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Objective: The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma 
multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software.
Materials and Methods: MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging 
Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two 
raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). 
Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal 
intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was 
evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, 
cluster consensus, and Rand Statistic.
Results: Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features 
showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC < 
0.5). Most first order statistics and morphometric features showed moderate-to-high NDR (4 > NDR ≥1), while above 35% 
of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they 
were highly redundant.
Conclusion: The use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature 
stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain 
aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature 
features before further development of radiomics.
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INTRODUCTION

Glioblastoma multiforme (GBM), the most frequent and 
malignant brain tumor in adults (1), continues to show 
poor prognoses and low survival rates despite decades of 
multimodality treatment research. Along with the increasing 
availability of genomic data for the brain tumors, active 
studies are underway to enable genomic characterization 
and improved clinical outcome of GBM patients. Recent 
studies have revealed the genomic characteristics of 
GBM including the distinct patterns in gene expression 
profiles, underlying genomic abnormalities, and epigenetic 
modifications (2). Improved understanding of the behavior 
of GBM at the molecular and genomic levels could lead 
to development of new drugs as well as patient-specific 
treatment regimens, thus facilitating precision medicine in 
the clinical field.

As knowledge of GBM increases from the genomic and 
clinical perspective, there is a growing need for reliable 
and efficient extraction of quantitative features from 
multimodality imaging data for associating imaging tumor 
phenotypes with genomic characteristics as well as clinical 
prognosis.

Radiomics, which refers to the high-throughput extraction 
of a large amount of quantitative features from radiologic 
images, has emerged as a significant research interest 
across a variety of specialties (3-5).

Several studies have shown the positive potential of 
radiomic features for treatment monitoring and outcome 
prediction as well as associating imaging phenotypes with 

genomic profiles in various tumors (3, 4, 6, 7). For example, 
Aerts et al. (3) have shown that proper analysis of radiomic 
features could lead to identification of signature features, 
which was effective in decoding of tumor phenotypes and 
predictive of patient prognosis in lung and head-and-neck 
cancer.

Glioblastoma multiforme has frequently been the study 
subject of radiomic and radiogenomic research. Diehn et 
al. (8) have identified a set of MR imaging features highly 
associated with gene expression patterns of several well-
known gene programs and predictive of overall survival in 
GBM patients. Zinn et al. (9) have used a semi-automated 
segmentation technique to derive a set of volumetric 
features from MR images, and were able to produce 
radiogenomic mapping of edema or cellular invasion 
phenotypes in GBM. The association of imaging phenotypes 
with clinical outcomes as well as molecular subtypes, 
and related biological pathways in GBM (10-14) has been 
studied using MRI features derived from visual grading 
method, manually-drawn region of interest (ROI), or various 
types of computer-assisted techniques.

These studies have stressed the positive potential of 
the radiomic approach; however, evaluating the reliability 
of radiomic features in GBM is also important. Previously, 
lung cancer-related radiomic studies have evaluated the 
reliability as an integral part of study (3, 4), whereas the 
reliability of features in GBM remains unclear.

Tumor segmentation is regarded as the major source 
of variability in radiomics, since radiomic features are 
routinely derived from the segmented tumors using a 

Fig. 1. MR images of example TCGA GBM case (TCGA-06-0213, 55-year-old female patient). Tumor segmentation was performed semi-
automatically with TumorPrism3D.
A. T1W post-contrast image. B. Segmented ROIs for enhancement (red) and necrosis (green) components. C. FLAIR image. D. Segmented ROI for 
non-enhancing T2 high signal intensity component (blue). FLAIR = fluid-attenuated inversion recovery, GBM = glioblastoma multiforme, ROI = 
region of interest, TCGA = The Cancer Genome Atlas, T1W = T1-weighted

A B C D



500

Lee et al.

Korean J Radiol 18(3), May/Jun 2017 kjronline.org

computer algorithm (13). In studying radiomics of GBM, 
tumor segmentation involves more complex tasks since 
differing tumor imaging phenotypes appear differently such 
as contrast enhancement, necrosis, and edema depending 
on MR sequences; in addition, image registration is required 
prior to tumor segmentation. Thus, tumor segmentation 
in GBM is prone to additional sources of variability and 
increases the uncertainty of feature reliability, which may 
lead to false positives if highly variable features were 
employed unknowingly. Therefore, evaluating the quality 
of radiomic features in GBM is an important and necessary 
step before translating into clinical application.

