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Cervical cancer (CC) is one of the most common malignancies in women worldwide.
Dismal prognosis rates have been associated with conventional therapeutic approaches,
emphasizing the need for new strategies. Recently, immunotherapy has been used to
treat various types of solid tumors, and different subtypes of the tumor microenvironment
(TME) are associated with diverse responses to immunotherapy. Accordingly,
understanding the complexity of the TME is pivotal for immunotherapy. Herein, we
used two methods, “ssGSEA” and “xCell,” to identify the immune profiles in CC and
comprehensively assess the relationship between immune cell infiltration and genomic
alterations. We found that more adaptive immune cells were found infiltrated in tumor
tissues than in normal tissues, whereas the opposite was true for innate cells. Consensus
clustering of CC samples based on the number of immune cells identified four clusters
with different survival and immune statuses. Then, we subdivided the above four clusters
into “hot” and “cold” tumors, where hot tumors exhibited higher immune infiltration and
longer survival time. Enrichment analyses of differentially expressed genes (DEGs)
revealed that the number of activated immune signaling pathways was higher in hot
tumors than that in cold tumors. Keratin, type I cytoskeletal 23 (KRT23), was upregulated
in cold tumors and negatively correlated with immune cell infiltration. In vitro experiments,
real-time reverse transcription-quantitative polymerase chain reaction, cytometric bead
arrays, and ELISA revealed that knockdown of KRT23 expression could promote the
secretion of C-C motif chemokine ligand-5 and promote the recruitment of CD8+ T cells.
We also constructed a model based on DEGs that exhibited a high predictive power for
the survival of CC patients. Overall, our study provides deep insights into the immune cell
infiltration patterns of CC. Moreover, KRT23 has huge prospects for application as an
immunotherapeutic target. Finally, our model demonstrated a good predictive power for
the prognosis of CC patients and may guide clinicians during immunotherapy.
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INTRODUCTION

Cancer is widely acknowledged to pose the highest clinical,
social, and economic burden in terms of cause-specific
disability-adjusted life years (1). Cervical cancer (CC) is ranked
fourth for incidence and mortality in women worldwide (2).
Invasion and metastasis by CC cells are associated with a poor
prognosis, representing the most prevalent cause of cancer-
associated deaths (3, 4). Current evidence suggests that
surgery, chemotherapy, and radiotherapy yield satisfactory
efficacy for early-stage and low-risk CC (5–7). However, the
reported 5-year survival for metastatic cervical cancer is only
16.5% (8). In addition, side effects caused by chemotherapy and
radiotherapy limit their clinical use. Accordingly, the exploration
of the biological mechanisms and the development of new
therapeutic targets and strategies for CC patients are essential.

In recent years, many emphases have been placed on the crucial
role of immunotherapy in CC. Given the high expression of
programmed cell death-1 (PD-1) and programmed cell death
ligand-1(PD-L1) in advanced CC, an increasing body of evidence
suggests that pembrolizumab (a humanized monoclonal anti-PD-1
antibody) yields substantial antitumor activity and exhibits a good
biosafety profile in clinical trials during the treatment of recurrent
CC or metastatic CC (mCC) (9–11). Even immunotherapy has
achieved remarkable efficacy. Accumulated data in recent years
have demonstrated that many patients experience minimal or no
clinical benefit if provided with identical treatment. This
phenomenon has been attributed to the complexity and
uniqueness of the tumor microenvironment (TME).

