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Abstract

Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise
growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents
are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost
of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and
environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on
genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces
cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino
acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these
factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid
substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid
biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and
amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the
yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression
levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid
evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or
functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino
acid synthesis across all cellular and environmental conditions, we conclude that a systems approach is necessary to unravel
the full effects of amino acid biosynthetic cost in complex biological systems.
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Introduction

Everything in a living cell has a cost: from the energy needed to

transform molecules against thermodynamic equilibria, to the raw

materials needed to produce the constituents of a new cell. Natural

selection may be expected to minimise such cellular costs, and evidence

for adaptation to require less energy or matter may exist at the

molecular or cellular level. This theory is described as the cost

minimisation hypothesis. Testing this hypothesis requires answering

several questions about what is the meaning of cost in the cell, and how

best to measure it. For example, how does one assign a biochemical

price to a molecule whose state is dependent on changing

environmental and cellular conditions? Similarly, is it possible to

understand the energetic costs required for metabolite synthesis,

independent of other cellular functions? Knowing the answers to these

questions is central to a systematic understanding of the chemical forces

that shape the composition of biomolecules, and how biomolecular

composition relates to protein expression and evolution.

Craig and Weber [1] pioneered the quantitative analysis of cost

at the cellular level to investigate the effects on the synthesis and

evolution of a small number of Escherichia coli proteins. These

authors estimated the cost of a protein as the per-residue average

of how many units of high energy phosphate bonds (e.g. ATP) and

reducing hydrogen atoms (e.g. NADPH) are diverted from the

available energy pool to produce each of the constituent amino

acids from glucose. Akashi and Gojobori [2] used a modified

version of this approach to show in E. coli and Bacillus subtilis that

predicted gene expression levels based on codon usage bias show a

negative correlation with average protein cost. This work provided

the first genome-wide evidence that evolution has optimised

prokaryotic cells to use less expensive amino acids in highly

expressed proteins and established an important link between the

metabolism of a cell and the evolution of its genome sequence.

Heizer et al. [3] extended the findings of Akashi and Gojobori

[2] to four additional prokaryotic species and demonstrated that

metabolic cost optimisation occurs whether the source of energy is

organic or inorganic. Swire [4] used Craig and Weber’s [1] cost

values to generate a new cost measure for an amino acid based on

its usage in proteins as a function of overall protein cost computed

from all other amino acids, and showed that cost selection affects
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multiple prokaryotic, archaeal and eukaryotic genomes. Wagner

[5] developed a method similar to Craig and Weber [1] that

includes the energetic costs of synthesising both mRNA and

protein for Saccharomyces cerevisiae, and showed that the cost of

doubling gene expression after a gene duplication is likely to be

significant enough to be detected by natural selection. More

recently, Raiford et al. [6] compared Wagner’s [5] amino acid

biosynthetic costs with codon bias, transcript levels and protein

levels and observed that cost minimisation is observed across

different functional categories of genes, but that its effects are

restricted to certain amino acids.

Seligmann [7] argued that, while the number of high energy

molecules is an important part of the energetic investment of

synthesising an amino acid, this approach is unlikely to explain the

entire investment made by a cell. Instead, Seligmann [7] used the

molecular weight as a proxy for biosynthetic cost, reasoning that

this may take into account all the manifold effects of producing

larger, more complex amino acids. Molecular weight also has the

advantage of being constant across species, and therefore can be

used to test the cost selection hypothesis where the genome

sequence is available but the pathways for amino acid synthesis are

unknown. Seligmann [7] used this to prove, on an individual

protein basis, that molecular weight is minimised across a range of

bacterial and eukaryotic genomes.

Despite the widespread conservation of amino acid biosynthetic

pathways, using a fixed set of energetic requirements may not

represent the true cost of amino acid synthesis in different cellular

and environmental conditions. For example, Wagner [5] has

shown that the estimated cost of amino acid biosynthesis varies

under different modes of growth (fermentative vs. respiratory). The

cost of amino acid synthesis may also vary as a function of limiting

nutrients in the environment. Thus, developing methods to

investigate the cost of amino acid synthesis under varying

environmental conditions is essential to understanding the impact

of biosynthetic cost on cellular systems. Just as in supply and

demand economics, when a chemical resource is scarce in the cell

or environment, synthesis of biomolecules that require this

resource will be more expensive in comparison to molecules

where that resource is utilised less [8]. As an example of the effect

of supply and demand in cellular economics, Varma et al. [9]

showed in E. coli that the ‘‘shadow price’’ of using molecules

involved in energy production changes according to the

availability of oxygen. As the availability of oxygen decreases,

the cost of its use rises, while the cost of ethanol use decreases as

the energy to reduction-oxidation ratio becomes less efficient.

Likewise, Carlson [8] demonstrated a similar principle of supply

and demand by showing in silico that E. coli will likely favour the

use of cheaper, but less efficient, pathways in stress inducing

environments.

In this report, we use a systems biology approach based on flux

balance analysis (FBA), similar to methods of Varma et al. [9], to

estimate the cost of synthesising amino acids under differing

nutrient availabilities in the environment. We first estimate the

‘‘absolute’’ cost of amino acid synthesis by examining the

sensitivity of nutrient uptake in the cell to small absolute changes

in the stoichiometric requirement of each amino acid for growth in

the FBA model. We then estimate a second ‘‘relative’’ cost by

examining the sensitivity of nutrient uptake to small percentage

changes in the amino acid stoichiometric requirement. We

calculate each of these amino acid cost types for three nutrient

limiting conditions (glucose, ammonia and sulphate) to investigate

how cost varies from environment to environment. We focus our

analysis on protein coding genes, because as in previous studies

[1,3–5,7] this allows us to analyse the effects of biosynthetic cost at

the transcript and protein levels, which we extend here to the

analysis of rates of amino acid substitution across species. The

results in this work show that biosynthetic cost has a small but

measurable relationship with transcript and protein levels,

independent of codon usage bias, per codon tRNA gene number

or protein atomic content. Furthermore, we show that biosynthetic

cost is negatively correlated with rates of amino acid evolution and

conclude that selection for cost minimisation does indeed play a

role in Saccharomyces protein expression and evolution.

