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Neuroblast and neuroblastoma expression profile<p>Transcriptome profiling of neuroblasts and neuroblastoma tumor cells provides strong support for a neuroblast origin of neuroblast-oma and highlights new candidate neuroblastoma genes</p>

Abstract
Background: Neuroblastoma tumor cells are assumed to originate from primitive neuroblasts giving rise to the
sympathetic nervous system. Because these precursor cells are not detectable in postnatal life, their transcription
profile has remained inaccessible for comparative data mining strategies in neuroblastoma. This study provides
the first genome-wide mRNA expression profile of these human fetal sympathetic neuroblasts. To this purpose,
small islets of normal neuroblasts were isolated by laser microdissection from human fetal adrenal glands.

Results: Expression of catecholamine metabolism genes, and neuronal and neuroendocrine markers in the
neuroblasts indicated that the proper cells were microdissected. The similarities in expression profile between
normal neuroblasts and malignant neuroblastomas provided strong evidence for the neuroblast origin hypothesis
of neuroblastoma. Next, supervised feature selection was used to identify the genes that are differentially
expressed in normal neuroblasts versus neuroblastoma tumors. This approach efficiently sifted out genes
previously reported in neuroblastoma expression profiling studies; most importantly, it also highlighted a series
of genes and pathways previously not mentioned in neuroblastoma biology but that were assumed to be involved
in neuroblastoma pathogenesis.

Conclusion: This unique dataset adds power to ongoing and future gene expression studies in neuroblastoma
and will facilitate the identification of molecular targets for novel therapies. In addition, this neuroblast
transcriptome resource could prove useful for the further study of human sympathoadrenal biogenesis.
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Background
Neuroblastoma is the most common and deadly extracranial
solid childhood tumor, exhibiting remarkable variation in
clinical presentation ranging from localized to highly meta-
static disease. Despite multimodal therapies, survival rates
for aggressive neuroblastomas are still disappointingly low.
One possible approach to development of more efficient and
less toxic therapies is to gain insight into the signaling path-
ways that are deregulated in neuroblastoma and to use this
information in the design of molecular therapies. However, at
present only two genes, namely MYCN and PHOX2B, have
been directly linked to neuroblastoma development, although
their exact role in oncogenesis is still unclear [1,2].

It is hoped that genome-wide gene expression studies will
provide insights into the genes and molecular pathways that
govern neuroblastoma pathogenesis. Thus far, no clear or
consistent candidate genes or pathways have emerged from
these analyses [3-5] (see Additional data file 3 for more refer-
ences). Both for currently available expression data and forth-
coming datasets, we anticipate that transcriptome
information on the cells of origin of neuroblastoma (sympa-
thetic nervous system progenitors) will be of crucial impor-
tance and could provide significant power on data mining
strategies.

The sympathetic nervous system is composed of sympathetic
chain and truncus ganglia, paraganglia, and the adrenal
gland. Ganglion cells (neuroblasts during development) are
the major cell type of chain and truncus ganglia, and extra-
adrenal chromaffin cells form the paraganglia, whereas the
adrenal gland is composed of adrenal chromaffin cells and, at
least during development, sympathetic neuroblasts. The fate
of the neuroblasts in the developing human adrenal gland is
not clear; some or all may involute or mature as solitary intra-
adrenal neurons [6]. Evidence for the cellular origin of neu-
roblastoma is based on their occurrence in the adrenal gland
or along the spinal cord in association with sympathetic gan-
glia, and on their neuroblastic phenotype that indicates that
the tumor cells are derived from immature sympathetic nerv-
ous system cells of the ganglionic lineage [7]. Indeed, cells of
adrenal neuroblastomas have neuroblastic morphology and
do not express the adrenal chromaffin marker PNMT, but
they share phenotypic characteristics with the immature
sympathetic neuroblasts present as nests of cells in the devel-
oping adrenal gland. However, a small subset of neuroblasto-
mas also contains cells with extra-adrenal chromaffin
characteristics.

In the present study we isolated and performed expression
profiling of the human adrenal neuroblasts as they form
monocellular structures during early fetal stages, which can
be easily microdissected. In parallel, favorable and unfavora-
ble neuroblastoma tumors were profiled on the same plat-
form. Finally, our dataset was integrated in a meta-analytical
data mining approach.

Results
Characterization, isolation, and gene expression 
profiling of fetal adrenal neuroblasts
Prescreening of hematoxylin-eosin cryosections from 11 fetal
adrenal glands demonstrated that large neuroblast clusters of
more than 100 cells were predominantly found in adrenal
glands at 19 and 20 weeks' gestational age (Figure 1a). To ver-
ify that these cell clusters indeed represent neuroblasts and to
estimate the degree of intermingled chromaffin cells, cryosec-
tions were stained for the neuronal and chromaffin marker
TH (tyrosine hydroxylase), the chromaffin marker CHGA
(chromogranin A; which also has low expression in neurob-
lasts), and the neuronal markers BCL2 (B-cell CLL/lym-
phoma 2) and HNK1 (carbohydrate epitope) [8]. As shown in
Figure 1, the clusters of neuroblastic cells stained positive for
all markers and, in particular, these cells were positive for
BCL2 and HNK1. The majority of chromaffin cells, identified
by their strong CHGA and TH expression, were found to be
scattered throughout the adrenal cortex (these cells coalesce
and form large islands of chromaffin cells later during devel-
opment), whereas a few cells were located in or adjacent to
the neuroblast clusters.

Neuroblast clusters and adjacent cortical cells (used as con-
trols) were isolated using laser capture microdissection from
stained cryosections from three different fetal adrenal glands
(glands 1, 2 and 3, which were of gestational ages 20, 19 and
19 weeks, respectively) (Figure 2) and immediately lysed in
RNA extraction buffer. In order to obtain a sufficient amount
of good quality neuroblast RNA for oligonucleotide chip anal-
yses, we applied a previously validated protocol for tissue sec-
tioning, staining, and microdissection [9] (Additional data
file 1(a)). By pooling different isolates of the same adrenal
gland, between 2.5 and 15 ng total RNA could be obtained for
each of the three neuroblast samples (Additional data file
1(b)). After two-round amplification and labeling of three
neuroblast, three cortex, and 18 neuroblastoma RNA sam-
ples, hybridization was performed on HG-U133A Affymetrix
oligonucleotide chips. Real-time polymerase chain reaction
analysis of selected genes showed that there was no RNA
amplification bias in the chip data (Additional data file 1(c)).

Validation of the expression profile of fetal adrenal 
neuroblasts and cortex cells
The expression profiles of the neuroblast and cortex samples
were compared using the rank product nonparametric
method, which is particularly suited for extracting signifi-
cantly differentially expressed genes in a limited number of
samples [10]. Two lists of 156 and 86 unique genes were
established with significantly higher expression in neuroblast
and adrenal cortex cells, respectively (multiple testing cor-
rected P < 0.01; Additional data file 2). Gene Ontology (GO)
analysis identified those classes of genes that are significantly
over-represented in the cell specific gene lists (P < 0.01; Table
1). As expected, the neuroblast gene list is enriched for genes
that are involved in catecholamine metabolism, neurogenesis
Genome Biology 2006, 7:R84
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Identification of sympathetic neuroblasts and chromaffin cells in human fetal adrenal glands by immunohistochemical analysisFigure 1
Identification of sympathetic neuroblasts and chromaffin cells in human fetal adrenal glands by immunohistochemical analysis. Sections of a human fetal (19 
weeks) adrenal gland, adjacent to those used for laser capture retrieval of cells for mRNA extraction and gene expression profiling, were stained with (a) 
hematoxylin and eosin or antibodies directed against (b,f) TH, (c,g) CHGA, (d,h) BCL2, and (e,i) HNK1. Whereas the immunoreactivities of BCL2 and 
HNK1 are specific for neuroblasts, TH and CHGA expression is pronounced in chromaffin cells and weak in neuroblasts [8]. Stars indicate chromaffin cells 
(TH+, CHGA+, BCL2-, and HNK1-), either solitary or intermingled with neuroblasts. Panels a-e show a cluster of adrenal neuroblasts and panels f-i show 
cortical area within scattered chromaffin cells adjacent to the neuroblast cluster. Inserts in panels b-e (bars: 10 µm) correspond to the boxed areas in 
these panels (bars in panels a-i: 100 µm). BCL2, B-cell CLL/lymphoma 2; CHGA, chromogranin A; H&E, hematoxylin and eosin; HNK1, carbohydrate 
epitope; TH, tyrosine hydroxylase.

Laser capture microdissection of neuroblast clustersFigure 2
Laser capture microdissection of neuroblast clusters. (a) Large cluster of neuroblasts in fetal adrenal glands at 19 weeks' gestational age (mounted 
hematoxylin and eosin stained cryosections), (b,c) unmounted hematoxylin and eosin stained fetal adrenal cryosections with a neuroblast cluster before 
and after microdissection (sample 2), and (d) the microdissected neuroblast cluster.
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and other neural processes, whereas cortex cells specifically
express genes involved in steroid and cholesterol metabolism.

