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Identifying early-warning signals 
of critical transitions with strong 
noise by dynamical network 
markers
Rui Liu1, Pei Chen2, Kazuyuki Aihara3 & Luonan Chen3,4

Identifying early-warning signals of a critical transition for a complex system is difficult, especially 
when the target system is constantly perturbed by big noise, which makes the traditional methods 
fail due to the strong fluctuations of the observed data. In this work, we show that the critical 
transition is not traditional state-transition but probability distribution-transition when the noise is 
not sufficiently small, which, however, is a ubiquitous case in real systems. We present a model-free 
computational method to detect the warning signals before such transitions. The key idea behind is 
a strategy: “making big noise smaller” by a distribution-embedding scheme, which transforms the 
data from the observed state-variables with big noise to their distribution-variables with small noise, 
and thus makes the traditional criteria effective because of the significantly reduced fluctuations. 
Specifically, increasing the dimension of the observed data by moment expansion that changes the 
system from state-dynamics to probability distribution-dynamics, we derive new data in a higher-
dimensional space but with much smaller noise. Then, we develop a criterion based on the dynamical 
network marker (DNM) to signal the impending critical transition using the transformed higher-
dimensional data. We also demonstrate the effectiveness of our method in biological, ecological and 
financial systems.

Complex systems in ecology, biology, economics and many other fields often undergo slow changes 
affected by various external factors, whose persistent effects sometimes result in drastic or qualitative 
changes of system states from one stable state (i.e., the before-transition state) to another stable state 
(i.e., the after-transition state) through a pre-transition state (Fig. 1a, Fig. S3)1–3. For many natural and 
engineered systems, it is crucial to detect early-warning signals before this critical transition so as to 
prevent from or get ready for such a catastrophic event. Recent studies in dynamical systems theory show 
that critical slowing-down (CSD)4 can be used as a leading indicator to predict such sharp transitions, 
and has been applied to detect regime shifts or collapse in ecosystems5–9, climate systems10–13, biological 
systems2,14 and financial markets15,16. CSD-related research has become a hot topic and is increasingly 
attracting much attention from communities of both natural and social sciences. However, theoretically 
the signals based on CSD appear only when the system state approaches sufficiently near the bifurca-
tion point or the tipping point (Fig. 1a), which implies that the CSD principle holds only for a system 
perturbed with small noise because the sharp transition of a system with big noise may occur far from 
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the bifurcation point (Fig.  1b). In other words, the transition will emerge stochastically far before the 
deterministic bifurcation, and strong nonlinearities brought by the big noise will violate the assump-
tions of the CSD, i.e., a linear restoring force. Moreover, eigenvalues based analysis, e.g., spectral anal-
ysis, pseudospectra analysis and principle component analysis17–20, also fail in indicating the upcoming 
state change since signals from linear terms are highly disturbed by wild fluctuations and thus obscure, 
although pseudospectra analysis can provide the additional information on ill-conditioned cases. On the 
other hand, data observed from real-world systems such as ecosystems21,22, electric power systems23 and 
biomedical systems24,25, are usually intrinsically or extrinsically convoluted with big noise, for which the 
existing approaches may fail26.

There is a common feature for complex systems during the process of a state transition near a tip-
ping point, that is, the dynamical process of a system along the time or parameter change can generally 
be expressed by the three states from the before-transition state through the pre-transition state to the 
after-transition state (Fig. S3 and Table S1)27: First, the before-transition state corresponds to an attractor 
like a stable equilibrium before the transition, during which the system undergoes changes gradually. 
Second, the pre-transition state is the critical state, which is actually the limit of the before-transition 
state just before the imminent drastic transition. A system in this state is easily affected by external 

Figure 1.  Scheme of probability distribution embedding. (a,b) show different types of dynamical behavior 
of a system with the gradual change of the parameter or time when it is under small noise and under 
big noise, respectively. (a) When the system is under small noise, the critical point of the system is near 
a bifurcation point of the corresponding deterministic system, in which there is a critical-slowing-down 
(CSD) phenomenon (e.g., a one-state-variable system). Thus, CSD can be used to detect its signals because 
signals of CSD only appear when the system approaches the bifurcation point. (b) When the system is 
under big noise, the critical transition takes place much earlier than that of the deterministic system due to 
strong fluctuations. There is no CSD phenomenon since the transition is far from the original bifurcation 
point. Thus, we cannot directly apply CSD to identify the critical point. (c) By moment expansion, the 
state-dynamics under big noise is transformed to the probability distribution-dynamics with much smaller 
noise but in a higher-dimensional space (e.g., a two-moment-variables system), for which the critical point 
is near the bifurcation of the reconstructed high-dimensional system. Thus CSD-based method works 
effectively again and can be used to detect early-warning signals in this higher-dimensional system. Note 
that we aim to identify the pre-transition state rather than the state after the critical transition. (d) shows the 
original dynamical system with one variable and the observed time-series data with big noise. (e) shows the 
expanded moment system with two variables from (d) and the reconstructed time-series data in a higher-
dimensional space but with smaller noise. (f) shows an extreme case, for which the original system with 
big noise can be expanded to an infinite-dimensional system with zero noise. Generally, a linear stochastic 
system with big Gaussian noise can be exactly represented by up to the 2nd-order moment system with zero 
noise, i.e., Gaussian distribution. The dotted red lines are unstable equilibria, which separate the two basins 
of the two stable equilibria. We detect the green circle rather than the red circle.
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perturbations and driven into another stable state, i.e., the after-transition state. In contrast, appropriate 
perturbations of system parameters also can pull the system back to the before-transition state. Third, the 
after-transition state is referred to an attractor like another stable equilibrium after the critical (or phase) 
transition, which is significantly different from the before-transition state and the pre-transition state.