Results

A systems biology approach to estimating the cost of
amino acid synthesis

Our analysis uses systems biology to determine the cost of an

amino acid using a model of metabolism that takes into account

many of the requirements for S. cerevisiae cellular growth. This

analysis is based on in silico reconstructions of the reaction

networks comprising cellular metabolism in organisms such as E.

coli and S. cerevisiae. These ‘genome scale models’ are formulated as

a matrix S that describes the connectivity between the hundreds of

reactions in metabolism. Organism metabolic phenotypes can

then be simulated using these models combined with a technique

called flux balance analysis (FBA) reviewed in [10]. FBA uses the

matrix of reactions in a genome scale model to find the optimal

combination of reactions that consume available nutrients (e.g.

glucose and ammonium) to produce the metabolites (e.g. sugars,

fats, high energy molecules) required for new cellular growth (also

described as biomass production).

Our approach to estimating biosynthetic cost simulates small

changes in the demand for an amino acid in cell growth (as part of

the biomass producing reaction) then analyses the corresponding

response in the supply of three nutrients: glucose, ammonium and

sulphate. To simulate a change in amino acid demand, the in silico

requirement for each amino acid was changed by a range of small

values around the original requirement defined in the model. Each

change added a slight increase or decrease in the requirement of

the amino acid for biomass production. Amino acid requirements

were changed at the Sij position in the model stoichiometric

matrix, with position j corresponding to the reaction producing

new biomass components for growth and i corresponding to the

amino acid being examined. For each change in amino acid

requirement, FBA was used to simulate the smallest possible

uptake flux of either glucose, ammonium, or sulphate entering the

cell whilst still maintaining the fixed growth rate. The vector of

changes in amino acid requirement produced a corresponding

vector for the effect each change had on nutrient entry into the

cell. The minimisation of each nutrient entry into the cell aimed to

simulate a limiting environment for that particular nutrient (e.g.

glucose, where all other nutrients including ammonium and

sulphate are in abundance). In our approach, the biomass reaction

is fixed to a constant growth rate and then a specific uptake flux is

minimised. It is of course possible to do the reverse, i.e. fix the

uptake of a specific nutrient and then optimise the biomass flux.

The reason we adopted the fixed growth rate approach is because

this simulation framework mimics the continuous culture of a

chemostat, which is how experimental data on gene expression are

often produced. A useful side effect though is that all simulations

are performed on the same growth rate, which makes them more

easily comparable because they are on the same scale (see below).

Using this approach, two types of amino acid cost were

estimated. The first type was derived from changing each amino

acid requirement by an absolute amount around the original

value, which we refer to as ‘‘absolute’’ amino acid cost. A second

Amino Acid Cost in Yeast
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cost was calculated by changing amino acid requirement by a

relative percentage around the original value, which we refer to as

‘‘relative’’ amino acid cost. The relationship between absolute and

relative costs is formally shown in the Methods. In both cases, the

cost of the amino acid was then estimated from the slope of the

simulated effect on nutrient uptake as a function of changing the

amino acid requirement. The greater the change in nutrient

supply with change in amino acid requirement, the steeper the

slope, and therefore the more ‘‘expensive’’ the amino acid.

Absolute and relative costs were computed in three simulated

nutrient limitations, providing us with six estimates of amino acid

cost. To assist in the discussion of these costs we adopted the

convention of Rnutrient and Anutrient for either relative or absolute

costs in each simulated nutrient limitation.

One important consideration for our approach is the model

growth rate at which each cost type was estimated. A common

objective when performing FBA is to determine the maximum

possible growth rate for a genome scale model. Here we instead

aimed to simulate nutrient limitation rather than maximum

growth rate. Therefore, we fixed growth rate to a constant value

and found the FBA solution for the minimum nutrient entry in the

cell. To address the potential dependence of cost on the growth

rate constant, we estimated each amino acid cost at a range of

feasible yeast growth rates (0:1 hr{1, 0:2 hr{1 and 0:3 hr{1) [11].

We indeed found that each cost estimate was proportional to the

growth rate constant at which it was estimated, but that this

dependency could be removed by dividing the cost estimate by

the growth rate at which it was estimated. Using this rescaling,

the variation in cost estimates observed for each cost type

across growth rates was low, with the largest difference in

rescaled costs over the three model growth rates being

0:000537 mmol{1 gDW{1 for the phenylalanine Rglucose cost,

and 0.0145 for the tryptophan Aglucose cost. These results indicate

that our rescaled cost estimates are largely unaffected by model

growth rate. For the purpose of this study, we used the amino acid

costs estimated at a growth rate of 0:3hr{1.

Comparison of systems biology derived biosynthetic
costs with previous estimates

Amino acid biosynthetic costs estimated using our systems

biology method along with those reported previously in the

literature are compared in Table 1 and along the left hand side of

Figure 1. The right hand side of Figure 1 shows a dendrogram

visualising the similarity between our estimated costs with those

previously reported in the literature based on an agglomerative

hierarchical clustering of pairwise Spearman’s rank correlations

between each amino acid cost type. All cost types used in this

analysis are available in Supplementary File S1. The Spearman’s

R and p-values for the correlations between costs are available in

Supplementary File S2.

Under conditions simulating glucose limitation, our Aglucose cost

is clearly correlated with other previously reported measures of

amino acid cost. Aglucose has Spearman correlation coefficients

greater than 0.8 with Akashi and Gojobori’s energetic cost [2],

Craig and Weber’s energetic cost [1], Wagner’s respiratory

energetic cost [5], and molecular weight [7] (Supplementary File

Table 1. Measures of amino acid cost.

Aglucose Rglucose A&G Energy C&W Energy C&W Steps Wager Ferm. Wagner Resp.
Seligmann
Weight

