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Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous malignancy. Single-
cell sequencing (scRNA-seq) technology enables quantitative gene expression
measurements that underlie the phenotypic diversity of cells within a tumor. By
integrating PDAC scRNA-seq and bulk sequencing data, we aim to extract relevant
biological insights into the ductal cell features that lead to different prognoses. Firstly,
differentially expressed genes (DEGs) of ductal cells between normal and tumor tissues
were identified through scRNA-seq data analysis. The effect of DEGs on PDAC survival
was then assessed in the bulk sequencing data. Based on these DEGs (LY6D, EPS8,
DDIT4, TNFSF10, RBP4, NPY1R, MYADM, SLC12A2, SPCS3, NBPF15) affecting PDAC
survival, a risk score model was developed to classify patients into high-risk and low-risk
groups. The results showed that the overall survival was significantly longer in the low-risk
group (p < 0.05). The model also revealed reliable predictive power in different subgroups
of patients. The high-risk group had a higher tumor mutational burden (TMB) (p < 0.05),
with significantly higher mutation frequencies in KRAS and ADAMTS12 (p < 0.05).
Meanwhile, the high-risk group had a higher tumor stemness score (p < 0.05).
However, there was no significant difference in the immune cell infiltration scores
between the two groups. Lastly, drug candidates targeting risk model genes were
identified, and seven compounds might act against PDAC through different
mechanisms. In conclusion, we have developed a validated survival assessment
model, which acted as an independent risk factor for PDAC.
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INTRODUCTION

Pancreatic cancer is a highly aggressive malignant tumor of the
digestive system, 95% of which are pancreatic ductal
adenocarcinoma (PDAC). In recent years, its incidence and
mortality have increased by an average of 0.3% per year with
lifestyle changes and factors such as increased life expectancy and
an aging population (Santucci et al., 2020). Early diagnosis of
pancreatic cancer is challenging due to the lack of specific
symptoms and biological markers. Surgery remains the only
possible cure for pancreatic cancer, but approximately 80–85%
of patients present with either unresectable or metastatic disease
at the time of diagnosis (Mizrahi et al., 2020). Molecular events in
tumors usually precede the presentation of clinical features. Thus,
effective molecular markers can more accurately predict patient
prognosis and suggest individualized treatment plans.

Recent technological advances have enabled researchers to use
a variety of sequencing methods to identify somatic variants,
methylation changes, and other genomic alterations in tumors
(Malone et al., 2020). However, traditional bulk sequencing
technologies target all cells in a sample and can only reflect
the average level of variation of the tumor. The advancement of
single-cell sequencing (scRNA-seq) technology has provided
researchers with a view into cancer at unprecedented
molecular resolution. With the increasing emphasis on intra-
tumor heterogeneity, scRNA-seq has emerged as a powerful tool
to reveal the unique genetic information of each cell and discover
new cell types (Suvà and Tirosh, 2019). The application of this
technology helps to uncover tumor characteristics previously
hidden in cell population heterogeneity, which might provide
potential prognostic biomarkers for better clinical decisions in
individualized treatment (Papalexi and Satija, 2018). But scRNA-
seq studies have limited clinical samples that cannot be correlated
with clinical data from a large number of patients (e.g., prognostic
information). In this case, considering a large amount of complete
clinical information available in bulk sequencing cohorts, an
appropriate combination of scRNA-seq and bulk sequencing
results would optimize the utilization of these data.

In this study, we used scRNA-seq data to screen potential
prognostic genes for PDAC. By comparing the differences in
ductal cell gene expression between normal and tumor tissues, we
identified 10 genes affecting the overall survival (OS) of PDAC. A
prognostic risk model based on these ductal cell features was then
developed and further validated using external bulk sequencing
data. Multiple bioinformatics methods were applied to analyze
the molecular characteristics of patients classified by this
prognostic model, and drug candidates targeting these
prognostic-related genes were also identified.