As widely used in physics, critical slowing-down (CSD)4 for single variables has been considered as a 
leading indicator to predict such critical transitions provided that the system is fluctuated by small noise, 
which assumes the linear restoring force. Recently, based on dynamical systems theory, we developed 
a network-based criteria for multi-dimensional data, i.e., the dynamical network biomarker (DNB), to 
detect the pre-transition state of biomedical systems (e.g., complex diseases)2,14,28. For a general system, 
we further showed, when it approaches the pre-transition state, there exists at least one dominant group 
of variables among all variables, which are strongly correlated but wildly fluctuated. Specifically, when 
the system approaches the pre-transition state, we can prove that a dominant group of variables appear 
and satisfy the following three conditions2.

1.	 The standard deviation (SD) of each variable in the dominant group drastically increases.
2.	 The correlation (PCCin) for each pair of variables within the dominant group increases.
3.	 The correlation (PCCout) between one variable in the dominant group and another one outside 

decreases.

Actually, the three conditions above hold even if all variables in the system are the dominant group 
members. This feature at the pre-transition state also implies the weak resilience on the state dynamics.

Due to such collective dynamics at the critical state, this group of variables is expected to form a 
subnetwork or module from a network viewpoint and thus is also called the dynamical network marker 
(DNM) for general systems or dynamical network biomarker (DNB) for biological systems27, which 
characterizes the dynamical features of a general stochastic system with small noise near the tipping 
point. To sensitively signal the emergence of the critical transition, we adopt the following score from 
the above conditions and notations:


=

+
,

( )
I : SD

PCC
PCC 1

in

out

where  is a small positive constant to avoid zero division. Clearly, from the observed data with a few 
number of samples or time points, we can detect the early-warning signals of the state-transition for the 
multi-variable system by identifying its DNM with a maximal (or drastically increased) I provided that 
noise level is small (see Supplementary Information (SI) D for the details of the computational proce-
dure). Generally, the critical point detected by DNM is near the bifurcation point of the corresponding 
deterministic system.

DNM provides a theoretical basis and a computational way for detecting the early-warning signals 
of the critical state-transition for multi-dimensional data with small noise (Table S1, Fig. S3). Based on 
the theoretical results of DNM, we know intuitively: (1) appearance of a group of collectively fluctuated 
variables among high-dimensional data implies the emergence of the critical transition; (2) identify-
ing the after-transition state requires the differential information of state variables but predicting the 
transition (or after-transition state) further requires the differential interaction information among state 
variables, which means that identifying a state and predicting a state require different information. The 
effectiveness of DNM on several real biomedical systems has been successfully validated2,28–30, and the 
comparison with another multi-variable method is also shown in SI C.2. Note that, near the critical 
state, there may be multiple DNMs appearing, but we can provide the early-warning signals by detecting 
one of them (see A.1 in SI). Clearly, with synergetic effect of the three conditions, the score of DNM in 
(1) is expected to generate a strong signal even with a small number of samples. Note that CSD mainly 
characterizes the dynamics of single-variables, whereas DNM characterizes that of multi-variables or a 
network. Actually, for a single-variable system, DNM is equivalent to the principle of CSD.

In this study, based on dynamical systems theory we developed a probability distribution embedding 
scheme by converting state-dynamics with big noise into distribution-dynamics with small noise so that 
we can detect the early-warning signals before the critical regime shift in complex systems even with 
strong fluctuations or big noise. The key idea behind this method is to reduce the noise level by exploring 
the distribution-dynamics, and thus the traditional methods based on CSD can be directly applied to the 
transformed higher-dimensional data with smaller noise (Fig. 1). Specifically, transforming the observed 
data of the state by moment expansion, we can derive new data of the corresponding probability distri-
bution in a higher-dimensional space but with much smaller noise (from Fig. 1b–e). Then, we further 
extend CSD for single variables to a dynamical network marker (DNM) for multi-variables or a network, 
and develop a criterion based on DNM to detect the early-warning signals of critical transitions in this 
transformed distribution-dynamics. We show that, by expanding the moments up to the 2nd order and 
thus increasing the dimension of the data from the original n to at most n(n +  3)/2, the fluctuations or 
noise levels are significantly reduced. In such a way, the original state system with big noise is trans-
formed into a moment system with more variables representing the distribution of the state but with 
smaller noise. Thus, owing to the small noise, the CSD principle works well again. To further apply CSD 



www.nature.com/scientificreports/

4Scientific Reports | 5:17501 | DOI: 10.1038/srep17501

to a multi-variable system in the transformed higher-dimensional space, DNM is developed to detect the 
early-warning signal for the critical transition (Fig. 1c,e), which clearly takes place much earlier than the 
bifurcation point of the original system.