To further test the validity of the neuroblast gene expression
profile, we evaluated the expression of known neuronal and
chromaffin markers that were previously studied in human
fetal sections [8]. High expression (among the 10% most

Table 1

GO analysis: neuroblast versus cortex samples

GO P value n GO description

More highly expressed in neuroblast compared to cortex

GO:0007399 5.94E-09 20 Neurogenesis

GO:0019226 1.12E-06 13 Transmission of nerve impulse

GO:0007268 5.39E-06 12 Synaptic transmission

GO:0001505 9.29E-05 5 Regulation of neurotransmitter levels

GO:0007267 2.76E-04 16 Cell-cell signaling

GO:0050877 3.17E-04 16 Neurophysiological process

GO:0046879 3.47E-04 3 Hormone secretion

GO:0006584 3.47E-04 3 Catecholamine metabolism

GO:0018958 4.72E-04 3 Phenol metabolism

GO:0048513 6.67E-04 22 Organ development

GO:0006836 6.96E-04 4 Neurotransmitter transport

GO:0009887 7.32E-04 21 Organogenesis

GO:0007154 1.21E-03 46 Cell communication

GO:0045055 1.25E-03 3 Regulated secretory pathway

GO:0007269 1.25E-03 3 Neurotransmitter secretion

GO:0046903 1.52E-03 8 Secretion

GO:0030072 2.09E-03 2 Peptide hormone secretion

GO:0030073 2.09E-03 2 Insulin secretion

GO:0016079 2.09E-03 2 Synaptic vesicle exocytosis

GO:0042423 2.09E-03 2 Catecholamine biosynthesis

GO:0006887 2.24E-03 4 Exocytosis

GO:0009653 2.77E-03 23 Morphogenesis

GO:0007218 3.25E-03 4 Neuropeptide signaling pathway

GO:0007275 3.26E-03 29 Development

GO:0046883 5.70E-03 2 Regulation of hormone secretion

GO:0030182 7.26E-03 2 Neuron differentiation

GO:0048489 8.98E-03 2 Synaptic vesicle transport

More highly expressed in cortex compared to neuroblast

GO:0016126 4.18E-07 5 Sterol biosynthesis

GO:0006694 9.28E-07 6 Steroid biosynthesis

GO:0008202 4.32E-06 7 Steroid metabolism

GO:0016125 2.93E-05 5 Sterol metabolism

GO:0044255 6.74E-05 9 Cellular lipid metabolism

GO:0006629 8.75E-05 10 Lipid metabolism

GO:0008610 1.39E-04 6 Lipid biosynthesis

GO:0006695 2.97E-04 3 Cholesterol biosynthesis

GO:0006066 1.17E-03 6 Alcohol metabolism

GO:0008203 4.69E-03 3 Cholesterol metabolism

GO:0044242 4.97E-03 2 Cellular lipid catabolism

GO:0006118 7.90E-03 5 Electron transport

Shown are over-represented GO classes (biological process) (with P < 0.01 and at least two genes) in the list of genes that are more highly 
expressed in neuroblast than in cortex samples, and vice versa. GO, Gene Ontology.
Genome Biology 2006, 7:R84
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abundant genes) of neuronal markers (BCL2, GAP43, and
NPY) together with chromaffin (and to a lesser extent neuro-
nal) markers (CHGA, CHGB, DBH, DDC and TH) and an
adrenal chromaffin marker (PNMT) in the microdissected
cell clusters is in keeping with our observation that the neu-
roblast isolates are pure, with only rare intermingled chroma-
ffin cells (Figure 1).

Gene set enrichment analysis [11] based on expression of the
156 neuroblast-specific genes in 79 human tissues [12] was
performed in order to explore whether the microdissected
neuroblasts indeed have neural characteristics. The neurob-
lasts exhibit a significant overlap in expression with various
nervous system tissues (P < 0.05; fetal brain, prefrontal cor-
tex, brain amygdale, whole brain, occipital lobe, and hypoth-
alamus), further demonstrating that the proper cells were
microdissected.

Similarity between the expression profiles of 
neuroblast and neuroblastoma further supports the 
'cell of origin' concept
Although multiple lines of evidence indicate that neuroblast-
oma originates from immature sympathetic neuroblasts, the
mRNA expression repertoire of these neuroblasts and neu-
roblastomas have not yet been compared. Before our analysis,
we assumed that, in addition to differences resulting from
oncogenic transformation, both cell populations would
exhibit many cell type specific similarities.

Three data mining strategies were employed to investigate
this hypothesis. First, an unbiased multidimensional scaling
of all genes on the chip showed that the neuroblasts cluster
close to the neuroblastoma tumors and that both groups clus-
ter far away from the fetal adrenal cortex cells (Figure 3a).
Second, we extended our dataset with publicly available
expression profiles (measured on the same platform) from 79
normal tissues [12]and three neural stem cell cultures [13].
Based on the genes that are differentially expressed between
the neuroblasts and cortex samples (156 and 86 genes,
respectively), multidimensional scaling showed again that the
neuroblastoma tumors cluster close to the neuroblasts and
further away from the other normal tissues. Interestingly, the
neural stem cells also cluster close to the neuroblastomas and
neuroblasts (Figure 3b). These findings further support the
notion that adrenal neuroblasts are indeed of neuronal origin
with possible neuronal stem cell features, and the observed
considerable similarities to neuroblastomas in terms of
expression give further strength to the 'cell of origin' hypoth-
esis for neuroblastoma development.

Third, we looked for similarities in mRNA expression
between neuroblast and neuroblastoma by cataloging their
expression repertoire. We defined a reasonable cut-off to
determine whether a gene is expressed or not in a given sam-
ple (the mean percentage of present calls for the various
chips; Additional data file 1(d)). As such, the 36% most highly

expressed probe IDs in the cortex, neuroblast and neuroblas-
toma cells, were selected and compared in a Venn diagram.
This analysis clearly shows that neuroblasts have more
expressed genes in common with neuroblastoma than with
the cortex cells (432 versus 292; Figure 4a). GO analysis on
the common 432 genes revealed an expected over-represen-
tation of neurogenesis genes (P < 0.01; data not shown). Next,
we zoomed in on neurogenesis and transcription factor ontol-
ogy classes by performing a similar Venn diagram for these
gene sets, assuming their putative importance in neuroblast-
oma development. Interestingly, the similarities between
neuroblast and neuroblastoma are even more pronounced for
these two GO classes (Figure 4b, c).

Identifying genes and pathways putatively implicated in 
neuroblastoma pathogenesis through differential 
expression analysis of normal neuroblasts and 
neuroblastomas
In the final and most challenging part of our data mining
approach, we aimed to identify genes that are under-
expressed or over-expressed in neuroblastomas compared
with neuroblasts, because these genes and the pathways that
they govern might be involved in neuroblastoma develop-
ment or represent markers for the stage of developmental
arrest of neuroblastomas. Rank product analysis (multiple
testing corrected P < 0.01) yielded a list of 71 genes that were
more highly expressed in neuroblasts and 565 genes that were
more highly expressed in neuroblastomas (Additional data
file 2).

A first crucial step in our data mining strategy to identify
genes that are putatively involved in neuroblastoma was a
meta-analysis of our generated gene lists in published neu-
roblastoma microarray data. We used the Neuroblastoma
Gene Server (NBGS) which was developed in-house (see
Additional data file 3 for detailed information) to compare the
neuroblast-specific and neuroblastoma-specific gene lists
with genes that have been reported as differentially expressed
in 25 previous gene expression profiling studies conducted in
neuroblastoma (Additional data file 3). We found that as
many as 17 of the 71 genes (24%) that are over-expressed in
neuroblasts relative to neuroblastomas were reported in the
NBGS, mainly annotated as genes that are more highly
expressed in maturing, differentiating, or localized
neuroblastomas. Likewise, 102 out of the 565 genes (18%)
that were over-expressed in neuroblastoma were previously
identified in other gene expression studies on neuroblastoma.
The high overlap of our gene lists with published gene lists
demonstrates the validity of our lists, which were subse-
quently further explored in chromosomal mapping, GO, and
pathway analysis.

Positional expression mapping of candidate oncogenes 
and tumor suppressor genes
Chromosome 17q gain is the most frequent genetic aberration
in neuroblastoma and is assumed to play a crucial role in its
Genome Biology 2006, 7:R84
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Multidimensional scaling of neuroblast, cortex, and neuroblastoma samplesFigure 3
Multidimensional scaling of neuroblast, cortex, and neuroblastoma samples. (a) Multidimensional scaling of neuroblast, cortex, and neuroblastoma samples 
using all genes (Spearman correlation) and (b) multidimensional scaling of neuroblast, cortex, neuroblastoma, 79 normal tissue samples and other cancer 
samples (in duplo), and three neural stem cell cultures using the genes that are differentially expressed between fetal adrenal neuroblast and fetal adrenal 
cortex shows that the neuroblasts cluster very close to the neuroblastomas.