ala 0.50 0.223 11.7 12.5 1 2 14.5 89.1

arg 1.39 0.218 27.3 18.5 10 13 20.5 174.2

asn 0.79 0.078 14.7 4 1 6 18.5 132.1

asp 0.61 0.178 12.7 1 1 3 15.5 133.1

cys 0.75 0.005 24.7 24.5 9 13 26.5 121.2

gln 0.92 0.095 16.3 9.5 2 3 10.5 146.2

glu 0.86 0.254 15.3 8.5 1 2 9.5 147.1

gly 0.31 0.087 11.7 14.5 4 1 14.5 75.1

his 1.46 0.094 38.3 33 1 5 29 155.2

ile 1.21 0.226 32.3 20 11 14 38 131.2

leu 1.21 0.348 27.3 33 7 4 37 131.2

lys 1.31 0.366 30.3 18.5 10 12 36 146.2

met 1.25 0.062 34.3 18.5 9 24 36.5 149.2

phe 1.84 0.240 52.0 63 9 10 61 165.2

pro 0.99 0.159 20.3 12.5 4 7 14.5 115.1

ser 0.49 0.089 11.7 15 3 1 14.5 105.1

thr 0.69 0.128 18.7 6 6 9 21.5 119.1

trp 2.39 0.066 74.3 78.5 12 14 75.5 204.2

tyr 1.77 0.176 50.0 56.5 9 8 59 181.2

val 0.96 0.246 23.3 25 4 4 29 117.2

Rescaled Aglucose cost is unitless and Rglucose cost is in units of mmol{1 gDW{1 . The Akashi and Gojobori [2], Craig and Weber energy [1], and the Wagner fermentative
and respiratory costs [5] are based on curation of the number of high-energy molecules used during synthesis, converted to potential high energy phosphate bonds.
The Craig and Weber ‘steps’ measure [1] is based on the number of biosynthetic steps between central metabolism and the resulting amino acid. Amino acid molecular
weight as used by Seligmann [7] is measured in Daltons. All cost estimates are available in Supplementary File S1.
doi:10.1371/journal.pone.0011935.t001
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S2). Wagner’s fermentative energy cost [5] and Craig and Weber’s

biosynthetic complexity [1] show lower correlation coefficients of

0.522 and 0.65, respectively. These results indicate Aglucose is in

good agreement with estimates based on manually-curated

measures previously described in the literature. In contrast, our

Rglucose cost shows no significant correlation with any previously

described cost measure (all p w 0:05). The highest Spearman

coefficient between Rglucose and any other literature dataset is

0.077 (p = 0.49, with Wagner’s fermentative energetic cost [5]).

This indicates that our Rglucose cost has little in common with

previous formulations of amino acid cost.

Under conditions simulating ammonium- and sulphate-limita-

tion, we find that the Asulphate and Aammonium costs are directly

proportional to the amount of either nitrogen or sulphur atoms in

the amino acid, respectively. In contrast, the Rsulphate and

Rammonium costs reflect both the composition of either sulphur or

nitrogen in the amino acid and the usage of the amino acid in the

reaction producing new biomass for cell growth. The contrast

between the absolute and relative estimates of amino acid cost

under these conditions can be illustrated by the costs for cysteine

and methionine. These two amino acids both contain a single

sulphur atom and therefore the Asulphate cost of each is the same:

one. The Rsulphate cost of methionine however is much greater

than that of cysteine as the proportional use of methionine in the

biomass reaction is greater. One observation of potential interest is

that the Rglucose and Rammonia costs are correlated (Spearman

R ~ 0:63, p ~ 0:003). We speculate that this correlation may

reflect an intrinsic adaptation in amino acid biosynthetic

pathways, as any mutations to minimise biosynthetic cost under

glucose limitation would also minimise the cost of amino acid

synthesis in an ammonium-limited environment.

Comparison of costs in E. coli and S. cerevisiae
Given the relative ease with which amino acid costs can be

calculated using our systems biology method, we estimated Rglucose

and Aglucose costs for E. coli using the iJR904 model [12]

(Supplementary File S3). The aim of this was to demonstrate the

generality of our approach and to explore the similarity of amino

acid biosynthetic cost estimates across species and FBA models.

Our analysis showed the Aglucose costs are highly correlated

between species (Spearman R ~ 0:94, p v ~10{15), as are

Rglucose costs (Spearman R ~ 0:74, p v 0:001). The higher

correlation of Aglucose costs is expected given the conservation of

core metabolic pathways across species [13], whereas the greater

variation in Rglucose costs may arise from species specific variation

in amino acid usage. Overall this demonstrates the general

applicability of our method to any species with a genome-scale

metabolic model.

The cost of amino acid synthesis on the yeast
transcriptome and proteome

Gene expression at the transcript level. If biosynthetic

cost is a selective force acting on cells, we expect to observe a

negative correlation between the biosynthetic cost of the encoded

Figure 1. Comparison of amino acid biosynthetic cost estimates. Amino acid biosynthetic cost estimates are compared in the barcharts on
the left hand side. Similarities among different cost types are visualised as a tree on the right hand side. The closer two cost types are in the tree the
more similar the cost estimates. Each barchart axis shows the minimum and maximum value of each cost type, rounded to three significant figures.
We note that absolute costs computed using our systems biology approach are unitless (see Materials and Methods for details). The cost comparison
dendrogram was generated using complete agglomerative clustering of Spearman’s Rank correlations between each cost type (see File S2).
doi:10.1371/journal.pone.0011935.g001
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protein and gene expression levels [2,6]. Therefore, we

investigated the capacity of Aglucose and Rglucose cost (as well as

each previously reported cost measure) to explain gene expression

at the transcript level in the S. cerevisiae dataset of Castrillo et al. [11]

using multivariate regression. The expression of each transcript

was modelled as a function of the mean energetic cost per residue

of the protein, the codon usage bias of the coding sequence

measured by the codon adaptation index (CAI), mean number of

tRNAs per residue, and the mean atomic composition per residue

of the protein. Since codon usage and tRNA number are known to

correlate with each other [14], and codon usage is known to

correlate with both gene expression [14,15] and cost [2], their joint

inclusion in our model allows us to demonstrate an independent

effect of cost that controls for these factors. For this analysis, we

only investigated the explanatory power of our cost measures

estimated under glucose limiting conditions, as this is the

environment thought to be most relevant to yeast biology

[11,16,17]. Table 2 shows the explanatory power for the full

multivariate regression for each cost type in predicting transcript

levels. All regression models explain *40% of the variation in

transcript levels across genes, with the difference in variation

explained by the best and worst being only 4.5%.

Using Akaike’s Information Criterion (AIC) [18] the importance

of the variables in the regression equation was measured by

removing each in turn, then comparing the goodness-of-fit of the

reduced model with the full model containing all terms. Figure 2A

compares the importance of each variable in explaining transcript

levels with other variables in the same regression model for each

cost type. Compared to other characteristics of the encoded

protein, the codon bias of the transcript is at least half an order of

magnitude more important than the nearest explanatory variable,

regardless of which cost type is used. This result supports the well-

established fact that codon bias correlates with gene expression

levels in growing yeast cells [14,15,19,20]. The dominant influence

of codon bias over other factors also explains why the use of

different cost types in the multivariate regression model does not

substantially effect the predictive power. A general trend across all

the regression analyses is that the most important variable after

codon bias is either biosynthetic cost, carbon content or nitrogen

content. The importance of tRNA number on transcript levels

appears relatively constant regardless of which cost is used. Finally

sulphur content appears the least predictive measure of transcript

levels.