Note that when the noise is not sufficiently small, the state-transition becomes nondeterministic or 
stochastic, i.e., the critical transition results not from local state-dynamics but from global probabil-
ity distribution-dynamics (see Materials and Methods), for which the traditional approaches fail. Our 
method transforms stochastic state-dynamics to deterministic distribution-dynamics, since one set of the 
variables of the high-order moment system at one time point corresponds to one probability distribution 
of state at that time point. Thus, the signals are actually detected from the high-order moment system 
with smaller noise rather than from the original system with big noise, therefore, we call the criterion as 
the moments-based DNM score. Theoretically, DNM, which is a model-free approach, can be applied to 
a wide class of systems as a generic indicator, regardless of differences in the details of respective systems, 
provided that the processes are accompanied with state or distribution transition phenomena.

To demonstrate the effectiveness and efficiency of DNM, we applied our method to a simulated data-
set and three real datasets, i.e., the genomic data on lung injury induced by carbonyl chloride inhalation 
exposure (GSE2565)31, the ecological data on a critical transition to a eutrophic lake state32, and the 
financial data on the bankruptcy of Lehman Brothers26, for which we all successfully identified the crit-
ical or pre-transition states.

Results
Detecting early-warning signals of critical distribution-transition with big noise by “making 
big noise smaller”.  Many real systems are fluctuated by big noise. Typical examples include ecosys-
tems, biomolecular systems, and financial systems, whose dynamics are all convoluted with strong noise. 
With big noise, the critical point is actually far from the bifurcation point (Fig. 1b), i.e., the critical tran-
sition may occur stochastically far before the deterministic bifurcation point under the perturbations of 
big noise. Actually, we will show that this transition is not deterministic (or traditional) state-transition 
but stochastic distribution-transition. However, such earlier transition cannot be predicted by CSD since 
the strong nonlinearities around the transition point violates the assumption of the CSD for a linear 
restoring force, and thus those traditional criteria based on CSD are not suitable for the systems with 
big noise. Note that we do not consider the flickering phenomenon in this paper, i.e., we assume only 
to have the observed data before the transition to another state, and thus the transition is actually the 
conditional probability distribution transition.

We developed a theoretical framework, i.e., distribution embedding, to transform the observed 
original data (state-variables) with big noise into new synthetic data in a higher-dimensional space 
(distribution-variables) but with smaller noise (Fig.  1), i.e., by converting the observed state-dynamics 
into the distribution-dynamics (Methods, Fig. S4). In such a way, the criteria based on CSD works 
again on the new data in the high-dimensional space due to the smaller noise. Moreover, we detect 
the pre-transition state by DNM by analyzing the new data in the high-dimensional space (Table S1). 
Specifically, increasing the dimension of the observed data (representing the state) by moment expansion, 
we can derive new data (representing the probability distribution, i.e., conditional probability distribu-
tion) but with much smaller noise (Methods, Fig. S4), where a set of moments correspond a probability 
distribution. Thus, based on the transformed data by DNM, we can predict the distribution-transition, 
which results in the drastic change of the distribution, rather than the traditional state-transition. Note 
that we can only observe the data in the original state before the transition, and have no information on 
the state after the transition, i.e., no flickering. Thus, the observed probability distribution is the condi-
tional distribution.

Generally, a dynamical system with big noise can be expressed by the following stochastic differential 
equation

η
( )

= ( ( )) + ( ), ( )
x t

t
f x t t

d
d 2big

where ( ( )) = ( ( ( )), …, ( ( )))f x t f x t f x tn1  are nonlinear functions, state variables are 
( ) = ( ( ), …, ( ))x t x t x tn1 , and noises are η η η( ) = ( ( ), …, ( ))_ _t t tbig big big n1  with mean η〈 ( )〉 =_ t 0big i  

and covariance η η σ〈 ( ), ( )〉 =_ _ _ ,t tbig i big j big i j. Here the angle brackets 〈⋅〉 is the operator for calculating 
the average.