METHODS

Data Source
Our study applied a comprehensive analysis of data publicly
available online. The scRNA-seq dataset (PRJCA001063)
containing 24 PDAC tumor samples and 11 control
pancreases without any treatment was obtained from the

Zenodo database (www.zenodo.org) (Peng et al., 2019).
Bulk sequencing data in the training and validation sets
were obtained from The Cancer Genome Atlas (TCGA)
(TCGA- PAAD) (https://portal.gdc.cancer, updated until
07-20-2019), the Gene Expression Omnibus (GEO)
(GSE71729, GSE21501) (https://www.ncbi.nlm.nih.gov/geo/
query), the European Molecular Biology Laboratory (EMBL-
EBI) (E-MTAB-6134) (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-6134/) and the International Cancer
Genome Consortium Data Portal (ICGC) Canada pancreatic
cancer project (PACA-CA) (ICGC-CA, https://dcc.icgc.org/
releases/current/Projects/PACA-CA). Mutation data in
TCGA cases were downloaded from the Broad Institute
TCGA Genome Data Analysis Center (http://gdac.
broadinstitute.org). Transcriptomic and clinical
information for each dataset was simultaneously
downloaded from the respective websites when available.
Only PDAC was included in the subsequent analysis, while
other histological subtypes, such as Acinar Cell Carcinoma,
adenosquamous carcinoma, mucinous cystadenocarcinoma,
mixed ductal endocrine carcinoma were excluded.

Processing of scRNA-seq Data
We used the “Seurat” package deployed in R for quality
control and downstream analysis of scRNA-seq data (Hao
et al., 2021). The regularizing negative binomial regression
was used to eliminate batch effects. Low quality cells
(<200 genes/cell, <3 cells/gene and >10% mitochondrial
genes) were excluded. Afterward, we calculated the
standardized variance of each gene across cells to generate
highly variable genes and used them for principal component
analysis (PCA). “ElbowPlot” analysis and heat map
visualization in “Seurat” were used to identify significant
principal components (PCs). Based on PC1 to PC13,
graph-based clustering was applied (res � 0.8) to identify
different cell groups. Then, non-linear dimensionality
reduction was performed using the “tSNE” method.
Different cell clusters were identified and annotated with
the “singleR” package, the CellMarker database, and
previously published scRNA-seq analysis (Peng et al.,
2019), (Aran et al., 2019; Zhang et al., 2019; Schlesinger
et al., 2020). To identify differentially expressed genes
(DEGs) between ductal cells in normal and tumor tissues,
we used the “FindMarkers” function in the “Seurat” package.
DEGs were filtered by |log2 (fold change) | > 0.5 and p < 0.05.

Construction and Validation of a
Duct-Cell-Related Risk Model
Firstly, a univariate Cox regression analysis was performed
on the TCGA-PDAC cohort to determine the association
between the aforementioned duct-cell-related DEGs and OS.
Then, significant DEGs related to OS (p < 0.05) were included
in the least absolute shrinkage and selection operator
(LASSO) regression analysis to reduce multicollinearity
and make the model simpler and more effective. Finally, a
multivariate Cox regression analysis was conducted on the
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FIGURE 1 | scRNA-seq identifies 9 cell types in the PDAC tissues and 881 differentially expressed genes between ductal cells in normal and tumor tissues. (A) The
top 2000 variable genes with large, standardized variances for subsequent analysis. (B) The elbow plot shows 13 PCs appropriate for further cell cluster classification (C)
tSNE algorithm classified cell clusters based on transcriptome data. (D)Heatmap of top 10marker genes for each cell cluster. (E)Differentially expressed genes between
ductal cells in normal and tumor tissues. T, tumor; N, normal.
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screened genes to assess the impact of each gene as an
independent prognostic factor on patient survival. The risk
score formula was constructed as described in the previous
study (Ma et al., 2018). We used the median risk score as a
cut-off value to categorize the patients in the TCGA training
set into high-risk and low-risk groups. Patients in the GEO
validation group were also divided into two groups by the
same method. Survival differences between the two groups
were assessed by the Kaplan-Meier method and log-rank test.
Furthermore, we plotted the time-dependent receiver
operating characteristic (ROC) curves with 1, 3, and
5 years as the defined points and calculated the
corresponding area under the ROC curve (AUC) to assess
and compare the predictive power of the risk model with
other recently published PADC risk models. The values of
AUC range from 0.5 to 1, with 1 indicating full discriminant
and 0.5 indicating no discriminant.