Venn diagram analysis of the genes with detectable expression in neuroblastoma, neuroblast, and cortex samplesFigure 4
Venn diagram analysis of the genes with detectable expression in neuroblastoma, neuroblast, and cortex samples. (a) All genes, (b) transcription factors 
(GO:0003700), and (c) neurogenesis genes (GO:0007399). The number of genes that are in common between neuroblast and neuroblastoma is higher 
than the number of genes that are in common between the neuroblasts and cortex samples (especially for the gene classes transcription and 
neurogenesis), indicating that neuroblastomas resemble neuroblasts. GO, Gene Ontology.
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pathogenesis through a dosage effect of one or more genes.
This critical region still comprises 25 megabases (Mb) [14],
precluding straightforward candidate gene identification.
Here we apply an alternative, intuitive strategy to pinpoint
putative critical dosage sensitive loci. Using positional gene
enrichment analysis (De Preter and coworkers, unpublished
data) [15], we sought chromosomal loci that are significantly
over-represented in the list of genes that are over-expressed
in neuroblastoma relative to their normal cells of origin (Fig-
ure 5). We found two peaks on chromosome 17q, with high
significance for a locus on 17q21.32-q22 that coincides with
the consistently gained segment just distal from the most dis-
tal breakpoint in a series of high-resolution copy number pro-
files (Vandesompele and coworkers, unpublished data).

Apart from over-expressed genes, we also sought positional
tumor suppressor genes by mapping under-expressed genes
(relative to normal neuroblasts). The following positional
candidates could be identified, located within or very close to
the known shortest regions of overlap in neuroblastoma:

CASP9 on 1p36; CACNA2D3, TDGF1 and NKTR on 3p21-p22
(SRO (shortest region of overlap) from [16]); IGSF4, APOA1,
MLL and RDX on 11q23 [17-19]; and MEG3 and DLK1 on
14q32 [20].

GO analysis
To examine gene expression differences between neuroblasts
and neuroblastomas from a different perspective, we mapped
the neuroblast-specific and neuroblastoma-specific gene lists
to the biologic process GO classification (Table 2). This
revealed that the neuroblasts express significantly (P < 0.01)
more genes that are involved in steroid and catecholamine
metabolism compared with neuroblastomas. Neuroblasto-
mas are characterized by an over-representation of genes that
are involved in immune response, cell growth, and cell cycle.
The immune response gene signature may be due to infiltrat-
ing immune cells, whereas the over-representation of cell
growth and cell cycle genes in neuroblastomas is in perfect
concordance with the hyperproliferative character of tumors.

Positional gene enrichment analysis of genes on chromosome 17Figure 5
Positional gene enrichment analysis of genes on chromosome 17. Positional gene enrichment analysis for the genes that are more highly expressed in 
neuroblastoma compared to normal neuroblasts identified two regions on 17q with significant over-representation (-10log P values; indicated in grey; the 
genes in these regions are printed in the boxes). The horizontal red line indicates the multiple testing corrected P value of 0.01, above which the positional 
gene enrichment value denotes significant over-representation. Vertical lines show the position of the genes on chromosome 17 from the gene list under 
investigation. The boxplot shows the gene density along the chromosome.
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Table 2

GO analysis: normal neuroblasts compared to neuroblastomas

GO P value n GO description

More highly expressed in neuroblast compared to neuroblastoma

GO:0008202 1.33E-18 17 Steroid metabolism

GO:0006694 3.22E-15 12 Steroid biosynthesis

GO:0044255 2.13E-12 18 Cellular lipid metabolism

GO:0008610 8.54E-12 13 Lipid biosynthesis

GO:0016125 1.29E-11 10 Sterol metabolism

GO:0006629 1.50E-10 18 Lipid metabolism

GO:0008203 5.85E-09 8 Cholesterol metabolism

GO:0008207 1.37E-08 5 C21-steroid hormone metabolism

GO:0006700 1.37E-08 5 C21-steroid hormone biosynthesis

GO:0006066 1.55E-08 12 Alcohol metabolism

GO:0042446 9.26E-07 5 Hormone biosynthesis

GO:0016126 1.16E-06 5 Sterol biosynthesis

GO:0042445 9.57E-06 5 Hormone metabolism

GO:0006118 1.76E-05 9 Electron transport

GO:0006869 1.84E-05 5 Lipid transport

GO:0009058 4.62E-05 16 Biosynthesis

GO:0006695 5.39E-04 3 Cholesterol biosynthesis

GO:0042423 6.50E-04 2 Catecholamine biosynthesis

GO:0006810 2.29E-03 20 Transport

GO:0006091 2.32E-03 9 Generation of precursor metabolites and energy

GO:0006584 2.85E-03 2 Catecholamine metabolism

GO:0051234 2.88E-03 20 Establishment of localization

GO:0051179 3.04E-03 20 Localization

GO:0018958 3.46E-03 2 Phenol metabolism

GO:0042401 5.64E-03 2 Biogenic amine biosynthesis

GO:0042398 8.30E-03 2 Amino acid derivative biosynthesis

More highly expressed in neuroblastoma compared to neuroblast

GO:0019882 4.54E-14 16 Antigen presentation

GO:0030333 2.51E-12 14 Antigen processing

GO:0019884 1.21E-08 8 Antigen presentation, exogenous antigen

GO:0019886 3.45E-08 8 Antigen processing, exogenous antigen via MHC class II

GO:0019883 4.23E-07 7 Antigen presentation, endogenous antigen

GO:0006260 2.07E-06 20 DNA replication

GO:0006955 2.45E-06 58 Immune response

GO:0006952 1.02E-05 60 Defense response

GO:0019885 1.03E-05 6 Antigen processing, endogenous antigen via MHC class I

GO:0009607 1.05E-05 66 Response to biotic stimulus

GO:0006270 9.25E-05 6 DNA replication initiation

GO:0006259 4.34E-04 35 DNA metabolism

GO:0009596 5.51E-04 4 Detection of pest, pathogen or parasite

GO:0006261 7.72E-04 10 DNA-dependent DNA replication

GO:0050896 1.03E-03 92 Response to stimulus

GO:0006913 1.42E-03 12 Nucleocytoplasmic transport

GO:0007051 1.84E-03 5 Spindle organization and biogenesis

GO:0016070 2.01E-03 25 RNA metabolism

GO:0007052 2.27E-03 4 Mitotic spindle organization and biogenesis

GO:0009595 2.27E-03 4 Detection of biotic stimulus

GO:0007017 2.67E-03 11 Microtubule-based process

GO:0006658 3.08E-03 2 Phosphatidylserine metabolism

GO:0009613 3.39E-03 34 Response to pest, pathogen or parasite
Genome Biology 2006, 7:R84



http://genomebiology.com/2006/7/9/R84 Genome Biology 2006,     Volume 7, Issue 9, Article R84       De Preter et al. R84.9

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

We then specifically looked at genes belonging to GO terms
neurogenesis, transcription factor activity, and apoptosis;
these three processes can be assumed to play an important
role in neuroblastoma pathogenesis (Table 3). This analysis
identified the following interesting genes from the neurob-
last-specific and neuroblastoma-specific gene lists: transcrip-
tion factors involved in neurogenesis TFAP2B (6p12.3; more
highly expressed in neuroblasts); ASCL1 (12q23.2), SIX3
(2p21) and STAT3 (17q21.2; more highly expressed in neu-
roblastoma); and APOE (19q13.31) and INHBA (7p14.1; more
highly expressed in neuroblastoma), which are involved in
both apoptosis and neurogenesis.

Differential expression analysis of favorable and 
unfavorable neuroblastomas
Thus far, most published microarray studies on neuroblasto-
mas mainly compared favorable with unfavorable neuroblas-
tomas in order to identify prognostic markers or pathways
that are involved in these clearly different neuroblastoma
tumor types. In order to add value to such an analysis, we con-
trasted similar differentially expressed gene lists with the
normal neuroblast expression profile (Additional data file 2).
In a first step, we compared the differentially expressed genes
between these two tumor types with published prognostic
gene lists. We found that 25 of the 194 genes on our list were
previously reported, including the well established markers
MYCN, NTRK1, and CD44 (see NBGS analysis in Additional
data file 3). This overlap demonstrates the validity of the
selected neuroblastoma panel and their expression profile.
Subsequently, we sought the corresponding gene expression
levels of the differentially expressed genes in the normal
counterpart cells, aiming to select neuroblastoma candidate
genes. Of the 95 genes that are more highly expressed in favo-
rable tumors (versus unfavorable ones), 37 also have signifi-
cant differential expression (either higher or lower)

compared with neuroblasts, whereas 41 out of the 101 genes
that are more highly expressed in unfavorable tumors exhibit
differential expression compared with the neuroblasts (Table
4).