Gene expression at the protein level. The importance of

biosynthetic cost in explaining gene expression at the protein level

was also assessed using multivariate regression followed by variable

removal using the same strategy as for transcript levels above. To

analyse the effect of cost on protein levels, we used data from

Ghaemmaghami et al. [21], since protein levels from Castrillo et al.

[11] were measured relative to a background (see Methods for

details). Table 2 illustrates the explanatory power of each

regression model to predict protein levels. As with the transcript

data, each regression model explains *40% of the variation in

protein levels, and the difference in variance explained between

the best and worst model is very small (*0:8%), relative to the

overall variance explained.

Figure 2B shows the relative importance of each factor in the

multivariate regression model for protein expression levels. This

analysis reveals similar trends to that for transcript levels where

codon bias is the most important factor by an order of magnitude.

This result is not surprising given that Ghaemmaghami et al. [21]

previously showed a Spearman’s rank correlation of R ~ 0:57 for

the relationship between CAI and protein abundance. The best

regression fit uses Aglucose, in which biosynthetic cost, carbon

content and nitrogen content all have a similar importance in

explaining variation in protein levels. Protein levels exhibit similar

trends to transcript levels where generally (i.e. across all regression

models) biosynthetic cost, carbon content and nitrogen content all

play a similar importance in explaining variation in gene

expression levels, and sulphur content is the least important.

However the importance of tRNA number and sulphur content

are more variable in explaining protein expression levels and in

some instances their removal improves model parsimony, as

indicated by a reduced AIC.

Biosynthetic cost trends in protein sequence relative
substitution rates

In addition to investigating the potential effects of amino acid

biosynthetic cost on transcript and protein levels, we considered

whether cost minimisation may also affect rates of amino acid

substitution across yeast species. Specifically, we sought to test if

rates of amino acid substitution at a particular site in a protein

showed a negative correlation with amino acid cost, which might

be expected under the cost selection hypothesis if costly amino

acids used at structurally or functionally important sites are

conserved in evolution.

The rate of amino acid substitution per site was estimated at

each position in alignments of protein sequence from four

Saccharomyces species for 3334 genes. Substitution rates at each

site were divided by the estimated tree length across the entire

Table 2. Adjusted R2 coefficients for multiple regression models.

Cost type Transcripts Castrillo et al. 2007 Proteins Ghaemmaghami et al. 2003

S. cerevisiae Aglucose 0.389 0.406

S. cerevisiae Rglucose 0.383 0.408

Akashi & Gojobori (2002) 0.398 0.405

Craig & Weber (1998) Energy 0.416 0.40

Craig & Weber (1998) Steps 0.375 0.404

Wagner (2005) Respiratory 0.382 0.405

Wagner (2005) Fermentative 0.377 0.406

Molecular Weight 0.422 0.405

The R2 describes the fit of each regression with CAI, tRNA gene number, atomic content, and biosynthetic cost explain variation in experimental data. Each row
represents the specific cost estimate used in that regression.
doi:10.1371/journal.pone.0011935.t002
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Figure 2. Comparison of factors explaining observed transcript and protein levels in S. cerevisiae. Each point is the contribution of the
variable to explaining either protein or transcript levels. Points to the right have a greater contribution and vice versa for points to the left. Multiple
points are shown for each variable in the figure, one for each cost type used in separate regression models fitted to explain transcript and protein
levels using the following explanatory variables: average per residue protein carbon, nitrogen, sulphur content, average per residue protein
biosynthetic cost, average per codon tRNA gene number and transcript CAI. The contribution of each variable to explaining transcript and protein
data was then estimated by removing the variable from the regression and then estimating the size of the effect on explanatory power measured
using Akaike’s Information Criterion (AIC).
doi:10.1371/journal.pone.0011935.g002
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gene to control for the mean substitution rate of the encoding

gene. This rescaling was performed to control for factors that

affect the rate of protein evolution that act at the level of the gene

(e.g. expression level). The single gene alignment with an estimated

tree length of 0 was removed from the analysis. This resulted in

1.66 million substitution rate estimates, one at each individual

alignment column. In addition to the alignment column

substitution rate, the ancestral amino acid at each site was also

predicted. The mean substitution rate was calculated for each

amino acid across all sites where it was inferred in the ancestral

protein and then compared with the S. cerevisiae biosynthetic cost

for that amino acid.

Table 3 shows the correlation of mean substitution rate with

biosynthetic cost for all amino acid cost types. Figure 3 illustrates

the relationship between mean substitution rate and cost for each

amino acid for three different measures of biosynthetic cost that

had a low pairwise Spearman rank correlation (see Table 2):

molecular weight, Rglucose, and Aglucose. As predicted under the

cost selection hypothesis, mean substitution rate is negatively

correlated with some amino acid cost measures, including

molecular weight, Akashi and Gojobori’s energetic cost [2] and

Aglucose biosynthetic cost. However, the Rglucose cost shows no

correlation with mean substitution rate. Overall, Aglucose provides

the best cost estimate to explain variation in substitution rates.

These results suggest that cost minimisation may exert a selective

pressure on rates of protein sequence evolution in Saccharomyces

species and that amino acid cost derived using our systems biology

approach is one of the best variables for explaining this trend. We

hypothesise that this trend is due to expensive amino acids being

conserved at certain sites due to selective constraints on structure

of function, while the choice of amino acids in divergent sites is

more affected by cost selection (see Discussion).

Discussion

The principal outcomes of this work are twofold. First, we

developed a novel method to estimate the cost of amino acid

synthesis using a systems biology approach. Using FBA in the S.

cerevisiae genome scale model we examined the sensitivity of different

nutrient uptakes to changes in amino acid requirement. We

compared our novel estimates of amino acid cost to six previously

reported measures and showed that the absolute cost of amino acid

biosynthesis under glucose limiting conditions (Aglucose) is highly

correlated with previous cost measures, while relative cost under the

same simulated environmental conditions (Rglucose) is not. We

further showed that our systems biology approach can be applied to

calculate environment-specific biosynthetic costs, which highlighted

the effects of limiting factors in amino acid biosynthesis.

Secondly we investigated the predictive power of our biosynthetic

cost measures in explaining variation in S. cerevisiae transcript and

proteins levels, and explaining rates of amino acid substitution

across four Saccharomyces species. Our analysis shows that biosyn-

thetic cost does show an association with transcript and protein

levels, but explains only a minor component compared with factors

like codon usage bias that are related to translational optimisation.

