
of types per cluster were scaled so that they were between 0 
and 1, with the number of types reversed since the best score 
for this feature should minimize the number of types in a 
cluster. The scores for both Mash and ANI using each of the 

Fig. 3. Replicon- typed plasmids were clustered using either ANI- or Mash- based distances using complete-, single- or average- linkage 
algorithms. The mean Shannon entropy and mean number of types is based on the number of replicon types present in each of the 
clusters. The lower bound derived from the closed genome analysis is highlighted by the vertical red dotted line.
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three algorithms are presented in Fig. 5. Clustering analyses 
on replicon- and relaxase- typed plasmids are presented sepa-
rately, since the sets of plasmids typed by the two methods 
are different. The highest score was achieved for complete 
clustering using Mash for both replicon and relaxase typing at 

a threshold of 0.01. However, based on the experiments using 
the closed genomes, this falls outside the threshold where draft 
and complete genomes would be separated (Fig. 5). Using our 
bounding thresholds from the closed genome experiments, 
a threshold of 0.06 produced the highest scoring clustering 
of the data for both replicon and relaxase typing when using 
Mash as the distance measure and complete- linkage as the 
clustering method (Fig. 5). On the whole, ANI- based clus-
terings had a lower score than Mash- based clustering over 
the range of 0.025–0.1 for both replicon- and relaxase- typed 
plasmids.

Stability of cluster codes over epidemiological time 
scales
In order to be useful taxonomic units, the derived clusters will 
also need to be relatively stable over the course of epidemio-
logically relevant time scales. To assess the use of the cluster 
codes in an epidemiological context, we re- analysed data from 
a study that looked at carriage of Salmonella enterica subsp. 
enterica serovar Typhimurium over a period of up to 279 days 
within 11 patients to see whether the plasmid clusters were 
stable. MOB- recon reconstructed the plasmid content for 
each of the samples and each of the resulting plasmids were 
typed with MOB- typer (Table S4). Patient A possessed two 
plasmids (Col156 and IncFIB,IncFII) at time point one, 
and for the other two time points only a single plasmid was 
detected (Table S4). The IncFIB,IncFII group for all three 
time points was assigned to MOB- cluster AB460. Patients 

Fig. 4. Plasmids that were typed according to the existing relaxase accession numbers were clustered using either ANI- or MASH- based 
distances using complete-, single- or average- linkage algorithms. The mean Shannon entropy and mean number of types is based on 
the number of relaxase accession numbers present in each of the clusters. The lower bound derived from the closed genome analysis 
is highlighted by the vertical red dotted line.

Fig. 5. Performance scores across different distance thresholds of 
either Mash and ANI distance measures using three different clustering 
approaches: complete-, single- and average- linkage. Performance 
scores are the result of combining mean cluster size along with cluster 
entropy and the mean number of types (replicon or relaxase) within 
a cluster (Equation 3). The lower bound of the clustering threshold 
determined by the closed genomes experiments is signified by the 
vertical red dotted line.
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B–F and H–K each possessed a single plasmid within all of 
their tested time points, which was also the IncFIB,IncFII 
plasmid assigned to MOB- cluster AB460 (Table S4). Patient G 
presents an interesting case of plasmid flux within the patient, 
with samples taken at four time points post- infection: 0, 9, 
24 and 206 days. The sequence data from the first three time 
points reconstructed the same three MOB- clusters, AA162, 
AB037 and AC082, with MOB- cluster AC082 consisting of a 
~25 kb IncQ1 plasmid (Table S4). By the fourth time point, 
only MOB- cluster AC082 was detected in the sample, which 
indicates that the previous plasmids were not stable over 
prolonged carriage within this patient. It is worth noting 
that MOB- cluster AC082 (IncQ1) plasmids lack conjugative 
transfer genes, but MOB- cluster AA162 contains a MOBP 
relaxase and is predicted to be mobilizable, which potentially 
could have mobilized MOB- cluster AC082 plasmid in trans.