In this study, we evaluated the reliability of radiomic 
features in GBM derived via a computer-assisted tumor 
segmentation procedure. In particular, we assessed 
the feature stability against perturbations in tumor 
segmentation caused by varying raters and semi-automated 
segmentation techniques. In addition, we evaluated the 
normalized dynamic range (NDR) and redundancy of feature 
values thus qualifying the radiomic features in GBM in 
multiple aspects.

MATERIALS AND METHODS

MRI Dataset
MR images of 45 GBM patients were downloaded from the 

National Cancer Institute’s “The Cancer Imaging Archive” 
(http://cancerimagingarchive.net/) (15). Study patients 
consisted of 29 males and 16 females. The average age of 
the male patients was 56 years (range, 32–78 years), and 
57.5 years (range, 26–73 years) for the female patients. The 
molecular subtypes were 5 proneural, 4 classical, 4 neural, 
and 17 mesenchymal GBMs. Molecular subtype information 
was not available for 15 of the 45 patients.

Images of two MRI sequences were used for segmenting 
different tumor tissue components: post-contrast T1-
weighted imaging for segmentation of enhancing and 
necrotic (NC) tissues, and fluid-attenuated inversion 
recovery (FLAIR) for segmentation of the non-enhancing T2 
high signal intensity (NH) (Fig. 1).

Overall Procedure
The overall procedure for quality evaluation of the 

radiomic features in GBM is depicted in Figure 2. T1 post-
contrast and T2 FLAIR images were first registered, followed 
by tumor segmentation using two different semi-automatic 
methods by two different raters. Subsequently, image 

features were extracted from segmented tumor ROIs using 
the computer algorithm. Finally, we evaluated the quality of 
the features in terms of robustness, NDR, and redundancy.

Tumor Segmentation
We considered three different tumor tissue components 

including contrast-enhancing (CE), NC, and NH tissues 
for segmenting tumor ROIs. Tumor segmentation was 
carried out by two experienced raters (10 and 3 years, 
respectively) for each tumor tissue component using semi-
automated segmentation software tools. We used two 
different software tools: 3D Slicer (ver. 4.3.1) (16), which 

GBM download from TCIA
(n = 45; 29 males, 16 females)

Image registration
(T1 post-contrast to T2 FLAIR)

Method 1
(TumorPrism3D)

Method 2
(3D Slicer)

Rater 1 Rater 2 Rater 1 Rater 2

Semi-automated tumor segmentation

Feature extraction (total #F = 180)

First order
statistic (#F = 42)

Texture
(#F = 99)

Morphometric
(#F = 39)

Feature quality evaluation

Stability Dynamic range Feature redundancy

Fig. 2. Overall procedure of this study. Contrast enhanced-T1W 
and T2 FLAIR images were registered, followed by tumor segmentation 
by two different raters using two different semi-automated software 
tools. Subsequently, total of 180 imaging features were extracted from 
segmented ROIs and used for evaluating feature quality. FLAIR = fluid-
attenuated inversion recovery, GBM = glioblastoma multiforme, ROIs 
= regions of interest, TCIA = The Cancer Imaging Archive, T1W = T1-
weighted
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is a free software download (http://www.slicer.org); and 
TumorPrism3D (17), which is an in-house software tool 
developed in our laboratory. Both software tools allowed 
the raters to conduct semi-automated tumor segmentation. 
Tumor segmentation procedures for the two software tools 
are illustrated in Figure. 3. With 3D Slicer, the user defined 
the background and foreground objects by drawing sketches 
on them, followed by automated separation of tumor 
from background tissue using the grow-cut algorithm. 
With TumorPrism3D, the user drew an initial ROI within 
the tumor, followed by automated tumor segmentation 
using the deformable model-based algorithm. Thus, four 
computer-assisted tumor segmentation datasets (2 software 
tools x 2 raters) were produced for 3 different tumor tissue 
components in each patient.

In addition, for evaluation of the accuracy of the 
computer-assisted semi-automated tumor segmentation, 
we created a reference tumor segmentation dataset for the 
same cases from in-house software data acquired by two 
radiologists in consensus.

Tumor Segmentation Accuracy
Accuracy of computer-assisted tumor segmentation 

was evaluated by calculating the similarity between the 
reference and the computer-assisted tumor segmentation. 
We used the dice similarity coefficient (DSC) measure for 
calculating the similarity between the two segmented tumor 
volumes. The similarity measures were obtained from the 

binary tumor masks generated from the segmented tumor 
volumes.

The DSC measure represents the relative overlap between 
two binary volume data, and is expressed in Eq. (1).

                             
(1),DSC =

 2 x V (C ∩ R)
V (C) + V (R)

where V denotes the volume of binary data, C and R 
represent the computer-assisted and reference tumor 
segmentation data, respectively. The DSC score is 1.0 when 
the two volumes match perfectly.