Then, we can approximate system (2) by the following moment evolution equation33 with moment 
expansion to the kth order:

η
( )

= ( ( )) + ( ), ( )
m t

t
g m t t

d
d 3small

where ( )( ( )) = ( ( )), …, ( ( ))g m t g m t g m tN1  are nonlinear moment functions derived from ( ( ))f x t , 
and moment variables are ( ) = ( ( ), …, ( ))m t m t m tN1 . Due to truncation to the kth order of moments, 
the error functions are η η η( ) = ( ( ), …, ( ))_ _t t tsmall small small N1 , which can be taken as noise terms. ( )m ti  
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is a moment, and N is the total number of the moments up to the kth order. In particular, if expanding 
the moments to k =  2, then = ( + )/N n n 3 2, where the moment variables ( )m t1  are means (the first 
order moment of variable xi, i.e., )xi  and ( )m t2  are covariances (the second order central moments of 
variables xi and x j, i.e., 〈( − 〈 〉)( − 〈 〉)〉)x x x xi i j j  of ( )x t . Actually, to approximate the original stochastic 
dynamics or minimize the error terms η ( )tsmall  by finite order moment equations (3), many sophisticated 
schemes to truncate moments, such as moment closure34,35, have been proposed. By this moment-system 
with smaller noise, we can directly use DNM to detect the critical transition, where the critical point is 
not the bifurcation point of the original system (2) but the one of (3). Note that any probability distri-
bution can be represented or expanded by Gram-Charlier, Edgeworth series36 or Binomial moment 
series37 in terms of moments ( )m t . Hence, a set of moments represent one probability distribution, i.e., 
this moment-system represents the dynamics of the state probability-distribution rather than the state 
dynamics of the original system ( )x t , and thus the critical point of the moment-system (3) corresponds 
to the drastic change of the probability-distribution rather than the drastic change of the state ( )x t . In 
other words, different from the critical state-transition of the deterministic system in terms of ( )x t , the 
transition of the stochastic system (3) in terms of ( )m t  is the critical distribution-transition. We pre-
sented the detailed derivation of the distribution embedding as well as the algorithm in SI A.3.

To illustrate the effect of noise reduction by the distribution embedding, we employ an one-dimensional 
mathematical model; and then to demonstrate DNM, we effectively detect early-warning signals for three 
real-world problems by using observed data, i.e., a pre-disease state of lung injury, a critical point of a 
eutrophic lake state, and a catastrophic phenomenon of financial markets, which are all fluctuated with 
big noise.

Identifying pre-transition states in small noise and big noise by DNM.  Hereto we elucidate the 
distribution embedding approach by a simulated example, i.e., consider that data ( )x t  are observed from 
a dynamical system expressed by

η
( )

= − + ( ) − ( ) + ( ), ( )
x t

t
p x t x t t

d
d

3 4
3

where η is a white noise with zero mean, i.e., the mean η = 0 and the variance η σ=2 . Note that in 
real situations, the model or system (4) is generally unknown to us.

The system (4) has a bifurcation point around =p 2c  (see Fig. 2a and Fig. S5 of SI) when ignoring 
the noise η ( )t . We generate time-course data from (4) by changing parameter p from − 6 (one stable 
state) to 6 (another stable state) with small noise σ( = . )0 1  shown in Fig. 2a. With small noise σ( = . )0 1 , 
the critical slowing down (CSD) phenomenon4 appears when the system approaches the bifurcation 
point, and thus the traditional statistical indices based on the CSD principle, i.e., standard deviation (SD), 
covariance (COV), autocorrelation (AR) and skewness are able to signal the emergence of the 
state-transition as the parameter p approaches the bifurcation value =p 2c  (Fig. 2b,c). However, when 
the system is under big noise σ( = . )1 5 , the critical transition appears much earlier than the bifurcation 
point, due to the strong perturbations. Thus those indices based on the original state-dynamics fail to 
indicate the earlier transition. Actually, we generate the time-course data from (4) with big noise 
σ( = . )1 5  shown in Fig.  2d, which demonstrates that the regime shift of the system occurs around 

= .p 0 8 far earlier than =p 2c  (Fig. S8). In this case, the CSD principle and other methods based on 
the eigenvalue fail to detect the pre-transition state (Fig. 2e,f).

For the purpose of illustration, next we approximate (4) by the moment expansion up to the second 
order (see SI B for details), although our method is only based on the observed data and does not require 
this analytical implementation:

ξ
( )

= − + ( ) − ( ) ( ) − ( ) + ( ), ( )
m t

t
p m t m t m t m t t

d
d

3 3 5
1

1 1 2 1
3

1

σ ξ
( )

= ( ) − ( ) ( ) − ( ) + + ( ), ( )
m t

t
m t m t m t m t t

d
d

6 6 6 6
2

2 1
2

2 2
2

2

where m1 is the mean (the 1st-order moment), m2 is the variance (the 2nd-order central moment), and 
σ is the amplitude or variance of original white noise η ( )t . ξ ( )t1  and ξ ( )t2  are considered as small noises 
derived from moment closure. Clearly, ( )m t1  and ( )m t2  approximately represent the distribution of the 
original state ( )x t  in (4). For system (5)–(6) without the noise terms, there is a bifurcation point around 