Correlations Between the Risk Score and
Clinical Features
Several clinical characteristics of PDAC patients might affect
prognosis. To investigate whether the risk score was independent
of relevant clinical factors (e.g., age, alcohol history, gender,
chronic pancreatitis history, TNM stage, histologic grade, etc.),
we performed univariate and multivariate Cox regression
analyses. The significance level was set at p < 0.05.

Gene Set Enrichment Analysis
To clarify the differences in signaling pathways and
molecular mechanisms associated with gene expression
profiles between high-risk and low-risk groups, we
analyzed the gene expression data using GSEA analysis.
Enriched gene sets with p < 0.05 and FDR <0.25 were
considered statistically significant.

FIGURE 2 | Identification of prognosis-related genes and construction of a duct-cell-related risk model. (A) Risk score analysis in the TCGA training set. Upper
panel: heatmap of gene expressions in the PDAC samples. Middle panel: risk score curve based on the ductal-cell-related genes signature. Bottom panel: patient
survival status and time distributed by risk score. (B) Kaplan-Meier survival curve of the risk score for patient OS in the TCGA cohort. (C) The prognostic performance of
the risk model is demonstrated by the time-dependent ROC curve for predicting the 1-, 3-, and 5-years OS rates in the TCGA training set.
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Tumor Mutation Burden and Somatic
Mutation Analysis
TMB was defined as the total number of mutations (changes)
found in the DNA of cancer cells (Chan et al., 2019). The
TMB of patients with mutation data in the TCGA cohort was
calculated using the “tmb” function in the “MAFTOOLS”
package (Mayakonda et al., 2018). Somatic mutation
comparison was also completed with the same package for
patients in the high- and low-risk groups. p < 0.05 was set as
the level of significance.

Assessment of Tumor Immune
Microenvironment and Immunotherapeutic
Response
The immune score for each patient in the TCGA cohort was
calculated using the ESTIMATE algorithm. The standardized
expression profile was then uploaded to the TIMER website
(http://timer.cistrome.org/) to obtain an assessment of
immune cell infiltration (including B cells, macrophage,
myeloid dendritic cells, neutrophil, CD4+ T cells, and
CD8+ T cells) (Li et al., 2020). We also applied the Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm to
predict the patient’s response to immunotherapy (Fu et al.,
2020). At a significance level of p < 0.05, we compared
immune scores, degree of immune cell infiltration, and
response to immunotherapy between the high-risk and
low-risk groups.

Estimation of Tumor Stemness and Drug
Candidate Prediction
Stemness features were extracted from transcriptomic data of
TCGA PDAC patients by using an innovative one-class logistic
regression (OCLR) machine-learning algorithm (Malta et al.,
2018). The transcriptome-based stemness index (mRNAsi) was
then mapped to a range of 0–1 by linear transformation
(subtracting the minimum and dividing by the maximum). To
predict which compounds were likely to be effective against
PDAC, we used Broad institute’s Connectivity Map (CMap) to
screen drug candidates based on key genes of the risk model
(Subramanian et al., 2017).