From this analysis, a few putative positional tumor suppres-
sor candidates emerge: CDC42 on 1p36, CACNA2D3 on 3p21,
and DLK1 on 14q. The latter two genes are of particular inter-

GO:0006928 3.94E-03 18 Cell motility

GO:0040011 3.94E-03 18 Locomotion

GO:0043207 4.72E-03 34 Response to external biotic stimulus

GO:0007626 5.10E-03 18 Locomotory behavior

GO:0016043 5.31E-03 46 Cell organization and biogenesis

GO:0016049 6.09E-03 12 Cell growth

GO:0008361 6.09E-03 12 Regulation of cell size

GO:0042254 6.39E-03 6 Ribosome biogenesis and assembly

GO:0051169 8.15E-03 10 Nuclear transport

GO:0016071 8.34E-03 16 Mrna metabolism

GO:0043241 8.91E-03 2 Protein complex disassembly

GO:0031498 8.91E-03 2 Chromatin disassembly

GO:0006337 8.91E-03 2 Nucleosome disassembly

GO:0006104 8.91E-03 2 Succinyl-coa metabolism

GO:0007610 9.44E-03 21 Behavior

GO:0007049 9.50E-03 39 Cell cycle

Shown are over-represented GO classes (biological process) (with P < 0.01 and at least two genes) in the list of genes that are more highly expressed 
in normal neuroblasts than in neuroblastomas, and vice versa. GO, Gene Ontology.

Table 2 (Continued)

GO analysis: normal neuroblasts compared to neuroblastomas

Venn diagram analysis of genes with detectable expression in neuroblast, neuroblastoma, and neural stem cell linesFigure 6
Venn diagram analysis of genes with detectable expression in neuroblast, 
neuroblastoma, and neural stem cell lines. This analysis shows that 
neuroblasts have many genes in common with neuroblastoma, but it also 
demonstrates that neural stem cell lines have more genes in common with 
the neuroblastomas than with the normal neuroblasts.

156 946 357

844

361 112
4581

Neuroblastoma Neuroblast

Neuralstem cell
Genome Biology 2006, 7:R84
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est because they are highly expressed in neuroblasts and favo-
rable neuroblastomas, and their expression is significantly
lower in unfavorable neuroblastomas. Among the genes that
are more highly expressed in unfavorable neuroblastomas
than in favorable ones and neuroblasts, the proven oncogenic
transcription factor MYCN emerges (and putative
downstream genes KIFAP3, OPHN1, RGS7, ODC1, TOP2A,
TWIST1 and TYMS, according to NBGS), as do several other
genes that have been identified or studied within the context
of neuroblastomas such as ALK and PRAME, and positional
candidates on 17q including BIRC5, RNU2 and TOP2A.

Expression of neurogenesis markers in neuroblasts and 
developmental origin of neuroblastoma
Although this was not the primary aim of the present work,
the neuroblast expression profile provides a unique resource
for the investigation of gene expression in human sympatho-
adrenal progenitors. In a first attempt, we made an inventory
of the genes that belong to the neurogenesis GO class, or that
have been described to play a role in neural crest formation

and migration, or that have proneural activity (Additional
data file 4). This analysis showed that human fetal neurob-
lasts of 19 weeks' gestational age expressed 174 of the 359
genes in the neurogenesis GO class, and 26 of 89 proneural
genes and genes involved in neural crest formation/migra-
tion.

To obtain possible clues on the developmental origin of neu-
roblastoma we compared the expression profiles of the neu-
roblastoma tumors with those of normal neuroblasts and
neural stem cell cultures. Intersectional Venn diagram
analysis of expressed genes shows that neuroblastomas have
many genes in common with neuroblasts, as already shown
above (Figure 6). Interestingly, when compared with
neuroblasts, the neuroblastomas have more genes in com-
mon with the self-renewing neural stem cells (535 versus
145), among others the neurogenesis genes ASCL1, GSS,
STAT3, UTP11L, ENAH, APBB2, CDK5RAP2, and LARGE.

Table 3

Differentially expressed transcription factors, neurogenesis, and apoptosis genes

Transcription factor (GO:0003700) Neurogenesis (GO:0007399) Apoptosis (GO:0006915)

Gene name Location Gene name Location Gene name Location

Neuroblast > neuroblastoma MLL 11q APOE 19q APOE 19q

NR0B1 Xp GREM1 15q PLAGL1 6q

RORA 15q TFAP2B 6p SCARB1 12q

TFAP2B 6p TDGF1 3p

Neuroblast < neuroblastoma ASCL1* 12q ALK 2p BCL2 18q

ATF3 1q APBB2 4p BCLAF1 6q

CNOT7 8p ASCL1 12q BIRC5 17q

CUTL2 12q CDK5R1 17q CCL2 17q

ETV6 12p FEZ1 11q CD2 1p

FOXC1 6p GPI 19q CD74 5q

HCLS1 3q INHBA 7p CIAPIN1 16q

IRF8 16q LARGE 22q CYCS 7p

KLF10 8q MBNL1 3q HTRA2 2p

MLX 17q NEFH 22q IER3 6p

NFE2L1 17q NTRK3 15q IGFBP3 7p

NFIB 9p OLFM1 9q INHBA 7p

NME2 17q PPT1 1p ITGB2 21q

RUNX1 21q SERPINF1 17p ITGB3BP 1p

SIX3 2p SIX3 2p LGALS1 22q

STAT1 2q SLIT1 10q LY86 6p

STAT3 17q SOX11 2p OPA1 3q

TAF10 11p STAT3 17q PRKCA 17q

TAF7 5q TRAPPC4 11q RNF130 5q

TFDP1 13q STAT1 2q

TRIM22 11p SULF1 8q

TSC22D1 13q TNFRSF21 6p

ZNF91 19p TUBB 6p

Shown are differentially expressed genes in neuroblastoma versus neuroblasts that belong to GO terms transcription factor, neurogenesis, and/or 
apoptosis, with an indication of the chromosomal localization. GO, Gene Ontology.
Genome Biology 2006, 7:R84
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Table 4

Genes that are differentially expressed in favorable vs. unfavorable neuroblastoma

Favorable NB > unfavorable NB NBGS Favorable NB < unfavorable NB NBGS

neuroblast < favorable NB neuroblast < favorable NB, neuroblast < unfavorable NB

AKAP7 6q - FABP6 5q -

ARL7 2q - NEFL 8p -

ASPN 9q - NPY 7p -

BCL2 18q 1 neuroblast < unfavorable NB

C2orf23 2p - ALK 2p -

CALB1 8q - ASCL1 12q 1

CAMK2B 7p 2 BIRC5 17q 3

CD24 6q - C22orf18 22q -

CDC42 1p 1 C3 19p -

DDAH1 1p - CALCB 11p -

DNAPTP6 2q - CCNB1 5q 1

EPB41L3 18p 1 CD74 5q -

FAM70A Xq - CRH 8q -

KIFAP3 1q 1 CSPG3 19p -

OPHN1 Xq - DNCI1 7q -

PDLIM5 4q - DTL 1 1

PPAN 19p - F12 5q -

PRKCB1 16p 1 GFRA2 8p -

RGS7 1q 2 IGHG3 14q -

RNF11 1p - IGHM 14q -

ST6GALNAC5 1p - IGKC 2p 1

SV2C 5q - IGLC2 22q -

neuroblast > favorable NB, neuroblast > unfavorable NB LMO3 12p 1

CACNA2D3 3p - MGC27165 14q -

DLK1 14q 2 MLF1IP 4q 1

HBG1 11p - MMP9 20q 1

HBG2 11p - MYCN 2p 9

neuroblast > unfavorable NB NEFH

ALDH3A2 17p 1 ODC1 2p 3

DLC1 8p - OGDHL 10q -

EYA1 8q - P2RX5 17p -

GCH1 14q 1 PRAME 22q 1

HBA2 16p - RPS4Y1 Yp 1

KIAA0960 7p 1 SERPINF1 17p -

PTPRD 9p - TNFRSF10B 8p 2

PTPRK 6q - TOP2A 17q 1

SLC18A1 8p - TWIST1 7p 1

TFAP2B 6p - TYMS 18p -

TLN2 15q 1 XAGE1 Xp -

neuroblast > favorable NB, neuroblast < unfavorable NB

IGLJ3 22q 1
Genome Biology 2006, 7:R84
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Discussion
Comparison of the mRNA expression repertoire of cancer
with that of their normal counterpart cells is a commonly
applied strategy to elucidate the development and pathophys-
iology of the cancer type under study. For pediatric
neuroblastoma, fetal adrenal sympathetic neuroblasts are
assumed to be the cells of origin, but these cells are virtually
absent after birth and thus not readily accessible for analysis
[8]. In this study we were able, for the first time, to determine
the expression profile of microdissected islets of fetal sympa-
thetic neuroblasts, providing an important landmark for
comparative expression analysis. In parallel, adjacent cortex
cells and carefully selected representative neuroblastoma
tumors were profiled for data mining purposes. Our main
goals were to provide support for the cell of origin hypothesis
of neuroblastoma, and to obtain preliminary insights into the
disrupted cellular circuitry that is involved in neuroblastoma
pathogenesis.