Feature Extraction
We considered three groups of radiomic features such as 

the first order statistic, texture, and morphometric features, 
which have been used in previous studies (18-21).

First order statistics described the pattern of pixel 
intensity distribution within the segmented tumor ROI. 
Thirteen first order statistic features were extracted from 
the three tumor component ROIs, thus generating a total of 
42 first order statistic features.

Texture features represented the changing pattern of pixel 
intensity between neighboring pixels. We extracted 22 gray 
level co-occurrence matrix-based and 11 gray level run-
length matrix-based texture features from the three tumor 
component ROIs, thus generating a total of 99 texture 
features.

Fig. 3. Tumor segmentation procedures. 
A. TumorPrism3D. B. 3D Slicer. ROI = region of interest

Loading DICOM Placing ROI on tumor Model deformation

Tuning parameters
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No

Feature
extraction
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A
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Morphometric features were descriptors of the size and 
shape of the tumor. We extracted 11 morphometric features 
from the three tumor component ROIs, thus generating a 
total of 33 morphometric features. All feature extraction 
was performed with a software program written in MATLAB 
(The Mathworks, Natick, MA, USA). The three groups of 
extracted features are listed in Table 1. Details of extraction 
methods are described in Supplementary (in the online-only 
Data Supplement).

Feature Quality 
We evaluated the quality of features in terms of stability, 

NDR, and redundancy.
Stability represented the agreement of features derived by 

two raters using the computer-assisted tumor segmentation 
procedure, and was tested with the intra-class correlation 
coefficient (ICC). Features with ICC ≥ 0.8 were considered 
as good stability, 0.8 > ICC ≥ 0.5 as moderate stability, and 
ICC < 0.5 as poor stability.

Normalized dynamic range described the relative range of 
feature values as compared to the average value, and was 
expressed in Eq. (2).

NDR =
       Max10 - Min10      

|mean feature value|
 (2),

Max10: average of top 10% in feature value
Min10: average of bottom 10% in feature value

Normalized dynamic range calculates the difference 
between feature values of top 10% and bottom 10% 
samples from study population, which was then normalized 

by the absolute mean feature value. Average feature values 
from two raters were used in NDR calculation. Features with 
NDR ≥ 4 were considered as good dynamic range, 4 > NDR ≥ 
1 as moderate dynamic range, and NDR < 1 as poor dynamic 
range.

Redundancy denoted the similarity shared among different 
features. Different features reflect unique aspects of tumor 
phenotype and do not resemble each other. In practice, 
however, computer extracted tumor features often exhibit 
similarity among one another resulting in redundancy in the 
radiomic feature pool.

We examined the redundancy of radiomic features in GBM 
by assessing their cluster properties; features belonging to 
the same cluster were regarded as redundant. We applied 
the consensus clustering technique using an R package 
ConsensusClusterPlus (22) to assess the cluster properties 
of the radiomic features. With this package, we obtained 
the cluster consensus (CC) for each feature cluster, which 
was defined as the average consensus between all pairs of 
features belonging to the same cluster. The CC (range [0–1]) 
indicates the robustness of a cluster over multiple runs 
of experiments with resampled parameters during cluster 
generation procedure. We chose 5 clusters that gave the 
most robust CC. We regarded those clusters with CC ≥ 0.8, 
0.8 > CC ≥ 0.5, and CC < 0.5 as good, moderate, and poor 
robustness, respectively.

In addition, we assessed the cluster agreement for each 
feature cluster, which was defined as the average agreement 
of feature pairs belonging to the same cluster derived from 
two different raters. The Rand Statistic (RS) was used to 
measure the cluster agreement as shown in Eq. (3).

Table 1. List of Extracted Features for Each Feature Group
Feature Group Individual Feature

1st order statistic (n = 42)
Energy, entropy, kurtosis, maximum, mean, mean absolute deviation, median, minimum, range,
  root mean square (RMS), skewness, standard deviation, uniformity, variance

Texture (n = 99) Gray level co-occurrence matrix (GLCM), gray level run-length matrix (GLRLM)

Morphometric (n = 39)
Area, longest axis, edge sharpness, slope, proportion, volume, compactness 1, compactness 2,
  maximum 3D diameter, spherical disproportion, sphericity, surface area, surface-to-volume ratio

Table 2. Accuracy of Segmented Tumors Obtained with Two Semi-Automated Tumor Segmentation Tools

Measure Tumor Component
TumorPrism3D 3D Slicer

Rater 1 Rater 2 Rater 1 Rater 2

Dice similarity 
coefficient (DSC)