= .p 0 8m  much earlier than the original =p 2c  (see Fig. S5 and Fig. S8 in SI), which implies the critical 
distribution-transition is expected around pm (see Fig. S6 and Fig. S7), and thus quite different from the 
traditional state-transition.
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Based on the data ( )x t  in Fig. 2d and the computational procedure with window interval 10 (see SI A.3 
and A.5), we construct the synthetic time-course data of ( )m t1  and ( )m t2  (Fig. 2g), where the noise level 
is clearly smaller than that of the original in Fig. 2d. Actually, the standard deviations of mi ( = , )i 1 2  are 
less than 0.4 while that of original variable x is more than 1 according to the simulation results. Obviously, 
the critical point is near the bifurcation point when the system is under small noise (Fig. 2a), while the 
critical point is far ahead of the bifurcation point when the system is perturbed by big noise (Fig. 2d). It 
should be noted that the bifurcation point of ( )m t  is moved to around = .  < =p p0 8 2c  (Fig. S8).  
Then, instead of the original system x with big noise, we study the moment system m1 and m2 with small 
noise. Thus, for this moment system, SD and AR are again sensitive to the critical transition (Fig. 2h,i) due 
to the small noise level. It can be seen that the critical point of the original stochastic system is again close 
to the bifurcation point of the transformed system (Fig. 2g). Notice that the two new state-variables behave 
in a strongly correlated manner in dynamics when the system approaches the transition point. Hence the 
DNM score suffices to signal the critical transition before its occurrence. Note that Fig. S8 also shows that 
the critical distribution-transition point of the original system is approximately the bifurcation point of the 
moment system for both big noise σ = .1 5 and small noise σ = .0 1.

Different from the traditional (critical) “state-transition” for a deterministic system, the critical transi-
tion caused by big noise is actually a critical “distribution-transition” for a stochastic system, that is, the 
distribution of the state for the stochastic system has a drastic change from one to another, which results 
in a new probability distribution (Fig. S12). By such a transition, the probability of the current stable state 
can be significantly reduced while the probability of another stable state may be drastically increased. The 
distribution of such a critical distribution-transition is related to the magnitude of noise, that is, the larger 
the noise is, the earlier the critical distribution-transition would be; the nearer to the bifurcation point, the 
more probable that the system would transit into a new stable state. We give a detailed discussion in SI B 

Figure 2.  Traditional criteria based on CSD under small noise and big noise. (a–c) show the state-
variable of Eq. (4) and statistical indices, i.e., the standard deviations (SD) and the autocorrelations (AR), 
respectively when the system is under small noise σ( = . )0 1 . (d–f) show the state-variable of Eq. (4) and 
statistical indices, i.e., the standard deviations (SD) and the autocorrelations (AR), respectively when the 
system is under big noise σ( = . )1 5 . The green spot represents the pre-transition or critical state, while the 
red one is the state immediately after the transition. (a) The state-variable under σ = .0 1. (b) The standard 
deviation under σ = .0 1. (c) The autocorrelation under σ = .0 1. (d) The state-variable under σ = .1 5.  
(e) The standard deviation under σ = .1 5. (f) The autocorrelation under σ = .1 5. It can be seen from  
(a–c) that SD and AR can signal the emergence of the critical transition under a small noise. However,  
(d–f) show that SD and AR cannot reflect the critical transition under big noise. (g–i) show the moment-
variables of Eqs (5,6) and statistical indices, i.e., the standard deviations (SD) and the autocorrelations (AR), 
after increasing the dimension from 1 to 2. (g) the moment-variables under σ = .1 5 derived from (d,h) the 
standard deviation of m1 under σ = .1 5. (i) The autocorrelations of m1 under σ = .1 5. It can be seen that  
the CSD-based criteria work again.
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and Fig. S1. Note that we do not consider the flickering phenomenon in this paper, i.e., we assume only 
to have the observed data near the original stable state before the critical transition to another state, and 
based on such observed data, to detect the early-warning signals of the critical transition.

Predicting critical transition in a network.  We employ an eighteen-node gene regulatory network 
(shown in Fig. S9) to demonstrate the effectiveness of DNM. The detailed descriptions of the network 
represented by a set of stochastic differential equations are provided in SI C, and numerical simulations 

Figure 3.  Predicting critical transition in a 18-node network by DNM. (a) shows dynamics of the 18 
nodes by slowly changing the value of the parameter P. It is difficult to indicate the critical transition of this 
trajectory from single variables (or their SDs and ARs) since the strong fluctuations of variables appear at 
almost all of variables due to the big noise. (b,c) respectively show the CSD-based indices, i.e., SD and AR, 
which fail to signal imminent critical transition at P =  0. (d) The curve shows the clear increasing tendency 
of the DNM score before the critical point at P =  0, and thus the DNM score suffices to signal the critical 
transition before it occurs. The pre-transition state of this trajectory is presented as the green circle.
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are provided in Fig.  3. It is difficult to use traditional SD or AR to detect the signals from x due to 
multi-variables and big noise. Also, the change of the largest singular value cannot signal the imminent 
critical transition due to noisy data and a small number of samples (see Fig. S10). We transformed the 
data into the moment-variable (or equivalent distribution) data by k =  2, and the total moment variables 
are 189 with window interval 10. In contrast, our computation result shows that a drastic change (or 
sharp increase) in the DNM (27 variables) score indicates the emergence of a critical state of this trajec-
tory just before the critical transition, which validates that the DNM can serve as a general indicator by 
detecting the early-warning signal of the system.