Quality assessment and biologic validation of the established
neuroblast expression profile demonstrated that the proper
cells were isolated and that their expression profiles are trust-
worthy. Next, we assessed the cell of origin hypothesis for
neuroblastomas. To this end, the transcriptional profile of the
neuroblasts was thoroughly compared with those of neurob-
lastoma tumors and normal tissues. These analyses con-
firmed that neuroblast and neuroblastoma cells indeed
present with highly similar expression profiles. These explor-
atory findings provide, for the first time, molecular support
for the cell of origin hypothesis. Also, they reinforce our
assumption that the neuroblast gene expression profile
constitutes a valid tool for further data mining of neuroblast-
oma gene expression patterns.

Following initial data validation and assessment of the cell of
origin hypothesis, we performed a series of data mining anal-
yses aimed at identifying genes and pathways that may be
involved in neuroblastoma oncogenesis and tumor biology. In
a first step, the neuroblastoma tumor expression profile was
compared with that of the neuroblasts, yielding 71 genes with
higher expression in neuroblasts and 565 genes with

increased expression in neuroblastoma. We subjected these
gene lists to a novel meta-analytical approach that allowed
comparison with 25 published neuroblastoma gene lists and
facilitated the detection of genes identified in at least one
other microarray study. Furthermore, we performed GO
analysis and we used a new approach to positional mapping
of the differentially expressed genes. In a second step,
following analysis of combined tumors, we sought genes dif-
ferentially expressed in carefully selected representative
cases of favorable and unfavorable neuroblastomas and
further analyzed the expression of these genes in neuroblasts.
This approach yielded 37 and 41 genes, respectively.

When combining the data from the above analyses, it was
apparent that many of the genes previously reported in the
context of neuroblastoma had been identified, thus under-
scoring the validity of our data mining approach. These
included MYCN, MYCN co-amplified genes such as DDX1,
known MYCN target genes such as ODC1 and MCM7, and
prognostic markers (MYCN, NTRK1, and CD44), as well as
various other genes such as ASCL1, ALK, BCL2, BIRC5, DLK1,
NME1, NME2 and NTRK3 that have previously been men-
tioned or studied within the context of neuroblastoma. For
some genes only circumstantial evidence for a role in neurob-
lastoma is present (WSB1, CDC42, PLAGL1, PRAME and
TGFBR3); that we identified these genes in the present study
warrants further investigations into their possible role in neu-
roblastoma development. Finally, several genes, for which no
evidence of involvement in neuroblastoma development has
yet been obtained, emerged for the first time from our analy-
ses. These include STAT3, IGSF4 and CACNA2D3, and they
should also be studied in further detail to determine their
possible role in neuroblastoma pathogenesis.

Although the present study is just a first step in a new strategy
of data mining of neuroblastoma gene expression profiles, we
nevertheless obtained new information that is particularly
interesting for the 17q region. Gain of distal 17q is not only the
most frequent chromosomal alteration in high stage
neuroblastoma but it is also the strongest independent
adverse prognostic genetic factor [21,22]. However, no func-

neuroblast > favorable NB

RNU2 17q -

neuroblast > favorable NB, neuroblast > unfavorable NB

LOC492304 11p -

Genes that are differentially expressed compared with neuroblasts among the differentially expressed genes in favorable neuroblastoma (NB) versus 
unfavorable neuroblastoma, with an indication of the number of neuroblastoma microarray studies in which these genes were found through NBGS 
analysis. NBGS, Neuroblastoma Gene Server.

Table 4 (Continued)

Genes that are differentially expressed in favorable vs. unfavorable neuroblastoma
Genome Biology 2006, 7:R84
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tional evidence has been provided for a specific role of 17q
genes in neuroblastoma development. A major obstacle is the
difficulty in refining the critical region for 17q gain that, as a
consequence, has remained very large, hampering selection
of functional candidates. Based on recent high-resolution
array-CGH (comparative genome hybridization) profiling of
17q breakpoints leading to gain for distal 17q, we have pro-
posed the hypothesis that the critical region for 17q gain is
located within a 5 Mb segment on 17q21.32-q22, immediately
distal to the most distal breakpoint (Vandesompele and cow-
orkers, unpublished data).

To substantiate this hypothesis, we performed positional
gene enrichment analysis on chromosome 17 for the genes
that are more highly expressed in neuroblastoma compared
to neuroblast. Interestingly, this yielded a highly significant
enrichment for two loci on the long arm of chromosome 17,
including the above mentioned region, further demonstrating
the high likelihood of the presence of a neuroblastoma dosage
sensitive gene. A total of 11 differentially expressed genes are
contained within this 17q21.3 segment, including NME1 and
NME2. The role of the latter two genes in cancer is controver-
sial, but once again these genes emerge from a neuroblastoma
study. Among the genes that are more highly expressed in
neuroblastoma, another interesting candidate was found to
be located just outside the enriched 17q21.3 segment but
within the same chromosome band, namely STAT3. This gene
encodes an oncogenic transcription factor that plays a central
role in the janus kinase (JAK)-signal transducer and activator
of transcription (STAT) signaling pathway, promoting growth
and survival of tumor cells, inducing tumor angiogenesis, and

suppressing antitumor immune responses. Of particular
interest is that STAT3 is also implicated in neurogenesis.
Given their documented role in cancer, STAT proteins have
been shown to be promising molecular targets for novel can-
cer therapies, including small molecule inhibitors of STAT
signaling. The finding of increased STAT3 expression might
also be of relevance in the light of the observed ALK over-
expression in this and previous studies [23,24], because
ALKis known to activate STAT3 by phosphorylation [25].
Suppression of activated ALK in neuroblastoma cells by RNA
interference was shown to lead to rapid apoptosis [26].

Positional mapping of the genes that are expressed to a lesser
degree in neuroblastomas than in neuroblasts yielded some
remarkable positional tumor suppressor candidate genes.
Among others, these include CASP9 and CDC42 (1p36),
which have already been studied in neuroblastoma [27,28];
CACNA2D3 (3p21-p22), which was recently proposed as a
tumor suppressor gene in lung cancer [29]; IGSF4 (11q23),
which is a known tumor suppressor gene in several cancers;
and DLK1 (14q). All of these genes have been mapped within
or near to previously defined shortest regions of overlap for
deletions in neuroblastoma and should therefore be consid-
ered for further functional studies.

Yet another interesting candidate neuroblastoma suppressor
gene is WSB1. This gene was found in four published neurob-
lastoma microarray studies to be more highly expressed in
favorable neuroblastomas. Moreover, WSB1 was very
recently shown to be associated with prognosis [30]. Recent
evidence indicated that WSB1 (WD repeat and SOCS box-

Table 5

Clinical and genetic data of carefully selected neuroblastoma samples that were included in this study

Sample number Lab number % Tumor cells Stage MYCN amp Ploidy Adrenal 
localisation

Age Dead/alive Overall survival 
(months)

Type

NB1 01T15 80 4S No Tri Yes < 1 year Alive 61.4 Favorable

NB2 98T33 95 1 No Tri Yes < 1 year Alive 76.9 Favorable

NB3 96T82 90 1 No Tri Yes < 1 year Alive 115.5 Favorable

NB4 99T129 90 1 No Tri Yes < 1 year Alive 71.7 Favorable

NB5 01T28 90 4 Yes Di Yes > 1 year Dead 5.6 Unfavorable

NB6 03T304 100 3a No Di Abdominal > 1 year Alive 12.0 Unfavorable

NB7 03T236 90 4 No ND Yes > 5 year Dead 19.4 Unfavorable

NB8 00T54 70 1 No Tri Yes < 1 year Alive 62.6 Favorable

NB9 00T35 > 95 4 Yes Di Yes < 1 year Dead 13.7 Unfavorable

NB10 99T125 80 3 No Di Yes > 5 year Alive 79.3 Unfavorable

NB11 92W145 70 4 No ND ND > 5 year Dead 19.5 Unfavorable

NB12 02T192 100 4 Yes Di Abdominal > 5 year Dead 16.2 Unfavorable

NB13 D031 > 95 4 No Di Abdominal > 1 year Dead 64.8 Unfavorable

NB14 E002 > 80 4 No ND Abdominal > 1 year Alive 65.7 Unfavorable

NB15 E037 > 80 4 No ND Abdominal > 1 year Alive 45.3 Unfavorable

NB16 E044 > 80 4 No ND Yes < 1 year Alive 37.0 Unfavorable

NB17 E121 > 80 4 Yes ND Abdominal > 1 year Dead 78.4 Unfavorable

NB18 04T121 60 3 Yes Di Yes > 1 year Dead 6 Unfavorable

Based on stage, MYCN amplification, ploidy, and age at diagnosis, samples were subdivided into favorable or unfavorable type.
aNeuroblastoma or ganglioneuroblastoma. ND, not determined or unknown.
Genome Biology 2006, 7:R84
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containing 1) is part of an E3 ubiquitin ligase and that it
exhibits similarity with an interchangeable F-box protein β-
TrCP1 that is implicated in nuclear factor-κB, Wnt/Wingless,
and hedgehog signaling pathways [31,32]. Together with
other unpublished data on the possible implications of the
Wnt pathway in neuroblastomas, we speculate that reduced
ubiquitination of β-catenin caused by low levels of WSB1
expression in unfavorable neuroblastomas could lead to
upregulation of several genes that are involved in cell prolif-
eration [33].