Identification of plasmid host ranges based on 
molecular typing and MOB-clusters
We examined the taxonomic relationships between replicon 
types, relaxase accession numbers and MOB- clusters based 
on the host taxonomy of the 23 280 closed NCBI plasmids. 
The observed taxonomic range of each feature (replicon type, 
relaxase type, MOB- cluster ID) was examined individually, as 
well as an overall range based on the combined set of features 
Fig. 6. The number of plasmids that could be typed with each 
of the methods differed greatly with 5903 (25 %) and 10 523 
(45 %) untyped plasmids for replicon and relaxase typing, 
respectively, but 0 (0 %) for MOB- clusters (Fig. 6). As a conse-
quence of the high specificity required for MOB- clusters, 60 % 
of plasmids were identified within a single species compared 
to the 14 and 19 % observed for replicon- and relaxase- typed 
plasmids (Fig. 6).

We observed that across all three clustering methods 
(replicon, relaxase and MOB- cluster), the number of plasmids 
whose host ranges converge at the phylum level is lower than 
those whose host ranges include multiple phyla. This suggests 

that plasmids that are capable of replicating in highly diverse 
taxa in a single phylum are also likely to be able to replicate 
within other phyla (Fig. 6). We took the highest taxonomic 
convergence point for replicon, relaxase and MOB- clusters, 
and observed that 28 % of plasmids are found in a single 
species. Since most plasmids are unlikely to be specialized 
to replicate in only one host species, this may reflect plas-
mids with limited mobility or sparse sampling. Based on the 
dataset, a total of 22 % of plasmids are observed to have a host 
range that converges at the order level.

We compared the host ranges predicted through our analyses 
of the NCBI closed plasmids to what has been established in 
the literature for some well- known replicon types. IncP plas-
mids are a well- characterized family for which plasmids have 
been experimentally shown to replicate within a broad range 
of Gram- negative bacteria and even some Gram- positives 
[20, 21, 23, 23, 27]. Within the collection of plasmids described 
here, the taxonomic convergence in our dataset for the IncP 
replicon is consistent with the literature, since it converges 
at the superkingdom rank with representatives from both 
Actinobacteria and Proteobacteria (Table S5). However, a 
previous study demonstrated that IncP plasmids can repli-
cate in Firmicutes as well [21], which highlights the ability of 
literature surveys to provide insight into plasmid host ranges 
not captured by taxonomically annotated sequence data.

Plasmids belonging to IncQ1 are known to replicate in a 
broad range of hosts [20, 24, 28], and the closed plasmid 
dataset shows that the host taxonomy for these plasmids 
converges at the phylum level of Proteobacteria. Conversely, 
IncI- complex plasmids are thought to generally have a narrow 
replication host range [20, 24], and recently the typing of this 
group has been updated to contain four groups: IncI1/B/O, 
IncI- gamma/K1, IncI2 and IncK2/Z [29]. The host range for 
Inc1 was found to be slightly broader than IncI2 with ranges 
of Enterobacterales and Enterobacteriacea, respectively (Table 
S5). This likely represents sampling biases in the dataset rather 
than a genuine difference in replication host range.

DISCUSSION
Plasmids play a fundamental role in enabling bacteria to 
survive and exploit new niches, which can have large conse-
quences for human health in the case of virulence and AMR 
[1, 2, 9]. Plasmid typing information is critical to enable 
epidemiological surveillance of plasmids and inform inves-
tigations into the transmission pathways of plasmids [8, 9]. 
Replicon typing has served as the primary system of plasmid 
classification for decades [1, 8, 9, 11], and there is a wealth 
of historical knowledge about the biology and prevalence of 
plasmids based on that nomenclature. A broad nomencla-
ture based on relaxase typing has also been used to classify 
plasmids, and it has proven valuable in terms of grouping 
plasmids into an evolutionary context [1, 4, 13, 26]. Due to 
the recombinogenic nature of plasmids [16] and the associ-
ated diversity, marker- based classification systems struggle to 
encompass the full breadth of the plasmid population. With 
advances in genome sequencing, it is now possible to develop 