RESULTS

DEGs Between Normal and Malignant
Pancreatic Ductal Cells
To investigate changes of ductal cells in PDAC, we reanalyzed the
scRNA-seq dataset and annotated the cell types according to their
transcriptomic characteristics. After performing cell quality
control (as described in the methods section), we performed
principal component analysis using the top 2000 variable genes
(Figure 1A) and identified 13 principal components for
downstream analysis via elbow plots (Figure 1B). Then these
cells were divided into 33 clusters (Supplementary Figure S1)
and based onmarker gene expression (Supplementary Figure S1,
Supplementary Tables S1, S2) these clusters were classified into
acinar cells, ductal cells, endothelial cells, endocrine cells,

FIGURE 3 | Kaplan-Meier analysis of OS for PDAC patients in the TCGA set. Patients were classified according to age (age <60 and age ≥60), sex (male and
female), tumor histologic grade (G1/G2 and G3/G4), TNM stage (stage I/IIa and stage IIb/IV), and anatomical location of the lesion (head of pancreas and body/tail of
Pancreas).

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7636365

Wang et al. A Risk Model for PDAC

http://timer.cistrome.org/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


fibroblasts, stellate cells, T cells, B cells, and macrophages
(Figures 1C,D). By comparing the transcriptional data of
normal and malignant pancreatic ductal cells, we identified
881 differentially expressed genes (log2FC >0.5, p < 0.05), of
which 475 were upregulated and 406 were downregulated
(Figure 1E, SupplementaryTable S3).

Construction of Risk Model
Among these DEGs, we used univariate Cox regression to initially
screen out 98 genes associated with PDAC prognosis (p < 0.05) in
the TCGA cohort. Then, these genes were included in LASSO
regression analysis to further exclude confounding factors
(Supplementary Figures S3A,B). Next, we performed a
multivariate Cox regression analysis and select 10 genes to
construct a prognostic prediction model (Supplementary
Figure S3C, Supplementary Table S4). According to this
model, we calculated the risk scores of 147 patients in the
TCGA PDAC group. Using the median risk score as the cutoff
point, all patients in the set were divided into a high-risk group
and a low-risk group (Figure 2A). The median OS survival was
313 and 505 days for the high-risk and low-risk groups,
respectively. Kaplan-Meier analysis showed that high-risk

PDAC patients had significantly lower OS than low-risk
PDAC patients (p < 0.001, Figure 2B). Then, the AUCs were
calculated to assess the OS prediction efficiency of the risk model.
It had AUCs of 0.825, 0.819, and 0.824 at 1, 3, and 5 years,
indicating that this model had favorable predictive power
(Figure 2C).

Furthermore, to clarify the reliability of the risk model, we
divided the PDAC patients in the TCGA dataset into subgroups
with different clinical characteristics (including age, gender,
histologic grade, AJCC stage, and tumor location). Kaplan-
Meier analysis showed that even among the different
subgroups, patients in the high-risk group had significantly
lower OS than those in the low-risk group (p < 0.05,
Figure 3), which further demonstrated the superiority of
this model.

Validation of the Risk Model in External
Cohorts
Using two GEO datasets (GSE71729 and GSE21501), E-MTAB-
6134 and ICGC-CA, we validated the reliability and stability of
the ductal cell-related risk model. Risk scores were calculated in

FIGURE 4 | Validation of the risk model for PDAC survival using GEO datasets. (A,B) Risk score analysis in the validation sets GSE71729 and GSE21501. (C,D)
Kaplan-Meier survival curve of the risk score for patient OS in the validation sets GSE71729 and GSE21501. (E,F) The time-dependent ROC curve for predicting the 1-,
3-, and 5-years OS rates in the validation sets GSE71729 and GSE21501.
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both cohorts and PDAC patients were then divided into high-risk
and low-risk groups (Figures 4A,B, Supplementary Figures
S5A,B). Consistent with the results of the training set, the OS
of high-risk patients in both validation sets was significantly
shorter than that of low-risk patients (p < 0.001, Figures 4C,D,
Supplementary Figures S5C,D). In GSE71729, the median OS of
high-risk patients and low-risk patients were 300 and 540 days,
while they were 330 and 540 days in GSE21501, 483 and 757 days
in E-MTAB-6134, and 445 and 590 days in ICGC-CA,
respectively. The results of the AUC analysis also showed that
the model had favorable predictive power in the validation sets. In
GSE71729, the AUCs were 0.689, 0.829, and 0.954 for 1, 3, and
5 years, while they were 0.749, 0.782, and 0.788 for 1, 3, and
5 years in GSE21501, 0.713, 0.665, and 0.686 for 1, 3, and 5 years
in E-MTAB-6134, and 0.675, 0.705, and 0.749 for 1, 3, and 5 years
in ICGC-CA, respectively (Figures 4E,F, Supplementary
Figure S6).