Finally, PLAGL1 was identified as a candidate neuroblastoma
tumor suppressor gene in the present study. This gene regu-
lates apoptosis and cell cycle arrest and plays a role in the con-
trol of cell fate during neurogenesis [34]. PLAGL1 is localized
on chromosome 6q24-q25, a region that is frequently deleted
or epigenetically modified in many solid tumors [35], includ-
ing neuroblastoma (unpublished data).

The dataset presented will also be of future value for the study
of sympathetic nervous system development and the develop-
mental stage from which neuroblastoma originates. Ideally,
more neuroblast samples from different gestation times
should be collected in order to gain broader insight. The
present neuroblast collections offer a glimpse into this devel-
opmental process, as illustrated by the expression of ASCL1
and DLK1. ASCL1 is a known early neurogenesis marker [36],
which was confirmed by the observed expression in the
immature self-renewing neural stem cells and the absence in
the more mature neuroblasts. The significantly higher
expression in part of the unfavorable neuroblastomas com-
pared with the neuroblasts might denote an earlier stage of
differentiation arrest or reflect a process of de-differentiation
of the unfavorable neuroblastoma cells. DLK1, on the other
hand, is expressed to a lesser degree in the unfavorable neu-
roblastoma than in the favorable tumors and the neuroblast
(in concordance with observations reported by Hsiao and
coworkers [37]). Later in neural development, DLK1 (delta-
like 1 homolog) downregulates ASCL1 (achaete-scute com-
plex-like 1) through NOTCH (notch homolog), further induc-
ing neuronal differentiation [38]. Hence, these expression
differences indicate a different time point of developmental
arrest for favorable and unfavorable neuroblastoma, as was
previously suggested.

Conclusion
The inclusion of normal neuroblasts in gene expression anal-
ysis of malignant neuroblastomas was shown to add signifi-
cant power to the identification of candidate neuroblastoma
genes. Inclusion of larger sets of neuroblastoma tumors with
well characterized genomic alterations and positional map-
ping of the genes in critically involved genomic regions in
neuroblastomas will be crucial for tracing back the molecular
basis of neuroblastoma.

Materials and methods
Fetal and tumor material
Ethical approval was obtained for the collection of fetal adre-
nal glands from fetuses aborted for clinical reasons (Ethics
committee Erasme Hospital, Brussels, Belgium; approval no.:
OM021). The induced abortion was performed by prostaglan-
din instillation to the patient. The adrenals were removed
during necropsy and snap-frozen in liquid nitrogen within 3
hours after delivery. Neuroblastoma tumors were collected in
the Center for Medical Genetics (Ghent, Belgium; n = 12), in
the National Center for Medical Genetics (Dublin, Ireland; n
= 1), and in the University Children's Hospital of Essen
(Essen, Germany; n = 5). For this study, we preferentially
selected tumors that were localized in the adrenal gland (11/
18). Based on INSS stage (international neuroblastoma stag-
ing system), MYCN status, ploidy and age at diagnosis, and
for some cases pathologic rapports, samples were divided into
favorable or unfavorable neuroblastoma (Table 5).

Hematoxylin and eosin staining, 
immunohistochemistry, and laser capture 
microdissection
Fetal adrenal glands were embedded in Tissue-Tek OCT com-
pound (Sakura, Torrance, CA, USA). Immunohistochemical
staining was performed as described previously [8]. For
microdissection, cryosections were first stained with hema-
toxylin and eosin, and mounted in order to scan for neurob-
last clusters. When neuroblast clusters were found, stained
but unmounted cryosections were prepared for laser capture
microdissection. Embedding, sectioning, staining, and laser
capture microdissection of neuroblast clusters and surround-
ing cortex cells was performed as described previously [9].

RNA isolation and quality assessment
Microdissected cells were collected in RNA extraction buffer,
followed by RNA extraction and DNase treatment on column
(Qiagen, Venlo, Netherlands). RNA of the tumor samples was
extracted using the RNeasy Mini kit (Qiagen), in accordance
with the manufacturer's instructions. Four of the neuroblast-
oma tumor pieces were first mixed with Lysing Matrix D
microbeads (Qbiogene, Illkirch, France) and 700 µl RTL
buffer (Qiagen), and homogenized using FastPrep FP220
(Qbiogene). A fraction of the RNA was used for cDNA synthe-
sis after DNase treatment (described by Vandesompele and
coworkers [39]). RNA quality was measured with the RNA
Nano or Pico LabChip kit (Agilent, Diegem, Belgium) using 1
µl of the RNA isolates.

Oligonucleotide chip analysis and data mining
For each of the three fetal adrenal glands, the different neu-
roblast RNA isolates were pooled, amplified using a two-
round labeling protocol, and hybridized to HG-U133A oligo-
nucleotide chips (Affymetrix, Santa Clara, CA, USA), contain-
ing 18,400 transcripts including 14,500 well characterized
human genes (protocol described previously [40]). The same
amplification protocol was applied to RNA of three cortex
Genome Biology 2006, 7:R84
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samples and approximately 100 ng RNA of 18 neuroblastoma
tumors. The homogeneity of the subgroups (neuroblast, cor-
tex, favorable and unfavorable neuroblastoma) allowed us to
use a limited number of samples for expression profiling. Sev-
eral technical parameters demonstrate that the hybridization
was of good quality (Additional data file 1(d)).

We obtained the raw data from the Genomics Institute of the
Novartis Foundation compendium of normal tissues consist-
ing of 79 normal tissues assayed in duplicate using the
Affymetrix HG-U133A array [12]. Raw HG-U133A Affymetrix
array data from three neural stem cells were kindly provided
by Wright and coworkers [13].

CEL files were loaded in the R-Bioconductor (BioC) software
and normalized with the Robust Multi Chip Average (RMA)
method [41]. Identification of differentially expressed genes
for pairwise comparisons were performed using the Rank-
Prod R-package, which is based on the Rank Product princi-
ple [10]. We used the GoHyperG function from the BioC
project to find over-represented biologic process GO
categories from the gene lists using hypergeometric test for
significance. KEGG pathway analysis was performed with the
Webgestalt web interface using hypergeometric test for sig-
nificance [42].

Meta-analyses of published neuroblastoma microarray data
were performed with the NBGS (see Additional data fiile 3 for
detailed information).

Positional gene enrichment analysis was performed with in-
house developed R-Bioconductor script PGE (De Preter and
coworkers, unpublished data) [15]. PGE scans the entire
genome using a moving window with a user-defined width (5
Mb) and step size (1 Mb). In each window, the -10log(p) of the
Fisher Exact Test is calculated. This test was used to investi-
gate whether there is an association between the gene list and
a particular chromosomal region (the window under investi-
gation). As such, it will identify regions that contain more (or
less) genes in the gene list than expected by chance. The
(known) unequal distribution of the genes along the chromo-
somes is taken into account, because the number of genes
from the list that are located in the region is compared with
the total number of genes in that particular region. Correction
for multiple testing is performed using the false discovery rate
method of Benjamini and Hochberg [43], using the R-mult-
test package.

Expression microarray data were submitted to ArrayExpress
[44], accession number E-MEXP-669.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 includes docu-
ments on RNA quality and quantity measures, validation of

Affymetrix chip results, and Affymetrix chip quality parame-
ters [39,45-49]. Additional data file 2 lists genes that are dif-
ferentially expressed in neuroblast versus cortex samples, in
neuroblast versus favorable (F) and/or unfavorable (UF) neu-
roblastoma, and in favorable versus unfavorable neuroblast-
oma (identified using Rank Product algorithm). Additional
data file 3 provides results of NBGS analysis of the genes that
are differentially expressed between neuroblasts and (favora-
ble and/or unfavorable) neuroblastomas (gene lists in Addi-
tional data file 1). Additional data file 4 lists the genes of GO
class neurogenesis and proneural genes that are expressed in
neuroblast samples (> 36th percentile) [50-54].

Additional data file 1RNA quality and quantity measures, validation of Affymetrix chip results, and Affymetrix chip quality parametersRNA quality and quantity measures, validation of Affymetrix chip results, and Affymetrix chip quality parametersClick here for fileAdditional data file 2Genes that are differentially expressed in neuroblast versus cortex samples, in neuroblast versus favorable (F) and/or unfavorable (UF) neuroblastoma, and in favorable versus unfavorable neuroblastomaGenes that are differentially expressed in neuroblast versus cortex samples, in neuroblast versus favorable (F) and/or unfavorable (UF) neuroblastoma, and in favorable versus unfavorable neuroblastomaClick here for fileAdditional data file 3Results of NBGS analysis of the genes that are differentially expressed between neuroblasts and (favorable and/or unfavorable) neuroblastomasResults of NBGS analysis of the genes that are differentially expressed between neuroblasts and (favorable and/or unfavorable) neuroblastomas (gene lists in Additional data file 1)Click here for fileAdditional data file 4Genes of GO class neurogenesis and proneural genes that are expressed in neuroblast samples (> 36th percentile)Genes of GO class neurogenesis and proneural genes that are expressed in neuroblast samples (> 36th percentile)Click here for file

Authors' contributions
KDP performed the neuroblast microdissection and microar-
ray data mining, and drafted the paper. PH collected the fetal
adrenal glands and helped with the neuroblast microdissec-
tion. NY helped with microdissection, RNA isolation and
quantification, RNA quality control and real-time quantita-
tive polymerase chain reaction validation experiments. SB
performed the immunohistochemical stainings that were
reviewed and discussed by SP. AS, AE, RS, MR, YB, and GL
collected neuroblastoma tumor samples. JV and FS partici-
pated in the study's design and coordination. All authors have
reviewed the manuscript, and FS and ADP were the final edi-
tors of the manuscript.