Fig. 6. Stacked bar chart of the highest point of taxonomic convergence 
for plasmids based on replicon types, relaxase accession numbers 
and MOB- clusters. An overall convergence was determined using all 
of the features applicable to a given plasmid and picking the highest 
convergence point achieved.
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an automated sequence- based nomenclature that can parti-
tion plasmids into cluster codes which maximize compat-
ibility with the original marker- based typing methods [14].

It is important to determine which distance measure generates 
the most useful clusters based on well- defined criteria. Clus-
ters for MOB- suite were originally designed for reconstruction 
of plasmids from draft assemblies: one driving criterion for 
selecting the appropriate cluster boundaries is that it would be 
highly unlikely for two plasmids belonging to the same cluster 
to co- exist in the same cell [14]. This criterion mirrors the 
original underlying assumption of replicon typing, that two 
plasmids of the same type could not stably coexist in the same 
cell [11, 12]. The original clustering approach in the MOB- 
suite used Mash- based distances [14], but with the availability 
of fastANI [19] it was important to determine which distance 
(Mash or ANI) generated clusters that maximized concord-
ance with relaxase and replicon typing while minimizing the 
number of singletons. Mash- based clusters empirically gener-
ated the highest scoring clusters using the complete- linkage 
algorithm at a Mash distance of 0.06 (Fig. 5). The original 
MOB- suite clustering approach utilized the single- linkage 
algorithm and a Mash distance of 0.05, and when compared 
against the new clusters produced an adjusted rand index 
score of 0.81, indicating agreement between the approaches, 
but there is definite variation in cluster membership. Analysis 
of cluster size and purity showed that the complete- linkage 
algorithm in Fig.  5 generated more homogenous clusters 
and this is a desirable attribute . Complete- linkage clustering 
does not suffer from the ‘chaining- effect’ that is present in 
average- and single- linkage methods [30]. In the case of plas-
mids, this effect can prove highly problematic, since there is a 
high degree of mosaicism between plasmids and transposable 
elements are readily exchanged between otherwise dissimilar 
plasmids [16].

For a typing methodology to have any merit, it must be 
repeatable and robust to minor differences in the plasmid 
content due to technical issues with sequencing technology, 
as well as sensitive to genuine biological variability. Plas-
mids can be highly variable in their gene content, but 
relatively conserved backbones are present within plasmid 
groups [6, 11, 16, 26, 31–33]. As demonstrated through 
the longitudinal analysis of patients chronically infected 
with Salmonella enterica Typhimurium [34], the MOB- suite 
cluster codes can facilitate plasmid tracking due to their 
stability within the same patient at multiple time points 
(Table S4). Analysis of the patient data also highlighted the 
ability of the MOB- suite to identify instances of plasmid 
flux within a single patient. Patient G had three plasmids 
over the course of the first month of testing, but by the 
end of 206 days only a single plasmid remained. The 25 kb 
IncQ1 plasmid was assigned to the same cluster (AC082) 
over the course of testing, which demonstrates that despite 
minor fluctuations in sequence content and draft assembly, 
the plasmid could reliably be assigned to the same cluster. 
Some plasmids exhibit extensive plasticity with complex 
genomic content changes over short time scales [35], and 
this approach may fail to assign such plasmids to the same 

cluster if the proportion of the changed sequence content 
is high. Analysis of Illumina short- read assemblies using 
the MOB- suite to reconstruct plasmid content is a useful 
tool for hypothesis generation. However, for applications 
involving complete mobile elements associated with trans-
posable elements, long reads may be required in order 
to gain a full understanding of the relationship of those 
elements with different plasmid backbones [35].