Contrast-enhancing (CE) 0.84 ± 0.11 0.80 ± 0.14 0.77 ± 0.11 0.74 ± 0.14
Necrotic (NC) 0.82 ± 0.15 0.77 ± 0.15 0.75 ± 0.16 0.73 ± 0.21
Non-enhancing T2 high signal
  intensity (NH)

0.79 ± 0.16 0.76 ± 0.15 0.74 ± 0.16 0.71 ± 0.17
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RS =          
 |YY| + |NN|      

|YY| + |YN| + |NY| + |NN|
 (3),

where |YY| is the number of feature pairs that cluster 
together from both rater 1 and rater 2, |YN| is the number 
of feature pairs that cluster together from rater 1 but not 
from rater 2, |NY| is the number of feature pairs that cluster 
together from rater 2, but not from rater 1 and |NN| is the 
number of feature pairs that do not cluster together from 
both rater 1 and rater 2. We regarded those clusters with RS 
≥ 0.8, 0.8 > RS ≥ 0.5, and RS < 0.5 as good, moderate, and 
poor agreement, respectively.

Statistical Analyses
Statistical analyses were performed with software (SPSS, 

R, and MATLAB). ICC, CC, and RS were calculated using SPSS 
Statistics for Windows (Version 22.0, IBM Corp., Armonk, 
NY, USA), R version 3.1.2 (http://www.R-project.org), and 
MATLAB version R2016a (The Mathworks), respectively.

RESULTS

Tumor Segmentation Accuracy 
Accuracy of the segmented tumors obtained with the two 

semi-automated tumor segmentation tools as assessed with 
DSC is shown in Table 2. With both semi-automated tumor 
segmentation tools, two raters produced tumor masks with 
similar accuracy. With TumorPrism3D, the DSC of tumor 
segmentation ranged from 0.79 to 0.84 for the first rater, 
and 0.76 to 0.80 for the second rater. With 3D Slicer, the 

Fig. 4. Example of segmentation results with two semi-automated software tools. Contrast-enhanced, necrotic, and non-enhancing T2 
high signal intensity components are indicated by red, green, and blue color, respectively. 
A. Represents case in which similar segmentation results were produced. B. Represents case in which difference was observed in segmentation 
results. FLAIR = fluid-attenuated inversion recovery

T1 post FLAIR

A

Original image Reference TumorPrism3D 3D Slicer

T1 post FLAIR

B

Original image Reference TumorPrism3D 3D Slicer

Table 3. Stability of 180 Radiomic Features as Assessed with ICC

Feature
Good Stability (≥ 0.8) Moderate Stability (0.5–0.8) Poor Stability (< 0.5)

TumorPrism3D 3D Slicer TumorPrism3D 3D Slicer TumorPrism3D 3D Slicer
1st order statistic (%) 40/42 (95.2) 41/42 (97.6) 2/42 (4.8) 1/42 (2.4) 0/42 (0.0) 0/42 (0.0)
Texture (%) 88/99 (88.9) 86/99 (86.9) 6/99 (6.1) 7/99 (7.1) 5/99 (5.1) 6/99 (6.1)
Morphometric (%) 36/39 (92.3) 35/39 (89.7) 1/39 (2.6) 3/39 (7.7) 2/39 (5.1) 1/39 (2.6)

ICC = intra-class correlation coefficient
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DSC ranged from 0.74 to 0.77 for the first rater and 0.71 to 
0.74 for the second rater.

Figure 4 shows example segmentation results of the three 
tumor tissue components (i.e., CE, NC, and NH) with the 
two semi-automated segmentation tools. Case A represents 
a case with similar results, while Case B represents a case 
with slightly different results.

Stability
Stabilities of the 180 radiomic features as assessed with 

ICC are summarized in Table 3. Overall, the two semi-

automated software tools produced similarly stable features. 
With TumorPrism3D, 40 of 42 first order statistic features, 
88 of 99 texture features, and 36 of 39 morphometric 
features showed high stability. With 3D Slicer, 41 of 42 
first order statistic features, 86 of 99 texture features, and 
35 of 39 morphometric features showed excellent stability. 
However, a few (n = 7) of the texture and the morphometric 
features showed poor ICC, which suggests that those 
features might be more susceptible to rater-dependent 
differences in tumor segmentation.