Predicting critical transitions in real datasets.  We further applied DNM to three real datasets, i.e., 
the microarray data for acute lung injury induced by carbonyl chloride inhalation exposure (GSE2565) 
which records the time-course microarrays collected from lung tissue of mouse31, the ecological dataset 
about the eutrophic lake state which records the historical yearly data for lake-water-quality indices32, 
and the financial dataset about the bankruptcy of Lehman Brothers which records the historical daily 
prices of interest-rate swaps in the USD and EUR currency26. The detailed computation and data descrip-
tion are described in SI D and E, respectively. Figure  4 shows the identified pre-transition states just 
before the critical deteriorations by the DNM score, all of which well agreed with the observed transition 
phenomena described in the original datasets26,31,32.

Figure 4a presents the DNM (169 variables) scores for acute lung injury (total 12,871 observed varia-
bles or genes in the original state space), which shows that there is a clear signal, that is, the DNM score 
increases sharply and peaks at 8 hr. Therefore, we identified the pre-transition state around 8 hr. In the 
original experiment, a 50%–60% mortality was observed at 12 hr and a 60–70% mortality was observed at 
24 hr31, which agrees with our result. It can be seen from Fig. 4a that the DNM score indicates the signals 
of the pre-transition state before the critical point. Further, a figure illustrating the dynamical changes 
of the whole molecular network from 0.5 hr to 24 hr is shown in Fig.  4b–e, where a strong signal for 
the pre-transition state can be observed around 8 hr (also see Fig. S11 for the whole progression of the 
disease). Therefore, the DNM score is able to identify the pre-transition state, which is consistent with 
our previous results2,28 and the observed experimental results31. The identified DNM variables are listed 
in the Supplementary Table ‘Identified DNM members A’.

Figure  4f shows the change of the DNM (21 variables) score for the eutrophic lake state (total 11 
observed variables in the original state space, and total 77 moment variables in the moment expansion 
space), which is constructed from recorded data of historical changes in the Erhai Lake catchment system 
in Yunnan, China8. It can be seen that the DNM curve peaks near the critical transition of the eutrophic 
lake state (around year 2002) and thus presents a clear signal for the critical state-transition, which well 
agrees with the ecological records, i.e., the original records show an abrupt transition in algal states 
between 2001 and 2005. From the combined monitored and lake sediment data, it seems that a profound 
transition in the algal community occurred around 200232. It is also pointed out that the transition in Erhai 
Lake in 2002 corresponds to the classic development of a bistable system32, that is, the shift in the state of 
the diatom communities and the abrupt changes in water quality indicators are consistent with the behav-
iour of the lake that is shifting from a stable state (i.e., the oligotrophic state) to another stable state (the 
eutrophic state). Therefore, DNM correctly predicted the imminent transition from one state to another. 
The identified DNM variables are presented in the Supplementary Table ‘Identified DNM members B’.

The critical transitions in financial market are often referred to the broken of unstable “financial bub-
bles”. For the data of financial market related to the bankruptcy of Lehman Brothers, which was once the 
fourth-largest investment bank in the United States before declaring bankruptcy on September 15, 2008 
and whose bankruptcy is thought to have played a major role in the unfolding of the late-2000s global 
financial crisis, the traditional criteria based on CSD (i.e., SD and AR) failed to signal the occurrence of 
critical transition (see Fig. S11 in SI) possibly due to strong fluctuations of data. However, as shown in 
Fig. 4g by using our scheme, the DNM (5 variables) score increases abruptly before the bankruptcy (total 
5 observed variables) of Lehman Brothers (time point 0), which is consistent with the phenomena26, and 
this result clearly shows the effectiveness of DNM to apply to financial collapse prediction.

The successful applications of DNM in the three real datasets show the effectiveness of DNM in 
identifying the pre-transition states even with big noise or perturbation. The detailed computational 
procedure and data description are provided in SI D and E, respectively. The identified DNM for the 
biological dataset is also given in Supplementary Table ‘Identified DNM members’. To validate the effec-
tiveness of the noise reduction by our method, we also conducted the calculation of the signal-to-noise 
ratio (SNR) for the three real datasets shown in Table S2 (Supplementary Information), and the results 
indicated that SNRs in the high-dimensional space were all increased after the implementation of the 
moment expansions, compared with those in the original space.