Plasmid host range is a complex phenotype and has only 
been described in qualitative terms, which makes it diffi-
cult to compare results between studies since the broad 
classification is used to describe plasmids with different 
magnitudes of taxonomic distributions [20–23]. To address 
this issue, we propose that plasmid host range should be 
codified based on the taxonomic hierarchy of the organisms 
in which plasmids can successfully establish themselves. 
Broad- host- range plasmids such as IncP would now be 
described in terms of having a multi- phyla host range of 
Actinobacteria, Firmicutes and Proteobacteria based on 
the observed taxonomy of the NCBI plasmids, as well as 
experiments from the literature [21, 23]. This specificity 
would readily allow for comparisons between different 
studies and could be updated as new experimental evidence 
becomes available. Previously, sequence similarity searches 
of the publicly deposited WGS data for plasmid sequences 
have been used to identify host range [25], and here we 
leveraged the taxonomy of deposited plasmids in the NCBI 
database to estimate the replication host range of different 
plasmids based on observation of replicon, relaxase marker 
sequences and MOB- cluster codes in different taxa. We 
have added this feature into the MOB- suite for users to 
gain insight into the observed distribution of their plasmid 
of interest in the public data and combine that with detailed 
experimental knowledge where available. This information 
should be useful for hypothesis generation of plasmid host 
range, but its ability to be predictive of biological reality 
should be taken with caution, which is why we have paired 
it with experimental validation where it is available. As 
demonstrated here, MOB- cluster codes are conservative 
in their estimates of host range (Fig. 6); however, they are 
universally applicable to all sequenced plasmids, because 
they do not rely on any a priori marker scheme. The 
majority of the MOB- cluster codes are observed within a 
single species (Fig. 6), and so they are likely only applicable 
to epidemiological tracking rather than investigations into 
deeper evolutionary relationships.

MOB- suite v. 3.0.0 has been updated to include the 
improvements to the MOB- clustering algorithm along 
with the host range prediction. We have updated the MOB- 
suite to utilize a clustering threshold of 0.06 for primary 
cluster designation for plasmid reconstruction, host- range 
prediction and broader surveillance, along with a nested 
secondary cluster designation at 0.025 to recognize near 
duplicate plasmids. We selected the 0.025 threshold for near 
duplicates since any lower would result in draft plasmids 
potentially assigned to a difference cluster than a complete 
version of the plasmid. The current work represents a major 
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change to the MOB- cluster approach and so a complete 
recalculation of the database was necessary, but the soft-
ware supports incremental addition of new sequences to 
the database without changing existing cluster designations. 
The GitHub repository also contains the cluster designa-
tions and metadata for all plasmids that passed quality 
control (QC) from the NCBI, and will be updated as new 
public plasmid sequences become available. MOB- cluster 
codes are now represented in a five- character fixed- length 
accession code format similar to a GenBank accession 
number, i.e. AA001, since it permits writing very large 
numbers in a fixed- length code. A fixed- length accession 
code also enables validation of codes since a truncated code 
will be recognized as invalid.

In summary, the MOB- suite clustering approach has 
been designed to maximize concordance with replicon 
and relaxase clustering, and is applicable to all plasmid 
sequences since it does not have any reliance on the pres-
ence of specific marker sequences. The clusters are usually 
found within a single species due to the conservative 
nature of the clustering threshold selected. This aspect is 
suggestive that the cluster threshold employed is specific 
enough that it may be detecting species- specific plasmid 
variants and so can have applications for surveillance of 
transmission of plasmids within and between species. 
The MOB- suite has been updated to predict the replica-
tion host range of plasmids based on host taxonomy of 
plasmids deposited into the NCBI database and where 
possible to provide information from the literature on 
the host range. The cluster codes can be a useful tool for 
tracking plasmid transmission within an epidemiological 
context, and when combined with host ranges may be used 
to build relative risk models of transmission of plasmids 
that are of public- health concern due to the presence of 
AMR or virulence.
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