Fig. 5. Waterfall diagram of normalized dynamic range for three feature groups extracted from segmented tumor volumes with 
TumorPrism3D. 
A. 1st order statistic feature. B. Morphometric feature. C. Texture features. CE = contrast-enhancing, NC = necrotic, NH = non-enhancing T2 high 
signal intensity

Normalized dynamic range

1st order statistic features

A

Normalized dynamic range

Morphometric features

B

Normalized dynamic range

Texture features

C
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Normalized Dynamic Range 
Features showed different NDR depending on feature 

group (Fig. 5). Of the total 180 features, only 37 (20.5%) 
and 40 (22.2%) features showed good NDR, while 44 
(24.4%) and 40 (22.2%) features showed poor NDR, with 
TumorPrism3D and 3D Slicer, respectively. Among the three 
feature groups, first order statistic group showed relatively 
higher NDR: 39 out of 42 (92.8%) features showed good 
or moderate NDR with both software tools. In contrast, 
a majority of features that showed poor NDR were in the 
texture feature group. In morphometric feature group, a 
majority of features (37 with TumorPrism3D, 32 with 3D 
Slicer) showed moderate NDR. Summary of NDRs for the 
GBM radiomic features is shown in Table 4.

Redundancy
Application of consensus clustering to the 180 radiomic 

features revealed 5 distinct feature clusters. Properties of 
the five clusters are compared in Table 5. Robustness of 5 
clusters as assessed with CC ranged from 0.73 to 0.98, and 
their agreements as assessed with RS ranged from 0.62 to 
0.97. Notably, the CC and RS except the smallest cluster 
were all higher than 0.8. Figure 6 shows the CC maps for 
the two segmentation tools. In both maps, size of cluster 
1 was considerably small with moderate robustness and 
agreement, and the other 4 clusters were of similar size 
with good robustness and agreement.

Figure 7 illustrates the decomposition of each feature 

cluster into three feature groups. Cluster 1 was composed 
solely of morphometric features; clusters 2 and 5 were 
composed mostly of 1st order statistic and texture features; 
and clusters 3 and 4 of all three feature groups. Figure 8 
illustrates the decomposition of each feature cluster into 
three tumor tissue components. Clusters 1 and 4 were 
composed mostly of CE and NH tissues; clusters 2 and 3 
were of CE and NC; and cluster 5 mostly of NH. Notably, the 
same tendency was observed in both cluster maps derived 
with TumorPrism3D and 3D Slicer.

More details of clustered features are described 
in Supplementary Table 1 (in the online-only Data 
Supplement).

DISCUSSION

In this study, we investigated the quality of radiomic 
features in GBM. We categorized radiomic features into first 
order statistic, texture, and morphometric feature groups 
and assessed their quality in terms of stability, NDR, and 
redundancy.

Image segmentation is the first step in radiomic feature 
analysis, and thus can be considered as a major source of 
variability in radiomics. Use of a semi-automated software 
for tumor segmentation is a preferred option in radiomics 
studies since it offers markedly improved efficiency and may 
reduce inter-observer variability in tumor delineation (23, 
24). The 3D Slicer has often been used in previous studies 

Table 4. Proportion of Grades of NDR for Radiomic Features According to Feature Group

Feature
Good (≥ 4) Moderate (1–4) Poor (< 1)

TumorPrism3D 3D Slicer TumorPrism3D 3D Slicer TumorPrism3D 3D Slicer
1st order statistic (%) 8/42 (19.0) 9/42 (21.4) 31/42 (73.8) 30/42 (71.4) 3/42 (7.1) 3/42 (7.1)
Texture (%) 29/99 (29.3) 26/99 (26.3) 31/99 (31.3) 38/99 (38.4) 39/99 (39.4) 35/99 (35.4)
Morphometric (%) 0/39 (0.0) 5/39 (12.8) 37/39 (94.9) 32/39 (82.1) 2/39 (5.1) 2/39 (5.1)

NDR = normalized dynamic range

Table 5. Comparison of Cluster Properties for Two Semi-Automated Segmentation Tools

Cluster 
No.

Method
TumorPrism3D 3D Slicer

Cluster Size
(1st Order + Texture + Morphometric) RS

Cluster 
Consensus

Cluster Size
(1st Order + Texture + Morphometric) RS

Cluster 
Consensus

Rater 1 Rater 2 Rater 1 Rater 2
1 10 (0 + 0 + 10) 8 (0 + 0 + 8) 0.619 0.731 3 (0 + 0 + 3) 4 (0 + 0 + 4) 0.625 0.752
2 43 (20 + 22 + 1) 46 (20 + 23 + 3) 0.939 0.974 44 (20 + 20 + 4) 42 (20 + 18 + 4) 0.957 0.937
3 50 (4 + 26 + 20) 49 (5 + 27 + 17) 0.857 0.836 48 (4 + 28 + 16) 43 (3 + 29 + 11) 0.800 0.812
4 41 (6 + 28 + 7) 40 (3 + 26 + 11) 0.807 0.965 41 (5 + 28 + 8) 46 (6 + 30 + 10) 0.842 0.877
5 36 (12 + 23 + 1) 37 (13 + 23 + 1) 0.974 0.980 44 (13 + 23 + 8) 45 (13 + 22 + 10) 0.920 0.940

RS = Rand Statistic
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for segmenting 3D tumor volume due to its free availability 
in public domain. However, study settings may include 
different software tools employing differently evolved 
algorithms. Therefore, comparing the performance of 
different semi-automated software tools in terms of quality 
assessment of radiomic features could form the basis for 
study design and experimental tools.