Discussion
To detect early-warning signals of critical transitions for complex dynamical systems with big noise, 
first we developed a distribution embedding scheme, by increasing the dimension of the original data, 
and secondly we extended CSD (for single variables) to DNM (for multi-variables or a network) so 
as to obtain robust signals at a network level by exploring correlation and fluctuation information of 
high-dimensional data.
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In this work, we raised a concept, i.e., distribution-transition, in contrast to the traditional 
state-transition. A state-transition occurs as deterministic bifurcation of a system with small noise, which 
can be detected by the traditional method CSD or DNM. However, when the system is perturbed by big 
noise, the transition occurs far earlier than the deterministic bifurcation point of the original system, 
which makes the traditional methods  fail. In this work, we show that such a system can be transformed 
into a moment-system with small noise. Thus, traditional method CSD or DNM can be used to detect 
the critical point or bifurcation point of the moment system. Since a set of moments of ( )x t  correspond 
to one probability distribution of ( )x t , the bifurcation of the moment system with finite terms of moments 
also approximately corresponds to the critical point of the probability distribution. Therefore, such a 
transition is the distribution-transition, which results in the drastic change of the distribution.

To overcome the problem of big noise, the key idea is to change the observed state-dynamics with 
big noise to the probability distribution-dynamics with much smaller noise, which can be represented 
by moment dynamics. Thus, due to the reduced fluctuation or noise level on the distribution-dynamics, 

Figure 4.  The applications of DNM on three real data. (a) The DNM score for acute lung injury clearly shows 
an signal around 8 hr, that is, an abrupt increasing of DNM from 4–8 hr, around which a critical transition 
occurs. (b–e) The figures show the dynamical changes of the molecular network at (b) 0.5 hr, (c) 4 hr, (d) 8 hr, 
and (e) 24 hr with the corresponding DNM, where the color of nodes represents the fluctuation strength in 
gene expressions, and each edge represents the correlations between two nodes. A small cluster located in the 
upper-left corner is the identified DNM-related genes. It can be seen that at 8 hr, there is a strong signal to 
indicate the pre-transition state. (f) The DNM score for a eutrophic lake state clearly shows a signal around 
year 2002, at which a critical transition occurs. Plots were calculated by employing a 59-year (half time series) 
sliding-window during the period 1883–2009, and are plotted to the right of the window. (g) The DNM score 
for the bankruptcy of Lehman Brothers clearly shows an signal around the time point 0 (2008/9/15), at which a 
critical transition occurs. Plots were calculated by employing a 100-trading-days sliding-window, and are plotted 
to the right of the window.
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the traditional indices or methods based on CSD can be directly applied to the data of the transformed 
distribution-dynamics rather than the data of the original state-dynamics. Such a transformation from 
the state to the distribution clearly increases the dimension of the system. As indicated in the results, our 
method can exploit the information of both fluctuations and correlations between observed variables in 
a multi-dimensional system, in contrast to the CSD-based criteria which mainly focus on the fluctua-
tions of individual variables. It should be noted that the distribution-dynamics represented by moments 
does not increase the amount of information but just reduces the level of the noise because some part 
of noise is embedded into the distribution or deterministic model, so that we can accurately detect the 
early-warning signals for the transformed system with small noise. As shown in Fig. S8, the bifurcation 
point of the moment system corresponding to the distribution-transition indeed moves earlier with the 
increase of the noise level. From the viewpoints of both theoretical analysis and numerical computation, 
we demonstrated that DNM is sensitive to the pre-transition state and suffices to provide early-warning 
signals for the critical transition even if the related dynamical model is unknown and the original data 
are not reliable due to the big noise. Note that we can only observe the data around the present stable 
state before the transition to another state, and thus the transition is actually a conditional distribution 
transition due to no information available on another state.

Our method is able to identify the pre-transition state before the critical distribution-transition, 
rather than the after-transition state, and therefore has great potential to apply to many real systems 
even with strong noise. It is also worth noting that the members in DNM make the first move from 
the before-transition state toward the after-transition state during a transition, and thus may be caus-
ally related with transition-driving factors. Hence, those members in DNM have significant physical or 
biological implications depending the subjects under study. Although a major advantage of increasing 
dimensionality is the reduction of the noise level, it requires additional data to construct the time-series 
of higher order moments. It is a future topic how to construct the higher-dimensional system with short 
time-series data by efficiently exploring information of correlations and dynamics among the observed 
variables38,39. Also it should be noticed that although there are many ways for moment expansions, such 
as Gram-Charlier or Edgeworth series, which are not convergent series, it is of importance to find an 
appropriate expansion scheme to accurately reconstruct the system with higher dimensions.

Methods
Theoretical basis to detect early-warning signals of critical distribution-transition with big 
noise by distribution embedding.  When the system is fluctuated by big noise, the critical point is 
far earlier than the bifurcation point, which may make the critical slowing-down principle fail. However, 
we can transform the stochastic system into moment equations, a set of ordinary differential equations 
(ODEs) with moments as variables, that is, the mean, variance, skewness and so on, and thus reduce 
the level of the original noise. A set of moments correspond to a probability distribution, and such a 
transformation is actually to convert the state dynamics into the distribution dynamics. In the following, 
we explain such a procedure based on dynamical systems theory.