To further validate the predictive power of the ductal cell risk
model, we compared it with three recently published pancreatic
cancer risk scoring models, including the Deng model (Deng
et al., 2021), the Qiu model (Qiu et al., 2020), and the Wu model

(Wu et al., 2019). Notably, these three models were all built on
bulk sequencing data. Few pancreatic cancer risk models based on
single cell data have been reported. We compared the predictive
power of each model by the area under the ROC curve (AUC). In
general, the ductal cell model based on single cell RNA
sequencing possessed better predictive power in all four
validation datasets, especially in terms of 5-years overall
survival prediction (see Supplementary Figure S6).

Correlations Between the Risk Score and
Clinical Features
A univariate Cox regression analysis was performed to explore
the relationship between patient clinical features and PDAC
prognosis in the TCGA cohort. The results showed that only
the positive nodes rate (HR, 5.453; 95% CI, 2.051 to 14.500; p �
0.001), as well as the maximum tumor dimension (HR, 1.188;
95% CI, 1.102 to1.394; p � 0.035), were significantly associated
with the prognosis of TCGA-PDAC patients (Figure 5A). Then
through ROC analysis, we calculated the AUCs of risk score,
positive nodes rate, and maximum tumor dimension at 1, 3, and

FIGURE 5 | Correlations between the risk model and clinical characteristics with OS based on the TCGA cohort. (A) Univariate Cox analysis of clinical
characteristics and the risk score. (B–D) Comparison of time-dependent ROC curves for predicting the 1-, 3-, and 5-years OS rates among the maximum tumor
dimension, positive nodes rate, and risk score.
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5 years (Figures 5B–D). The results demonstrated that the
predictive efficacy of the risk score was better than that of
positive nodes rate and maximum tumor dimension. The risk
score also acted as an independent risk factor for the PDAC
prognosis in a multivariate Cox regression analysis (p < 0.001)
(Figure 5E).

Gene Set Enrichment Analysis
GSEA analysis was conducted to annotate the function of DEGs
between high-risk and low-risk patient groups. 9 cancer-related

gene sets were demonstrated to be significantly enriched in the
high-risk patient group (Nominal p-value < 0.05, FDR <0.25),
including mTORC1 signaling, MYC targets v1, MYC targets v2,
G2M checkpoint, E2F targets, mitotic spindle, glycolysis, DNA
repair, and unfolded protein response (Figure 6). The gene sets
were found to be intimately involved in tumorigenesis, DNA
repair, genome stability, and tumor nutrition and metabolism
(Stine et al., 2015; Kent and Leone, 2019; Murugan, 2019; Yang
et al., 2020). The result might provide clues to the potential
mechanisms affecting the prognosis of PDAC patients.

FIGURE 6 |Gene set enrichment analysis indicated significant enrichment of hallmark cancer-related pathways in the high-risk group based on the TCGA dataset.
mTORC1, mammalian target of rapamycin complex 1.
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Analysis of Somatic Mutations
The development of cancer is the result of somatic mutation and
clonal selection. To explore the relationship between risk score
and mutation status, we further analyzed and visualized somatic
mutations between the high-risk and low-risk cohorts of TCGA.
The results indicated that the top 20 genes with the highest
mutation frequencies in both groups were similar and only
differed in the ranking (Figures 7A,B). The genes with mutation
rates above 10% included KRAS, TP53, SMAD4, CDKN2A, and
TNN. Missense mutations were the most common type. In
general, the high-risk cohort harbored more somatic
mutations and showed a higher tumor mutation burden than
the low-risk cohort (Figure 7C, p < 0.05). When comparing
mutated genes in the two groups, only KRAS (82 vs. 59%, p <
0.01) and ADAMTS12 (8 vs. 0%, p < 0.05) were statistically
different in mutation frequency (Figures 7D,E).