In our experiment, using two semi-automated software 
tools, the tumor segmentation accuracy as assessed with 
DSC ranged from 0.71 to 0.84 depending on differing 
raters and software tools. Compared to reported values 
of segmentation accuracy of brain tumors that ranged 
considerably (0.48 to 0.97) (25), the two software tools 
employed in our study appear to provide consistently good 
accuracy in segmenting GBM tumors. Thus, we regarded the 
two software tools as adequate for use in the subsequent 
assessment of the quality of radiomic features in GBM.

Stability has been often used for quality assurance and 
selection of robust features at the first step in radiomic 
feature analysis (4). Our study results showed that most 
of the radiomic features in GBM were highly stable. Over 
90% of 180 features showed good stability (ICC ≥ 0.8), 
whereas only 7 features had poor stability (ICC < 0.5) with 
both software tools. In general, first order statistic group 
showed relatively higher stability, followed by morphometric 
group and texture group, in order. These results agree with 
the data reported by Parmar et al. (4). They examined 
the stability of radiomic features in CT lung cancer scans 
against three independent raters with the 3D Slicer as a 
semi-automated segmentation tool; the results indicated 
overall high ICC (0.85 ± 0.15) with 74% of 3D radiomic 
features showing good stability (ICC ≥ 0.8) and only 3 
of 56 features showing poor stability (ICC < 0.5). This 
congruence suggests that these semi-automated software 
tools are sufficiently reliable in extracting radiomic features 
in different study settings, including CT for the diagnosis of 
lung cancer and MRI for the diagnosis of GBM.

Dynamic range has often been used as a measure of 
informativeness of radiomic features. As a certain degree of 
perturbation is unavoidable in extracted radiomic features 
due to inherent variability from different sources, features 
with higher dynamic range are regarded as more robust to 
feature perturbation and thus regarded to possess relatively 
good information compared to those with narrow dynamic 
range.

In this study, we defined the NDR as the dynamic range 
of a feature over the study population divided by its mean; 
NDR was used for comparison of the relative dynamic range 
of radiomic features regardless of their feature value range. 
Our study results indicated differences in NDR among 
differing feature groups. Most first order statistics and 
morphometric features (93 and 95%, respectively) showed 
good or moderate NDR. In contrast, texture features showed 
relatively lower NDR, with > 35% of texture features of poor 

Consensus matrix k = 5
1
2
3
4
5

A

Consensus matrix k = 5
1
2
3
4
5

B
Fig. 6. Consensus maps of feature clusters.
A. TumorPrism3D. B. 3D Slicer.
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NDR. In a previous study on reproducibility of radiomic 
features in CT lung cancer, Balagurunathan et al. (26) 
examined the dynamic range of different feature groups, 
and also found that significant differences existed in 
dynamic range of different features.

Majority of the morphometric and histogram features 
were among the higher rank of dynamic range; whereas, 
significant portion of texture features were among the lower 
rank. These findings suggest the need for an understanding 
of differences in feature dynamic range in determining 
truly reliable and informative features in radiomic feature 
analysis.

Typically, several features are extracted at an early stage 
in the radiomic feature-analysis process, which may reach 
up to several hundreds and exceed the number of samples. 
This can cause data overfitting and increase the risk of 
false positives leading to decreased reliability of the study 
results. Therefore, reducing the redundant features and 
choosing a small subset of representative signature features 
is an essential step in radiomics study. In this process, 
assessment of feature cluster property reflects the degree of 
similarity as well as distinctness among feature groups and 
thus facilitates the determination of the characteristics of a 

representative feature subset.
The CC map produced in our study revealed that the 180 

features were highly redundant and could be compressed 
into 5 distinct clusters. In addition, both CC and RS derived 
using two different segmentation software tools showed 
very similar trends across the five clusters. These findings 
suggest that those feature cluster properties shown in our 
study were of fundamental nature in radiomic features of 
GBM regardless of segmentation software tools and rater’s 
experience.