In contrast, we find that some amino acid cost measures are

correlated with substitution rates in protein coding sequences.

No single currency for amino acid biosynthetic cost
Our systematic comparison of biosynthetic costs described

previously in the literature (Tables 1 and 2) shows that most cost

measures are highly correlated with one another. Among

previously reported measures, molecular weight is the least

related (Figure 1), which is expected since the other cost estimates

are based on manual curation of metabolic networks. This

finding supports the view of Seligmann [7] that the molecular

weight of an amino acid may account for biosynthetic

investments not easily estimated from the metabolic network

alone. Of the two costs estimated using FBA in glucose limiting

conditions, our Aglucose cost measure correlates with those

previously described in the literature, confirming previous cost

measures and validating our systems approach to estimating

biosynthetic cost. One interesting point to note is that our Aglucose

cost measure, like all previously reported cost measures (with the

exception of Wagner’s fermentative measure [5]), predicts

tryptophan as being the most expensive amino acid to produce

(Table 1). Tryptophan may be expensive because of its complex

double ring structure and the number of high energy molecules

required for its synthesis.

The Rglucose cost measure shows little relationship with any

previously described cost metric under the same condition, and

may provide a novel perspective on how to measure the cost of

amino acid biosynthesis. The Rglucose cost shows leucine and

lysine to be the most expensive amino acids, whereas tryptophan

is estimated as one of the cheapest in contrast to other previously

reported cost measures (see above). Because our Rglucose cost

measure incorporates the amino acid requirement in the biomass

reaction, this cost measure reflects the effect on nutrient uptake

of a small relative increase or decrease as well as the usage of this

amino acid in the cell. Therefore although a tryptophan

molecule may be expensive to produce individually, its low

relative usage makes it cheaper to maintain overall at the cellular

level.

While it is clear that no single measure may fully capture all

aspects of amino acid biosynthesis cost, we believe our systems

biology approach has a number of advantages over previous

methods. Given a genome-scale model, our computationally

generated cost measures require no manual curation and allow

cost calculations that are more explicitly replicable than other

methods. Moreover, use of a computational model allows costs to

be calculated under a different combinations of nutrient

availability, permitting a more flexible approach to exploring

costs under different cellular and environmental conditions. We

also believe our approach takes into account a broader

representation of cellular state, including all simulated reactions

and metabolites, not just those in amino acid metabolism.

Furthermore, as more information is included in genome scale

models, the in silico predictions of amino acid cost may come to

more closely represent their true costs in vivo. In particular the

inclusion of thermodynamic constraints in the S. cerevisiae model, as

has been done in E. coli [22], would be of particular relevance to

explore in future work.

One drawback to our approach is that a species-specific

stoichiometric model must be available to perform the analysis.

This limitation may be important for relative costs, since they are

more variable across species (Supplementary File S3), presumably

because of their dependency on species specific amino acid usage

in the biomass reaction, but less so for absolute cost estimates since

they are highly correlated between divergent species such as S.

cerevisiae and E. coli. A second point to consider is that the FBA

estimated cost of an amino acid may be dependent on the

objective function used in the model, For example, we assume that

the S. cerevisiae growth strategy is to maximise biomass, or consider

other strategies such as maximising ATP yield. Work by Schuetz et

al. [23] suggests that the biological relevance of the FBA objective

function is dependent on the environment considered, and

research on this topic may present another avenue for further

study.

Amino Acid Cost in Yeast

PLoS ONE | www.plosone.org 7 August 2010 | Volume 5 | Issue 8 | e11935



A final consideration when using genome scale models is the

method used to determine a flux solution. In this analysis we used

FBA to find the flux distribution that minimised nutrient uptake.

Other approaches however identify the solution that minimises the

amount of metabolic adjustment from another flux solution [24] or

minimising the number of on/off reactions between two solutions

[25]. An exhaustive analysis of amino acid cost estimation using

different optimisation methods may find differences in the costs

estimated using a systems biology approach. Our analysis makes

very small perturbations to biomass requirements and we

anticipate that different model optimisation methods will have a

much smaller effect on the model solutions compared with other

applications such as complete in silico gene knockouts [26,27].

Translational optimisation over biosynthetic cost
minimisation

In our analysis of the impact of cost on gene expression,

multivariate regression models explained approximately 40% of

variation in transcript and protein levels (Table 2). Of this variance

in protein and transcript levels, the majority is explained by

optimisation of the coding sequence for translation through codon

usage bias rather than cost minimisation. This conclusion that

biosynthetic cost may only be a weak selective force on S. cerevisiae

gene expression is similar to recent results by Raiford et al. [6].

However, by examining cost minimisation in combination with

features of translational optimisation such as codon bias, our

analysis extends the work of Raiford et al. [6] to demonstrate that

amino acid cost does appear to contribute a small effect on gene

expression, independent of codon usage bias (Table 2, Figure 2).

Our work also shows that the choice of cost type had only a small

effect on the variation explained by the regression models, which

may be expected given that the majority of the cost estimates are

correlated.

Costly amino acids evolve more slowly
Although biosynthetic cost may play only a minor role in terms

of gene expression, we found a strong negative correlation between

certain cost measures and rates of protein sequences evolution in

yeast, in particular for molecular weight, Akashi and Gojobori’s

energetic [2] or Aglucose costs (Table 3, Figure 3). Our results su-

ggest that expensive amino acids have a lower substitution rate and

are more likely to be conserved while cheaper ancestral amino

acids are more likely to be substituted even when controlling for

the substitution rate of the encoding gene. These results support

previous work in bacteria by Rocha and Danchin [28], who found

that biosynthetic cost plays a small role in predicting substitution

rates in E. coli and B. subtilis proteins, and by Hurst et al. [29], who

found a negative relationship between the average cost per

replacement and amino acid divergence. A possible hypothesis

based on these trends is that expensive amino acids are only used

for specific structural or functional roles and are therefore

conserved, while cheaper amino acids may be under weaker

structural or functional constraints and more likely to be

substituted. In contrast to analysis of gene expression in the

previous section, the trends observed between cost and substitution

rate are more dependent on which cost type is used. Our results

suggest that Aglucose cost was one of the better measures for

explaining variation in substitution rates (Table 3). Thus, a more

detailed and wide ranging systems biology investigation of different

environments may further help understand which type of amino

acid cost and nutrient availability explain patterns of protein

sequence evolution.