Assessment of Tumor Immune
Microenvironment and Stemness
Different tumor mutation burdens might suggest different
immune cell infiltration statuses. To investigate whether

patients in the high-risk group with higher TMB had more
immune cell infiltration, we evaluated the immune
microenvironment in both groups by CIBERSORT and
TIMER algorithms (Newman et al., 2015; Li et al., 2020).
The results suggested that there was no statistical difference
in immune scores between the two groups (Supplementary
Figure S7A). In parallel with this result, the TIMER
assessment also showed that only CD4+ T cell infiltration
might differ among the six immune cell types
(Supplementary Figure S7B). The TIDE algorithm was
exploited to predict responsiveness to immunotherapy and
there was no statistical difference between the two groups
(Supplementary Figure S7C), which further suggested that
the two groups might have similar immune cell infiltration
statuses. Tumor stemness was considered to be one of the key
factors in tumor progression and was significantly associated
with patient prognosis. In our investigation, we obtained the
mRNA expression-based stemness index through one-class
logistic regression (OCLR) machine learning algorithm. The
high-risk group with a poorer prognosis had a higher
stemness index (p < 0.05) (Figure 7F).

FIGURE 7 | The landscape of somatic mutation and tumor immune microenvironment in high- and low-risk cohorts. (A,B) The waterfall plot shows the mutation
distribution of the top 20 most frequently mutated genes in high- and low-risk groups, respectively. The central panel shows the types of mutations. The upper panel
shows the mutation frequency in each PDAC sample. The bar plots on the left show the frequency and mutation type of genes. The bottom panel is the legend for the
mutation types. (C) Comparison of TMBs between high- and low-risk groups. (D,E) The waterfall plot and forest plot display the differentially mutated genes
between the two cohorts. (F) Comparison of stemness indices between high- and low-risk groups. TMB, tumor mutation burden.
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Novel Drug Candidates Identified by CMap
The CMap database was used to identify potential drugs that
might target DEGs between high risk and low risk patients in
TCGA cohort (see Supplementary Table S5). As a result, 120
drug candidates were screened for 58 possible mechanisms of
action (see Figure 8 and Supplementary Table S6). The top five
drugs included AT-9283 (count � 7), sorafenib (count � 6),
sunitinib (count � 6), dovitinib (count � 5), and tozasertib
(count � 4). The top five possible mechanisms of action were
Acetylcholine receptor antagonist (count � 25), FLT3 inhibitor
(count � 14), Dopamine receptor antagonist (count � 13),
Acetylcholine receptor agonist (count � 9) and Serotonin
receptor antagonist (count � 8).

DISCUSSION

PDAC is a malignant gastrointestinal tumor with a 5 years
survival rate of less than 10% (Mizrahi et al., 2020). One of
the major obstacles to PDAC treatment is the high degree of
heterogeneity. Although bulk sequencing has identified
numerous genetic alterations in PDAC, it can only provide the
average expression signal of the tissue tested, and its results may
be confounded by tumor heterogeneity. Rapid progress in the

development of scRNA-seq has allowed researchers to probe the
heterogeneity at the single-cell level. Also, the resolution provided
by scRNA-seq makes it possible to study the genomes of specific
cell populations, which may allow researchers to uncover new
and potentially unexpected biological discoveries (Grün and van
Oudenaarden, 2015).