We expected that diverse delineation pattern of CE, 
NC, and NH tumor tissues appearing on multi-parametric 
MR images would form more complex cluster pattern. 
However, we identified 5 clusters, which was less than the 
previously reported 11 and 13 clusters found from 440 CT 
radiomic features of lung cancer and head and neck cancer, 
respectively (27).

Significant differences existed in the proportion of 
features based on the concurrent tumor components. 
A substantial proportion of features (in clusters 2 and 
3) related to CE and NC tissues, which might indicate a 
strong interaction between the CE and NC components. 
In contrast, less proportion of features were of CE and 

Fig. 7. Proportion of each feature group in 5 clusters.
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Fig. 8. Proportion of features related to each tumor component in 5 clusters.
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NH tissues (in cluster 4), which might indicate a weaker 
interaction between the CE and NH components. Further 
study is required for a pathophysiological interpretation of 
this finding.

Our study has several limitations. First, only two types of 
software tools were used for evaluation. Semi-automated 
segmentation tools employ sophisticated algorithms to 
reduce user’s manual intervention as much as possible and 
provide reliable segmentation results at the same time. 
Computer vision community has developed different kinds 
of segmentation algorithms specialized for use in medical 
imagery. To our best knowledge, grow-cut algorithm and 
deformable model-based algorithm were two representative 
semi-automated algorithms for segmenting tumors on 
medical images, and were implemented in the 3D Slicer and 
the TumorPrism3D, respectively. As image segmentation 
algorithms continue to evolve requiring less intervention 
from users and making use of more learned knowledge from 
a large image database, radiomics applications of additional 
software tools with novel algorithms should be investigated 
in future.

Second, stability of radiomic features was evaluated with 
a single scan dataset. Though variation of segmented tumor 
volumes due to inconsistent user intervention is regarded 
a major source of instability of radiomic features, varying 
physio-physical state of patient and scanner might cause 
additional perturbations to radiomic features. Accordingly, 
it would be desirable to use a same-day repeat scan data 
set to evaluate the stability of features against overall 
sources of variability. However, such a data set was not 
available to our study. Therefore, our stability data should 
be interpreted with caution in that they are applicable only 
to limited sources of variability.

In addition, our study used an MRI data set acquired with 
a relatively simple protocol. As a variety of pulse sequences 
are used in MR imaging, it is obvious that images acquired 
with different pulse sequence would bring about different 
feature quality in GBM study. For example, diffusion imaging 
is increasingly used in GBM, which produces much noisier 
images and accordingly would give rise to radiomic features 
of much different quality. Thus, our study results cannot be 
generalized to all MR GBM studies.

In conclusion, the use of two different semi-automated 
software tools by different raters showed similar high 
stability in radiomic features in GBM regardless of difference 
in raters’ experience, indicating that semi-automated 
software tools provide sufficiently reliable segmentation 

output and help overcome the inherent inter-and intra-
rater variability from user intervention. However, significant 
differences existed in NDR among features, which suggests 
that features convey information with differing strength. 
Among the feature groups, texture features showed the 
weakest NDR. A total of 180 radiomic features in our study 
were highly redundant, and compressible to 5 distinct 
clusters. However, significant differences existed in the 
proportion of features according to the tumor tissue 
components appearing together.

A well-established quality assurance procedure has an 
important role in the future advancement of radiomics and 
translation into patient care. The findings in our study may 
be useful in guiding the development of quality assurance 
procedure of the radiomics pipeline, particularly for GBM.

Supplementary Materials

The online-only Data Supplement is available with this 
article at https://doi.org/10.3348/kjr.2017.18.3.498.

REFERENCES

1.	Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. 
Acta Neuropathol 2005;109:93-108

2.	Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson 
MD, et al. Integrated genomic analysis identifies clinically 
relevant subtypes of glioblastoma characterized by 
abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 
2010;17:98-110

3.	Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, 
Carvalho S, et al. Decoding tumour phenotype by noninvasive 
imaging using a quantitative radiomics approach. Nat 
Commun 2014;5:4006

4.	Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho 
S, Mak RH, et al. Robust radiomics feature quantification 
using semiautomatic volumetric segmentation. PLoS One 
2014;9:e102107

5.	Kim M, Kim HS. Emerging techniques in brain tumor imaging: 
what radiologists need to know. Korean J Radiol 2016;17:598-
619

6.	Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges 
JP, et al. Intratumor heterogeneity characterized by textural 
features on baseline 18F-FDG PET images predicts response to 
concomitant radiochemotherapy in esophageal cancer. J Nucl 
Med 2011;52:369-378

7.	El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, 
et al. Exploring feature-based approaches in PET images 
for predicting cancer treatment outcomes. Pattern Recognit 
2009;42:1162-1171