We are aware that the work presented here does not confirm

cost selection as a causal factor in explaining the correlation

between cost and rate of amino acid evolution, nor does it discount

the possibility that biosynthetic cost may be correlated with other

biochemical properties of amino acids that are thought to

influence the pattern of protein sequence evolution [30]. A further

point to consider is the method used to estimate the amino acid

substitution rates. We used the codeml software [31] to provide a

maximum likelihood estimate of amino acid substitution rate for

each site. This method requires an a priori expectation of the

relative rates of amino acid substitution in the form of a

substitution matrix. Here we used the Whelan and Goldman

(WAG) matrix [32], which was empirically estimated from

observed amino acid substitution events in a curated set of

homologs. Since differences in biochemical properties among

amino acids are reflected in the relative rate of substitution among

amino acids, it is possible that the correlations between cost and

substitution rate we observe may be an artifact of the selective

pressures that influence the substitution rates described in the

WAG matrix as opposed to the direct effect of cost minimisation

itself. We therefore attempted to control for this possibility by re-

estimating amino acid substitution rates using a null rate matrix

where rates of change between all amino acids were identical.

Using substitution rates estimated from this null rate matrix, we

observed the same trends between cost and substitution rate for

molecular weight (Spearman R ~ {0:45, p ~ 0:048), Aglucose

(Spearman R ~ {0:53, p ~ 0:016) and Rglucose (Spearman

R ~ 0:26, p ~ 0:28). These results indicate that the correlation

for either molecular weight or Aglucose with amino acid substitution

rates is not likely to be a spurious effect of other factors encoded by

mutation bias or selection in the substitution matrix.

Thus we conclude that biosynthetic cost may play a role in yeast

protein sequence evolution that should be considered alongside

other factors that have been demonstrated to correlate with rates

of amino acid substitution [33]. If cost minimisation does however

prove to be a selective force on protein sequence evolution and

amino acid biosynthetic costs vary considerably among groups or

organisms we hypothesise that rates of protein sequence evolution

may not follow universal trends across taxa. Moreover, it is clear

that rates of amino acid substitution can provide a powerful filter

for determining which measures of amino acid biosynthetic cost

might be most biologically relevant for other analyses, such as

effects on gene expression (see above). On these grounds, we may

tentatively conclude that the Aglucose cost captures the in vivo cost of

amino acid biosynthesis more accurately than other measures, and

Table 3. Correlation between amino acid substitution rate
and biosynthetic cost.

Cost type R p

S. cerevisiae Aglucose 20.54 0.015

S. cerevisiae Rglucose 20.25 0.28

Akashi & Gojobori (2002) 20.47 0.034

Craig & Weber (1998) Energy 20.28 0.23

Craig & Weber (1998) Steps 20.19 0.43

Wagner (2005) Fermentative 20.32 0.17

Wagner (2005) Respiratory 20.4 0.077

Molecular Weight 20.46 0.04

Each row represents the Spearman’s Rank correlation between cost type and
the mean substitution rate normalised by the estimated tree length of the
encoding gene alignment for each of the twenty amino acids.
doi:10.1371/journal.pone.0011935.t003
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that our Rglucose cost measure may provide the least biologically

relevant representation of amino acid cost.

Conclusions
We have developed a novel systems-biology approach to

estimating the cost of amino acid biosynthesis and conducted a

systematic investigation of how amino acid biosynthetic cost has

shaped gene expression and protein evolution in yeast. Our

analysis indicates that amino acid biosynthetic cost plays a limited

role in transcript and protein production relative to what might be

expected, given that a predicted 80% [5] of the cellular ATP

budget is devoted to protein synthesis. Our results do reveal a

negative correlation with amino acid biosynthetic cost and rates of

amino acid substitution in Saccharomyces species, which may

highlight an important selective force governing molecular

evolution in yeast.

Materials and Methods

Simulating a genome scale model of metabolism
Each S. cerevisiae and E. coli genome scale model is a matrix

detailing the stoichiometry of a set of metabolic reactions

representing the ratios of metabolites consumed and produced

by each reaction. A species genome scale model matrix S is size

m|n where m is the total number of metabolites and n is the total

number of reactions. The position Sij in the matrix represents the

coefficient of metabolite i in reaction j. A positive coefficient

indicates the metabolite is produced, while a negative value

indicates the metabolite is consumed. A value of 0 means the

metabolite does not participate in the reaction.

Flux balance analysis of a genome scale model aims to solve the

equation S.v~0 using linear programming, where v is a vector of

predicted flux distributions (i.e. reaction rates) and is equal in

length to the number of reactions in the model. Multiple solutions

may exist for v and a biologically meaningful reaction is usually

optimised such as production of biomass or ATP. Additional

constraints may be placed on the model solution, for example that

a certain reaction flux may not be negative which then forces the

reaction to only proceed in the forward direction. Constraints on

the reactions that transport nutrients in and out of the model can

be used the simulate different combinations of nutrient availability.

A systems biology approach to estimating the cost of
amino acid synthesis

Flux balance analysis was performed using the COBRA toolbox

[34] and the lpsolve library [35], running in the MATLAB

environment. The genome scale models used were iND750 for S.

cerevisiae [26] and iJR904 for E. coli [12]. Reaction fluxes are

measured in mmol of metabolite, per gram dry weight of biomass,

per hour (mmol{1 gDW{1 hr{1). Metabolite concentrations are

measured in mmol of nutrient per gram of dry weight biomass

(mmol{1 gDW{1). The rate of the biomass production reaction,

synonymous with cellular growth, is measured per hour (hr{1).

For each of the twenty amino acids in the model biomass

reaction we increased or decreased the stoichiometric requirement

of the amino acid at position Sij where i is the amino acid and j is

the biomass reaction. The change in amino acid requirement

ranged from +0:00002 mmol{1 gDW{1 for absolute estimations

of amino acid cost and +0:0002% for the relative estimates of

cost.

For each change in amino acid requirement, biomass

production flux was fixed and the model solved to minimise the

flux entering the cell for one of three nutrients: glucose, ammonia,

sulphate. The other nutrient entry reactions in the model (water

and oxygen) were not considered as objective functions. Each

nutrient transport reaction was set to have a lower boundary of

{10,000 mmol{1 gDW{1 hr{1 to effectively make the allow-

able entry of the nutrient into the cell limitless. When estimating a

cost for a given nutrient it is important to note there were no other

equivalent nutrient sources entering the cell. For example, glucose

transport was the only source of high energy sugar and ammonia

was the only source of nitrogen.