Acknowledgements
We would like to thank Ann Neesen and Indra Deborle (Department of
Pneumology, Ghent University Hospital, Belgium) for their help with the
preparation of the cryo-sections.

This text presents research results of the Belgian program of Interuniver-
sity Poles of Attraction initiated by the Belgian State, Prime Minister's
Office, Science Policy Programming. Katleen De Preter is supported by a
post-doctoral grant from the Institute for the Promotion of Innovation by
Science and Technology in Flanders (IWT). Jo Vandesompele is post-doc-
toral researcher with a grant of the Fund for Scientific Research Flanders.
This work was supported by the 'Kinderkankerfonds', the Fund for Scien-
tific Research Flanders ('Krediet aan Navorsers' J.V. 1.5.243.05 and K.D.P.
1.5.117.06), FWO-grant G.0028.00 and GOA-grant 12051203.

References
1. Trochet D, Bourdeaut F, Janoueix-Lerosey I, Deville A, De Pontual L,

Schleiermacher G, Coze C, Philip N, Frebourg T, Munnich A, et al.:
Germline Mutations of the Paired-Like Homeobox 2B
(PHOX2B) Gene in Neuroblastoma.  Am J Hum Genet 2004,
74(4):761-764.

2. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM: Tar-
geted expression of MYCN causes neuroblastoma in trans-
genic mice.  Embo J 1997, 16(11):2985-2995.

3. Berwanger B, Hartmann O, Bergmann E, Bernard S, Nielsen D,
Krause M, Kartal A, Flynn D, Wiedemeyer R, Schwab M, et al.: Loss
of a FYN-regulated differentiation and growth arrest path-
way in advanced stage neuroblastoma.  Cancer Cell 2002,
2(5):377-386.

4. McArdle L, McDermott M, Purcell R, Grehan D, O'Meara A, Breat-
nach F, Catchpoole D, Culhane AC, Jeffery I, Gallagher WM, et al.:
Oligonucleotide microarray analysis of gene expression in
neuroblastoma displaying loss of chromosome 11q.  Carcino-
Genome Biology 2006, 7:R84

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15024693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15024693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9214616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9214616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9214616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12450793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12450793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12450793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15090470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15090470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15090470


R84.16 Genome Biology 2006,     Volume 7, Issue 9, Article R84       De Preter et al. http://genomebiology.com/2006/7/9/R84
genesis 2004.
5. Wang Q, Diskin S, Rappaport E, Attiyeh E, Mosse Y, Shue D, Seiser E,

Jagannathan J, Shusterman S, Bansal M, et al.: Integrative genomics
identifies distinct molecular classes of neuroblastoma and
shows that multiple genes are targeted by regional altera-
tions in DNA copy number.  Cancer research 2006,
66(12):6050-6062.

6. Pahlman S, Hedborg F: Development of the neural crest and
sympathetic nervous system.  In Neuroblastoma First edition.
Edited by: Brodeur GM, Sawada T, Tsuchida Y, Voute PA. Amster-
dam: Elsevier; 2000:9-19. 

7. Hoehner JC, Gestblom C, Hedborg F, Sandstedt B, Olsen L, Pahlman
S: A developmental model of neuroblastoma: differentiating
stroma-poor tumors' progress along an extra-adrenal chro-
maffin lineage.  Lab Invest 1996, 75(5):659-675.

8. Hoehner JC, Hedborg F, Eriksson L, Sandstedt B, Grimelius L, Olsen
L, Pahlman S: Developmental gene expression of sympathetic
nervous system tumors reflects their histogenesis.  Lab Invest
1998, 78(1):29-45.

9. De Preter K, Vandesompele J, Heimann P, Kockx MM, Van Gele M,
Hoebeeck J, De Smet E, Demarche M, Laureys G, Van Roy N, et al.:
Application of laser capture microdissection in genetic anal-
ysis of neuroblastoma and neuroblastoma precursor cells.
Cancer Lett 2003, 197(1-2):53-61.

10. Breitling R, Armengaud P, Amtmann A, Herzyk P: Rank products: a
simple, yet powerful, new method to detect differentially
regulated genes in replicated microarray experiments.  FEBS
Lett 2004, 573(1-3):83-92.

11. Baird K, Davis S, Antonescu CR, Harper UL, Walker RL, Chen Y,
Glatfelter AA, Duray PH, Meltzer PS: Gene expression profiling of
human sarcomas: insights into sarcoma biology.  Cancer Res
2005, 65(20):9226-9235.

12. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J,
Soden R, Hayakawa M, Kreiman G, et al.: A gene atlas of the
mouse and human protein-encoding transcriptomes.  Proc
Natl Acad Sci USA 2004, 101(16):6062-6067.

13. Wright LS, Li J, Caldwell MA, Wallace K, Johnson JA, Svendsen CN:
Gene expression in human neural stem cells: effects of leuke-
mia inhibitory factor.  J Neurochem 2003, 86(1):179-195.

14. Lastowska M, Cotterill S, Bown N, Cullinane C, Variend S, Lunec J,
Strachan T, Pearson AD, Jackson MS: Breakpoint position on 17q
identifies the most aggressive neuroblastoma tumors.  Genes
Chromosomes Cancer 2002, 34(4):428-436.

15. Positional Gene Enrichment (PGE)   [http://medgen.ugent.be/
PGE]

16. Hoebeeck J, Michels E, Menten B, Van Roy N, Eggert A, Schramm A,
De Preter K, Yigit N, De Smet E, De Paepe A, et al.: High resolution
tiling path BAC array deletion mapping suggests commonly
involved 3p21-p22 tumor suppressor genes in neuroblast-
oma and more frequent tumors.  Int J Cancer  in press.

17. Guo C, White PS, Weiss MJ, Hogarty MD, Thompson PM, Stram DO,
Gerbing R, Matthay KK, Seeger RC, Brodeur GM, et al.: Allelic dele-
tion at 11q23 is common in MYCN single copy
neuroblastomas.  Oncogene 1999, 18(35):4948-4957.

18. Maris JM, Guo C, White PS, Hogarty MD, Thompson PM, Stram DO,
Gerbing R, Matthay KK, Seeger RC, Brodeur GM: Allelic deletion
at chromosome bands 11q14-23 is common in
neuroblastoma.  Med Pediatr Oncol 2001, 36(1):24-27.

19. Mosse Y, Greshock J, King A, Khazi D, Weber BL, Maris JM: Identi-
fication and high-resolution mapping of a constitutional 11q
deletion in an infant with multifocal neuroblastoma.  Lancet
Oncol 2003, 4(12):769-771.

20. Hoshi M, Otagiri N, Shiwaku HO, Asakawa S, Shimizu N, Kaneko Y,
Ohi R, Hayashi Y, Horii A: Detailed deletion mapping of chro-
mosome band 14q32 in human neuroblastoma defines a 1.1-
Mb region of common allelic loss.  Br J Cancer 2000,
82(11):1801-1807.

21. Bown N, Cotterill S, Lastowska M, O'Neill S, Pearson AD, Plantaz D,
Meddeb M, Danglot G, Brinkschmidt C, Christiansen H, et al.: Gain
of chromosome arm 17q and adverse outcome in patients
with neuroblastoma.  N Engl J Med 1999, 340(25):1954-1961.

22. Vandesompele J, Baudis M, De Preter K, Van Roy N, Ambros P, Bown
N, Brinkschmidt C, Christiansen H, Combaret V, Lastowska M, et al.:
Unequivocal delineation of clinicogenetic subgroups and
development of a new model for improved outcome predic-
tion in neuroblastoma.  J Clin Oncol 2005, 23(10):2280-2299.

23. Lamant L, Pulford K, Bischof D, Morris SW, Mason DY, Delsol G,
Mariame B: Expression of the ALK tyrosine kinase gene in

neuroblastoma.  Am J Pathol 2000, 156(5):1711-1721.
24. Miyake I, Hakomori Y, Shinohara A, Gamou T, Saito M, Iwamatsu A,

Sakai R: Activation of anaplastic lymphoma kinase is respon-
sible for hyperphosphorylation of ShcC in neuroblastoma
cell lines.  Oncogene 2002, 21(38):5823-5834.

25. Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M, Levy DE, Ing-
hirami G: Anaplastic lymphoma kinase (ALK) activates Stat3
and protects hematopoietic cells from cell death.  Oncogene
2002, 21(7):1038-1047.