8.	Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang 



509

Quality of Radiomic Features in Glioblastoma Multiforme

Korean J Radiol 18(3), May/Jun 2017kjronline.org

Y, et al. Identification of noninvasive imaging surrogates for 
brain tumor gene-expression modules. Proc Natl Acad Sci U S 
A 2008;105:5213-5218

9.	Zinn PO, Mahajan B, Sathyan P, Singh SK, Majumder S, Jolesz 
FA, et al. Radiogenomic mapping of edema/cellular invasion 
MRI-phenotypes in glioblastoma multiforme. PLoS One 
2011;6:e25451

10.	Cancer Genome Atlas Research Network. Comprehensive 
genomic characterization defines human glioblastoma genes 
and core pathways. Nature 2008;455:1061-1068

11.	Gevaert O, Mitchell LA, Achrol AS, Xu J, Echegaray S, 
Steinberg GK, et al. Glioblastoma multiforme: exploratory 
radiogenomic analysis by using quantitative image features. 
Radiology 2014;273:168-174

12.	Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora 
TD, et al. MR imaging predictors of molecular profile and 
survival: multi-institutional study of the TCGA glioblastoma 
data set. Radiology 2013;267:560-569

13.	Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A. Evaluation 
of tumor-derived MRI-texture features for discrimination 
of molecular subtypes and prediction of 12-month survival 
status in glioblastoma. Med Phys 2015;42:6725-6735

14.	Itakura H, Achrol AS, Mitchell LA, Loya JJ, Liu T, Westbroek 
EM, et al. Magnetic resonance image features identify 
glioblastoma phenotypic subtypes with distinct molecular 
pathway activities. Sci Transl Med 2015;7:303ra138

15.	The Cancer Imaging Archive (TCIA). Web site. http://www.
cancerimagingarchive.net/. Accessed March 5, 2016

16.	3D Slicer. Web site. http://www.slicer.org/. Accessed March 
15, 2016

17.	Lee M, Cho W, Kim S, Park S, Kim JH. Segmentation of interest 
region in medical volume images using geometric deformable 
model. Comput Biol Med 2012;42:523-537

18.	Balagurunathan Y, Gu Y, Wang H, Kumar V, Grove O, Hawkins S, 
et al. Reproducibility and prognosis of quantitative features 
extracted from CT images. Transl Oncol 2014;7:72-87

19.	Kim H, Park CM, Lee SM, Lee HJ, Goo JM. A comparison of 

two commercial volumetry software programs in the analysis 
of pulmonary ground-glass nodules: segmentation capability 
and measurement accuracy. Korean J Radiol 2013;14:683-691

20.	Egger J, Kapur T, Fedorov A, Pieper S, Miller JV, Veeraraghavan 
H, et al. GBM volumetry using the 3D Slicer medical image 
computing platform. Sci Rep 2013;3:1364

21.	Zhu Y, Young GS, Xue Z, Huang RY, You H, Setayesh K, et 
al. Semi-automatic segmentation software for quantitative 
clinical brain glioblastoma evaluation. Acad Radiol 
2012;19:977-985

22.	Wilkerson MD. ConsensusClusterPlus (Tutorial). 2016. 
Available at: https://www.bioconductor.org/packages/
devel/bioc/vignettes/ConsensusClusterPlus/inst/doc/
ConsensusClusterPlus.pdf. Accessed July 1, 2016

23.	de Hoop B, Gietema H, van Ginneken B, Zanen P, 
Groenewegen G, Prokop M. A comparison of six software 
packages for evaluation of solid lung nodules using semi-
automated volumetry: what is the minimum increase in size 
to detect growth in repeated CT examinations. Eur Radiol 
2009;19:800-808

24.	Jung SC, Choi SH, Yeom JA, Kim JH, Ryoo I, Kim SC, et 
al. Cerebral blood volume analysis in glioblastomas using 
dynamic susceptibility contrast-enhanced perfusion MRI: 
a comparison of manual and semiautomatic segmentation 
methods. PLoS One 2013;8:e69323

25.	Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker 
SJ, et al. Statistical validation of image segmentation quality 
based on a spatial overlap index. Acad Radiol 2004;11:178-
189

26.	Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Liu Y, et al. 
Test-retest reproducibility analysis of lung CT image features. 
J Digit Imaging 2014;27:805-823

27.	Parmar C, Leijenaar RT, Grossmann P, Rios Velazquez E, 
Bussink J, Rietveld D, et al. Radiomic feature clusters and 
prognostic signatures specific for Lung and Head & Neck 
cancer. Sci Rep 2015;5:11044