With the enormous development of genomics research in
recent decades, a large amount of biological information has
been accumulated, which has raised great expectations
concerning its impact on personalized or precision medicine
(Ginsburg and Phillips, 2018). In this study, we used scRNA-
seq data to analyze the transcriptome differences between ductal
cells in normal and PDAC tissues. A prognostic risk model
constructed based on these DEGs effectively predicted the OS
of PDAC patients. Moreover, it exhibited promising predictive
efficacy even in different subgroups of patients, and this
predictive power was further validated in external datasets. As
an independent risk factor for PDAC, this risk score may serve as
a useful complement to clinical features when clinicians assess
patient survival.

Cancer is a genetic disease and the accumulation of somatic
mutations is responsible for it (Martincorena, 2019). In our
analysis, mutational profiles of PDAC were associated with
survival. Patients in the high-risk group had more somatic

FIGURE 8 | CMap database analysis identifies novel candidate drugs targeting the DEGs between high-risk and low-risk patients in the TCGA cohort. CMap,
connectivity map.
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mutations (i.e., higher TMB) (p < 0.05). Themutation frequencies
of KRAS and ADAMTS12were significantly different between the
high- and low-risk groups (p < 0.05). KRAS is one of the well-
known driver genes of PDAC. Its somatic mutations are present
in more than 90% of PDAC patients (Waters and Der, 2018). A
growing number of studies have suggested that mutations in
KRAS played an important role in tumor invasion, metastasis,
and chemoresistance (Mueller et al., 2018; Buscail et al., 2020). In
contrast, the role of ADAMTS12 in PDAC was poorly
understood, probably due to its relatively low mutation rate in
PDAC. A recent study revealed that ADAMTS12 was highly
expressed in the PDAC stroma, which was closely associated
with tumor progression (Robin et al., 2020). However, the effect
of ADAMTS12 on the tumor microenvironment needs to be
further elucidated.

Tumors typically exhibit abnormalities in multiple cellular
functions. Such dysfunctions were heterogeneous in the PDAC
patients of our study. GSEA results indicated that the genetic
profiles of several cellular functions in the high-risk group were
significantly different from those in the low-risk group, including
transcriptional regulation, proliferation, DNA damage repair,
and metabolic patterns of cells. All of these functions are
closely related to tumor development, and their heterogeneity
may explain the survival differences between the two groups.
Recently, a large number of studies have shown that tumor
stemness is an essential mechanism of tumor resistance,
recurrence, and metastasis, which makes it a significant
reference in survival assessment (Batlle and Clevers, 2017;
Miranda et al., 2019; Saygin et al., 2019). Poor patient survival
has been linked to tumor stemness-associated traits (Valle et al.,
2018). In this investigation, stemness scores were higher in the
high-risk group, which may have led to worse survival outcomes.

In recent years, immunotherapy has made breakthroughs in
the treatment of some solid tumors (Fukumura et al., 2018; Hegde
and Chen, 2020). In particular, the anti-tumor efficacy of immune
checkpoint inhibitors (ICI) has attracted a great deal of attention
(Robert, 2020). However, the results of early trials using ICIs for
PDAC were disappointing (Schizas et al., 2020). PDAC is known
to be a typical “cold tumor”, lacking tumor-infiltrating immune
cells and with most T cells in a depleted state (Bear et al., 2020). In
our analysis, even though the high-risk group had a higher TMB,
immune infiltration scores and responsiveness to
immunotherapy did not differ significantly between the two
groups. For PDAC with low immunogenicity, improving the
effectiveness of immunotherapy remains promising but
challenging. In addition to immunotherapy of PDAC, we

identified seven targeted compounds associated with genes in
the risk score model. They possess different mechanisms of action
and have not been applied for PDAC treatment. These drug
candidates may inspire ideas for future PDAC therapy.

In summary, by integrating scRNA-seq and bulk sequencing
data, we established a risk score model for PDAC patients. The
predictive score was an independent risk factor for PDAC, and it
could be used for survival assessment. Future studies should focus
on our predicted drug candidates and validate our findings.
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