For a linear system, Eq. (2) can even be exactly expressed by Eq. (3) with the moment expansion up 
to the second order, i.e., k =  2. For this case, there is no error, i.e., the noise is reduced to zero, 
η ( ) = , ...., t {0 0}small . For a nonlinear system, if x follows Gaussian distribution, Eq. (2) can also be 
exactly expressed by Eq. (3) with k =  2 and the zero error.

For a general nonlinear stochastic system, with moment expansion to an infinite order33, i.e., as 
→ ∞k , the dynamics of system (2) can be expressed by Eq. (7) in an exact manner, which becomes a 

deterministic system with the zero error or noise.

( )
= ( ( )), ( )

M t
t

F M t
d

d 7

where ( ( )) = ( ( ( )), ( ( )), …)F M t g M t g M t1 2  are nonlinear moment functions, and moment variables are 
( ) = ( ( ), ( ), …)M t m t m t1 2 . The error functions are reduced to zero, i.e., η ( ) = ( , , …)t 0 0small . Also see 

the intuitive explanation in Fig. 1.
In other words, it is expected that, the higher the order of moment expansion is, the more accurately 

the resulting dynamics (3) would approximate that of the original system (2) in terms of the distribution, 
and thus the smaller the noises or error terms are37. This result gives the theoretical basis to reduce the 
noise level by increasing the dimension of the original system. In particular, the moment system corre-
sponds to the distribution dynamics, i.e., a set of moments represent one distribution. Thus, Eq. (3) or 
(7) can be also viewed as the transformation from state dynamics with big noise to distribution dynamics 
with small noise. Note that we can only observe the data in the original state before the transition, and 
have no information on the state after the transition, i.e., the state is assumed to have no flickering. Thus, 
the observed probability distribution is the conditional distribution. Also note that in real situations, our 
analysis is only based on the observed data, and does not need the above analytical implementations. 
Next we will describe the implication of the critical transition for the moment-system, and then give 
the detail procedure to construct the synthetic data in a higher-dimensional space from the observed 
original data.
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We specifically derive the moment evolution equations by expanding the moments to the second 
order, i.e., k =  2. Let the first-order moment (or mean) be = , …,u u u{ }n1  with =u xi i , and the 
second-order moment (or covariance) be =

, = , ,…,
v v{ }ij i j n1 2

 with = 〈( − )( − )〉v x u x uij i i j j . Then the 
moment equations are given by the following deterministic system33:

( )
= ( ( ), ( )), = , , …, , ( )

u t
t

g u t v t i n
d

d
1 2 8

i
i

( )
= ( ( ), ( )), , = , , …, . ( )

v t

t
g u t v t i j n

d

d
1 2 9

ij
ij

where

( ( ), ( )) = 〈 ( ( ))〉, ( )g u t v t f x t 10i i

σ( ( ), ( )) = 〈( ( ) − ( )) ( ( )) + ( ( ) − ( )) ( ( ))〉 + . ( )g u t v t x t u t f x t x t u t f x t 11ij i i j j j i ij

Therefore, the original stochastic system (2) is transformed to a deterministic system (8)–(9).
If the original system is linear, that is, ( ) = +f x Ax B, where = ( )A Aij  is an n ×  n constant matrix 

and = ( )B Bi  is a constant n-dimensional vector, then obviously we can analytically derive the moment 
system (8)–(9) directly, due to

∑ ∑ ∑
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= + = 〈 〉 + = + ,
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Thus, the original system can be analytically expressed by the first-order moments u and the 
second-order moments v.

However, if the original system is nonlinear, the deterministic system (8)-(9) is generally unclosed 
with the first and second order moments. That is, in the expressions (10) and (11) there are usually 
involved with high-order moments, namely the third or higher order moments. To circumvent this prob-
lem, the approximation methods, such as moment-closure40, are used to truncate moments up to the 
second order, thereby making Eqs. (8)-(9) closed in terms of the first and second order moments. Due 
to such an approximation, there are additional error or noise terms in g i and g ij

 of Eqs. (8)-(9), as 
described in Eq. (3). Note that we can make similar analysis by using binomial moments.

Data processing.  The gene expression profiling dataset for lung injury disease was downloaded from 
the NCBI GEO database (ID: GSE2565) (www.ncbi.nlm.nih.gov/geo). The networks were visualized using 
Cytoscape (www.cytoscape.org). The detailed description and data processing were presented in SI E1.

For the ecological dateset of a eutrophic lake state, the data were sampled during the period 1883–
200932, including historical trends for lake water quality, and several related chemical indices. We used 
the sliding-window method with a 59-year period. The detailed background of this dataset can be found 
in SI E2.

The financial dataset was from the ING Bank and consists of the time series of USD and EUR 
interest-rate swaps (IRS)26. The data span more than twelve years: the EUR data from 12/01/1998 to 
12/08/2011 and the USD data from 04/29/1999 to 06/06/2011. Here, we only used the mean of the daily 
prices of IRSs in the USD and EUR currency. The introduction of this dataset was in SI E3.
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