Using data points produced from the above series of FBA

simulations, the absolute cost for each amino acid was derived as

the slope between the absolute change in amino acid requirement

and the corresponding effect on nutrient uptake flux. Likewise, the

relative cost was estimated from the percentage change in amino

acid requirement and the effect on nutrient uptake flux. As noted

above, the amino acid requirement for growth is defined as

millimoles per gram of dry weight biomass (mmol{1 gDW{1) and

the supply of nutrients into the cell is defined as the per hour entry

of each molecule (mmol{1 gDW{1 hr{1). Thus, the units of

absolute cost are per hour change (hr{1) and the units of relative

cost are mmol{1 gDW{1 hr{1.

All costs were estimated at a range of growth rate fluxes:

0:1 hr{1, 0:2 hr{1 and 0:3 hr{1. After estimation each cost was

rescaled by dividing by the growth rate at which it was estimated.

Dividing each cost by the growth rate changed the units of

our cost measures, resulting in the relative costs becoming

mmol{1 gDW{1 and the absolute costs becoming unitless. The

MATLAB code used for the estimation of amino acid cost is

available in Supplementary File S7. The R code used to compare

the different amino acid cost types in Figure 1 is available in

Supplementary File S8.

Relationship between absolute and relative cost
estimates

The absolute cost estimates can be defined mathematically as

the differential between changes in amino acid requirement (x) and

the corresponding effect on nutrient uptake (U). Shown in the

following equation:

Au~
dU

dx

~U ’(x)

The relative estimate of amino acid cost can be defined as the

differential of a percentage change in amino acid requirement (r)

and the corresponding effect on nutrient uptake (U). Shown in the

Figure 3. Comparison of amino acid substitution rate with biosynthetic cost. Each point is the mean substitution rate for one of the twenty
standard amino acids. Substitution rates were estimated from alignments of Saccharomyces genes by Wall et al. [36]. Each amino acid substitution
rate was normalised by tree length and then averaged across all alignment columns corresponding to the amino acid at that site in the ancestral
protein sequence. Alignment columns containing gaps were excluded. The standard error of the mean for each amino acid substitution rate is shown
as a bar in each point. Robust linear regression and 95% confidence intervals are used to indicated trend. Each plot indicates the Spearman’s rank
correlation between amino acid substitution rate and biosynthetic cost.
doi:10.1371/journal.pone.0011935.g003

Amino Acid Cost in Yeast

PLoS ONE | www.plosone.org 10 August 2010 | Volume 5 | Issue 8 | e11935



following equation:

Ru~
d

dr
U x 1zrð Þð ÞDr~ 0

~xU ’(x)

These two equations illustrate that an absolute estimate of

amino acid cost can be scaled to a relative cost through

multiplication by x representing the stoichiometry of the given

amino acid in the biomass reaction. This reverse is true where a

relative cost can be scaled to an absolute cost by division. In

addition to showing this theoretically we also demonstrated these

results empirically (results not shown).

Determination of transcript and protein characteristics
The Codon Adaptation Index (CAI) for each S. cerevisiae gene

was taken from Wall et al. 2005 [36], and the number of genomic

tRNA copies for each amino acid was taken from Akashi [15]. The

total number of tRNAs were summed over the length of the

protein, and then divided by the length of the protein to give a

mean number of tRNAs per residue for each gene. Previously

reported amino acid biosynthetic costs were obtained from Craig

and Weber [1], Akashi and Gojobori [2], Wagner [5] and

Seligmann [7]. For each gene, the average tRNA gene number,

biosynthetic cost, or atomic content was computed as the sum of

the count or cost over the encoded protein divided by the length

excluding stop codons. Prior to regression, each of these variables

was transformed by the natural logarithm then scaled to have the

same mean and variance. Scaling was performed by subtracting

the mean then dividing by the root mean square for each variable.

The aim of this was to reduce any over-variation and

heteroscedasticity biasing fit estimation.

Modelling the effects of biosynthetic cost on gene
expression

Multiple regression was used to measure the importance of

biosynthetic cost on transcript and protein expression using the R

statistical computing language [37]. The measured quantities of

either transcript or protein levels were treated as the response

variable and biosynthetic cost, CAI and atomic content were used

as explanatory variables. Atomic content consisted of three

independent variables: carbon, nitrogen and sulphur content.

Experimental conditions that differed among replicates were

treated as fixed effects in the regression, and included as

interaction terms. Initially, all possible interaction terms were

considered and automated step-wise regression used to remove

superfluous interaction terms based on a penalised log-likelihood

score – Akaike’s Information Criterion (AIC) [18].

To estimate the importance of each of the equation parameters,

the data was regressed without the variable in question, and then

compared to the regression containing all terms, again using AIC.

For example, to estimate the importance of nitrogen in the

Castrillo et al. 2007 [11] transcript data, the regression was first

fitted using all factors - environment, dilution rate, CAI, tRNA

gene number, biosynthetic cost, nitrogen, carbon and sulphur

content. The importance of nitrogen was then determined by

repeating the regression fitting with the same variables except

nitrogen content. The contribution of nitrogen content to explain

the variation was then estimated from the difference in the

regression without nitrogen compared with the regression

containing all terms. This process was performed for all factors

in the equation, and then repeated for all biosynthetic cost

estimates as the cost variable in the equation. The R code used to

plot the the regression results in Figure 2 is available in

Supplementary File S8.

Gene expression data
The experimental transcriptomic data used in this analysis are

from Castrillo et al. 2007 [11] and the proteomic dataset was

produced by Ghaemmaghami et al. 2003 [21]. Briefly, the Castrillo

et al. 2007 [11] experiments continuously cultured S. cerevisiae using

a chemostat under four nutrient limiting conditions and three

dilution rates, for a total of twelve different experimental

conditions. Transcript levels were estimated from replicate

microarray analysis of total RNA which was then processed by

robust multi-array (RMA) quantile normalisation [38]. The

tabulated transcript data used in this analysis are available in

Supplementary File S4.

Protein data produced by Castrillo et al. [11] measured up/

down regulation of a protein against a background, which is not

suitable as a measure of absolute protein expression levels.

Therefore, we used data from Ghaemmaghami et al. 2003 [21]

for our analyses of cost in protein production. The protein data

was produced from tandem affinity purification (TAP) of TAP-

tagged S. cerevisiae ORFs. Expression levels for each protein were

determined using antibody-tag based quantification. These data

were converted to absolute protein molecules per cell using a

purified E. coli INFA-TAP construct standardised against the

range of yeast TAP tag protein observations. The tabulated

protein data used in this analysis are available in Supplementary

File S5.