26. Osajima-Hakomori Y, Miyake I, Ohira M, Nakagawara A, Nakagawa
A, Sakai R: Biological role of anaplastic lymphoma kinase in
neuroblastoma.  Am J Pathol 2005, 167(1):213-222.

27. Teitz T, Wei T, Liu D, Valentine V, Valentine M, Grenet J, Lahti JM,
Kidd VJ: Caspase-9 and Apaf-1 are expressed and functionally
active in human neuroblastoma tumor cell lines with 1p36
LOH and amplified MYCN.  Oncogene 2002, 21(12):1848-1858.

28. Valentijn LJ, Koppen A, van Asperen R, Root HA, Haneveld F, Vers-
teeg R: Inhibition of a new differentiation pathway in neurob-
lastoma by copy number defects of N-myc, Cdc42, and nm23
genes.  Cancer Res 2005, 65(8):3136-3145.

29. Tai AL, Mak W, Ng PK, Chua DT, Ng MY, Fu L, Chu KK, Fang Y,
Qiang Song Y, Chen M, et al.: High-throughput loss-of-heterozy-
gosity study of chromosome 3p in lung cancer using single-
nucleotide polymorphism markers.  Cancer Res 2006,
66(8):4133-4138.

30. Chen QR, Bilke S, Wei JS, Greer BT, Steinberg SM, Westermann F,
Schwab M, Khan J: Increased WSB1 copy number correlates
with its over-expression which associates with increased sur-
vival in neuroblastoma.  Genes, chromosomes & cancer 2006,
45(9):856-862.

31. Dentice M, Bandyopadhyay A, Gereben B, Callebaut I, Christoffolete
MA, Kim BW, Nissim S, Mornon JP, Zavacki AM, Zeold A, et al.: The
Hedgehog-inducible ubiquitin ligase subunit WSB-1 modu-
lates thyroid hormone activation and PTHrP secretion in
the developing growth plate.  Nat Cell Biol 2005, 7(7):698-705.

32. Maniatis T: A ubiquitin ligase complex essential for the NF-
kappaB, Wnt/Wingless, and Hedgehog signaling pathways.
Genes Dev 1999, 13(5):505-510.

33. Nakayama KI, Nakayama K: Ubiquitin ligases: cell-cycle control
and cancer.  Nat Rev Cancer 2006, 6(5):369-381.

34. Valente T, Auladell C: Expression pattern of Zac1 mouse gene,
a new zinc-finger protein that regulates apoptosis and cellu-
lar cycle arrest, in both adult brain and along development.
Mech Dev 2001, 108(1-2):207-211.

35. Abdollahi A, Pisarcik D, Roberts D, Weinstein J, Cairns P, Hamilton
TC: LOT1 (PLAGL1/ZAC1), the candidate tumor suppressor
gene at chromosome 6q24-25, is epigenetically regulated in
cancer.  J Biol Chem 2003, 278(8):6041-6049.

36. Gestblom C, Grynfeld A, Ora I, Ortoft E, Larsson C, Axelson H, Sand-
stedt B, Cserjesi P, Olson EN, Pahlman S: The basic helix-loop-
helix transcription factor dHAND, a marker gene for the
developing human sympathetic nervous system, is expressed
in both high- and low-stage neuroblastomas.  Lab Invest 1999,
79(1):67-79.

37. Hsiao CC, Huang CC, Sheen JM, Tai MH, Chen CM, Huang LL,
Chuang JH: Differential expression of delta-like gene and pro-
tein in neuroblastoma, ganglioneuroblastoma and
ganglioneuroma.  Mod Pathol 2005, 18(5):656-662.

38. Pahlman S, Stockhausen MT, Fredlund E, Axelson H: Notch signal-
ing in neuroblastoma.  Semin Cancer Biol 2004, 14(5):365-373.

39. Vandesompele J, De Paepe A, Speleman F: Elimination of primer-
dimer artifacts and genomic coamplification using a two-
step SYBR green I real-time RT-PCR.  Anal Biochem 2002,
303(1):95-98.

40. Bruder D, Probst-Kepper M, Westendorf AM, Geffers R, Beissert S,
Loser K, von Boehmer H, Buer J, Hansen W: Neuropilin-1: a sur-
face marker of regulatory T cells.  Eur J Immunol 2004,
34(3):623-630.

41. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of
normalization methods for high density oligonucleotide
array data based on variance and bias.  Bioinformatics 2003,
19(2):185-193.

42. Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system
for exploring gene sets in various biological contexts.  Nucleic
Acids Res 2005:W741-748.

43. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing.  J R Sta-
tisit Soc 1995, B 57:289-300.
Genome Biology 2006, 7:R84

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8941212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8941212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8941212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12880960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12880960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15327980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15327980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15327980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16230383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16230383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12807438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12807438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12807438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12112532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12112532
http://medgen.ugent.be/PGE
http://medgen.ugent.be/PGE
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16506218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16506218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16506218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10490829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10490829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10490829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11464895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11464895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11464895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14662434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14662434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14662434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10839294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10839294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10839294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10379019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10379019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10379019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15800319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15800319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15800319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10793082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10793082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12185581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12185581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12185581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11850821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11850821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11896617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11896617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11896617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15833843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15833843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15833843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16618734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16618734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16618734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16804916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16804916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16804916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15965468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15965468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15965468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10072378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10072378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16633365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16633365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11578877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11578877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12473647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12473647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12473647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9952112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9952112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9952112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15605081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15605081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15605081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15288262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15288262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11906156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11906156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11906156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14991591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14991591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980575


http://genomebiology.com/2006/7/9/R84 Genome Biology 2006,     Volume 7, Issue 9, Article R84       De Preter et al. R84.17

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

44. ArrayExpress   [http://www.ebi.ac.uk/arrayexpress/]
45. Auer H, Lyianarachchi S, Newsom D, Klisovic MI, Marcucci G, Kor-

nacker K, Marcucci U: Chipping away at the chip bias: RNA deg-
radation in microarray analysis.  Nat Genet 2003, 35(4):292-293.

46. Luzzi V, Mahadevappa M, Raja R, Warrington JA, Watson MA: Accu-
rate and reproducible gene expression profiles from laser
capture microdissection, transcript amplification, and high
density oligonucleotide microarray analysis.  J Mol Diagn 2003,
5(1):9-14.

47. Pattyn F, Speleman F, De Paepe A, Vandesompele J: RTPrimerDB:
the real-time PCR primer and probe database.  Nucleic Acids
Res 2003, 31(1):122-123.

48. Schoor O, Weinschenk T, Hennenlotter J, Corvin S, Stenzl A, Ram-
mensee HG, Stevanovic S: Moderate degradation does not pre-
clude microarray analysis of small amounts of RNA.
Biotechniques 2003, 35(6):1192-1196.

49. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De
Paepe A, Speleman F: Accurate normalization of real-time
quantitative RT-PCR data by geometric averaging of multi-
ple internal control genes.  Genome Biol 2002,
3(7):RESEARCH0034.

50. Bertrand N, Castro DS, Guillemot F: Proneural genes and the
specification of neural cell types.  Nat Rev Neurosci 2002,
3(7):517-530.

51. Gammill LS, Bronner-Fraser M: Neural crest specification:
migrating into genomics.  Nat Rev Neurosci 2003, 4(10):795-805.

52. Guillemot F: Vertebrate bHLH genes and the determination
of neuronal fates.  Exp Cell Res 1999, 253(2):357-364.

53. Knecht AK, Bronner-Fraser M: Induction of the neural crest: a
multigene process.  Nat Rev Genet 2002, 3(6):453-461.

54. Le Douarin NM, Dupin E: Multipotentiality of the neural crest.
Curr Opin Genet Dev 2003, 13(5):529-536.
Genome Biology 2006, 7:R84

http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12552074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12552074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12552074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14682053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14682053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12094208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12094208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14523379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14523379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10585258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10585258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12042772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12042772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14550420

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Characterization, isolation, and gene expression profiling of fetal adrenal neuroblasts
	Table 1 

	Validation of the expression profile of fetal adrenal neuroblasts and cortex cells
	Similarity between the expression profiles of neuroblast and neuroblastoma further supports the 'cell of origin' concept
	Identifying genes and pathways putatively implicated in neuroblastoma pathogenesis through differential expression analysis of normal neuroblasts and neuroblastomas
	Positional expression mapping of candidate oncogenes and tumor suppressor genes
	Table 2 

	GO analysis
	Table 3 

	Differential expression analysis of favorable and unfavorable neuroblastomas
	Expression of neurogenesis markers in neuroblasts and developmental origin of neuroblastoma
	Table 4 


	Discussion
	Table 5 

	Conclusion
	Materials and methods
	Fetal and tumor material
	Hematoxylin and eosin staining, immunohistochemistry, and laser capture microdissection
	RNA isolation and quality assessment
	Oligonucleotide chip analysis and data mining

	Additional data files
	Authors' contributions
	Acknowledgements
	References