For the model analysis, protein levels were transformed by the

natural logarithm then scaled. Transcript levels were scaled, but

not log transformed as this was done in the original processing.

Estimation of amino acid substitution rates
Codon-based nucleotide alignments of coding regions from

orthologs of S. cerevisiae, S. mikatae, S. bayanus, and S. paradoxus genes

were taken from Wall et al. [36]. Alignments containing less than

four species or where the S. cerevisiae sequence did not match the

SGD reference sequence [39] were ignored.

The relative substitution rate and ancestral state of each

alignment column was estimated using codeml [31] with the

Whelan and Goldman (WAG) amino acid substitution rate matrix

[32]. The codeml parameters used were as follows: fix_kappa, 0;

seqtype, 3; aaDist, 0; Malpha, 0; kappa, 2; cleandata, 0; ncatG, 8;

model, 3; method, 0; fix_omega, 0; getSE, 0; RateAncestor, 1;

omega, 0.4; NSsites, 0; verbose, 1; fix_blength, 21; icode, 0;

fix_alpha, 0; CodonFreq, 2; alpha, 0.5; Mgene, 0; clock, 0. The

Newick representation of species tree used was: ((S. cerevisiae, S.

paradoxus) S. mikatae, S. bayanus).

The substitution rate for each alignment column was divided by

the codeml estimated alignment tree length to control for the

mutation rate of the encoding gene. The single gene alignment

with an estimated tree length of 0 was removed from the data. The

ancestral amino acid at each alignment column was inferred and

the substitution rate of all alignment columns was averaged over

all sites where the same ancestral amino acid was observed. Sites

that contained a gap in the any of the descendant sequences were

ignored. The tabulated substitution rate data used in this analysis

are available as Supplementary File S6. The R code used to plot

substitution rate versus biosynthetic cost in Figure 3 is available as

Supplementary File S8.
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Supporting Information

File S1 Amino acid costs. Amino acid cost estimates used in the

analysis.

Found at: doi:10.1371/journal.pone.0011935.s001 (0.00 MB ZIP)

File S2 Amino acid cost correlations. Spearman’s rank correla-

tions between cost estimates. The first 18 rows are R values, and

the latter 18 rows are p values.

Found at: doi:10.1371/journal.pone.0011935.s002 (0.00 MB ZIP)

File S3 Comparison of the genome scale model derived cost data

sets. Comparison of FBA estimated amino acid cost with Akashi

and Gojobori cost (left), and molecular weight (right). Both S.

cerevisiae and E. coli measures are included to illustrate correlation

of cost estimates between species. Estimated cost values have been

rescaled around their mean value to allow comparisons across

species. Trend lines are indicated using ‘‘loess’’ smoothing.

Found at: doi:10.1371/journal.pone.0011935.s003 (0.02 MB EPS)

File S4 Tabulated transcript data set. The transcript data from

Castrillo et al. 2007 tabulated with cost, atomic composition, tRNA

gene number and CAI.

Found at: doi:10.1371/journal.pone.0011935.s004 (5.68 MB ZIP)

File S5 Tabulated protein data set. The protein data from

Ghaemmaghami et al. 2003 tabulated with cost, atomic compo-

sition, tRNA gene number and CAI.

Found at: doi:10.1371/journal.pone.0011935.s005 (0.68 MB ZIP)

File S6 Tabulated amino acid substitution rate data. Substitu-

tion rate estimates at each position in 3334 of the Saccharomyces

species alignments produced by Wall et al.

Found at: doi:10.1371/journal.pone.0011935.s006 (4.20 MB ZIP)

File S7 MATLAB code to estimate amino acid cost. The

MATLAB and COBRA code used to estimate amino acid cost.

Found at: doi:10.1371/journal.pone.0011935.s007 (0.01 MB ZIP)

File S8 The R code used to generate the figures presented in this

work.

Found at: doi:10.1371/journal.pone.0011935.s008 (7.94 MB ZIP)
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26. Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and validation of

Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale meta-

bolic model. Genome Research 14: 1298–1309.

27. Famili I, Förster J, Nielsen J, Palsson BØ (2003) Saccharomyces cerevisiae phenotypes

can be predicted by using constraint-based analysis of a genome-scale

reconstructed metabolic network. Proceedings of the National Academy of

Sciences 100: 13134–13139.

28. Rocha EP, Danchin A (2004) An analysis of determinants of amino acids

substitution rates in bacterial proteins. Molecular Biology and Evolution 21:

108–116.

29. Hurst LD, Feil EJ, Rocha EPC (2006) Protein evolution: Causes of trends in

amino-acid gain and loss. Nature 442: E11–E12.

Amino Acid Cost in Yeast

PLoS ONE | www.plosone.org 12 August 2010 | Volume 5 | Issue 8 | e11935



30. Grantham R (1974) Amino acid difference formula to help explain protein

evolution. Science 185: 862–864.
31. Yang Z (2007) Paml 4: Phylogenetic analysis by maximum likelihood. Molecular

Biology and Evolution 24: 1586–1591.

32. Whelan S, Goldman N (2001) A general empirical model of protein evolution
derived from multiple protein families using a maximum-likelihood approach.

Molecular Biology and Evolution 18: 691–699.
33. Pal C, Papp B, Lercher MJ (2006) An integrated view of protein evolution.

Nature Reviews Genetics 7: 337–348.

34. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, et al. (2007)
Quantitative prediction of cellular metabolism with constraint-based models: the

COBRA toolbox. Nature Protocols 2: 727–738.
35. Berkelaar M, Eikland K, Notebaert P () lp_solve : Open source (Mixed-Integer)

Linear Programming system. Available: http://sourceforge.net/projects/
lpsolve/.

36. Wall DP, Hirsh AE, Fraser HB, Kumm J, Giaever G, et al. (2005) Functional

genomic analysis of the rates of protein evolution. Proceedings of the National

Academy of Sciences 102: 5483–5488.

37. R Development Core Team (2008) R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

38. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of

normalization methods for high density oligonucleotide array data based on

variance and bias. Bioinformatics 19: 185–193.

39. Hong EL, Balakrishnan R, Dong Q, Christie KR, Park J, et al. (2008) Gene

ontology annotations at SGD: new data sources and annotation methods.

Nucleic Acids Research 36: D577–D581.

40. Manchester Centre For Integrative Systems Biology. Available: http://www.

mcisb.org/.

Amino Acid Cost in Yeast

PLoS ONE | www.plosone.org 13 August 2010 | Volume 5 | Issue 8 | e11935



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