The TME is a complex, plastic, and dynamic system sculpted
by tumor cells and other surrounding cells (12, 13). Cells from the
innate immune system and adaptive immune system, representing
important components of the tumor stroma, can be
reprogrammed according to the TME and may be involved in
the survival and progression of tumor cells (14, 15). For example,
tumor-associated macrophages (TAMs) represent the largest
population of infiltrating myeloid cells in most solid tumors
(16). It has been established that TAMs display a high degree of
functional plasticity when exposed to various microenvironmental
conditions and can be classified as “M1-like” (pro-inflammatory
and usually antitumor) or “M2-like” (anti-inflammatory and
protumor) (17, 18). Accumulating evidence substantiates the
critical roles of the TME in promoting tumor progression.
However, it remains unclear how the TME affects the efficacy of
immunotherapy in CC. It is well-recognized that immunotherapy
harnesses or restores the immune system to kill tumor cells, but
this process requires the infiltration of immune cells in the tumor
site. Many studies have demonstrated that different types of TMEs
are associated with diverse degrees of clinical efficacy with
immunotherapy. In this regard, a “hot” tumor with sufficient
tumor-infiltrating lymphocytes and antigen-presenting cells can
robustly respond to immunotherapy. In contrast, a “cold” tumor
lacking immune cells, in general, cannot elicit an effective response
to immunotherapy (19). Therefore, understanding and
distinguishing the unique classes of the TME are useful for
predicting and guiding immunotherapy.
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Herein, we undertook a comprehensive analysis to explore the
infiltration of immune cells in CC using two different methods and
constructed a predictionmodel.We observed that CCpatients with
greater immune cell infiltration survived longer times. To uncover
the underlying mechanisms of immune cell infiltration, we
subdivided CC tumors into hot and cold types and ascertained
the differentially expressed genes (DEGs) between them. Then, we
identified Keratin, type I cytoskeletal 23 (KRT23), as a
immunotherapeutic target. In addition, our model exhibited good
predictive power for the overall survival (OS) of CC patients.
MATERIALS AND METHODS

Ethics Statement
Primary CC specimens were obtained after surgery and were
frozen in the biobank of the First Affiliated Hospital of
Zhengzhou University; some specimens have received
neoadjuvant therapy. All participants provided written
informed consent for their specimens to be used in this study.
The study protocol was approved by the Ethics Committee of the
First Affiliated Hospital of Zhengzhou University.

Cell Culture
A human cervical cell line (HeLa) was purchased from the
Institute of Biochemistry and Cell Biology of the Chinese
Academy of Sciences (Shanghai, China). Cells were cultured in
RPMI1640 medium with 5% fetal bovine serum and an
atmosphere of 5% CO2 in a humidified incubator at 37°C.

Acquisition and Normalization of Data
Level-2 mRNA sequencing data (fragment per kilobase of
transcript per million mapped reads) of CC were downloaded
from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/) and transformed to transcripts per
million for further analyses. The clinical data of CC were
downloaded from the University of California Santa Cruz Xena
(http://xena.ucsc.edu/). The GSE78220 dataset was downloaded
from the Gene Expression Omnibus database (https://www.ncbi.
nlm.nih.gov/geo/). A dataset of patients with metastatic
urothelial cancer treated with anti-PD-L1 agents downloaded
from the online website is supplied in the article (http://research-
pub.gene.com/IMvigor210CoreBiologies/).

Estimation of the Immune Profile
The immuneprofile (i.e., the number and type of immune cells) was
estimated by the R packages “ssGSEA” and “xCell” (R Institute for
Statistical Computing, Vienna, Austria). For xCell analysis, we
selected samples with p < 0.05 and only included immune cells
for further analyses. The Immune Score, Stromal Score, and tumor
purity were calculated by the R package “ESTIMATE.”

Identification and Functional Annotation of
Differentially Expressed Genes
Tumor samples were divided into “cold” and “hot” subtypes.
DEGs were calculated by the R package “Limma” and visualized
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by volcano plots using the R package “ggplot2.”DEGs with log fold
change>1andp<0.05were selected for annotationusing theKyoto
Encyclopedia of Genes and Genomes (KEGG; https://www.
genome.jp/) and Gene Ontology (GO; http://geneontology.org/)
databases using the R package “clusterprofile.” A protein–protein
interaction (PPI)networkwas constructedusingSearchTool for the
Retrieval of Interacting Genes/Proteins (STRING; www.string-db.
org/) and visualized by Cytoscape v3.6.1 (https://cytoscape.org/).

Correlation and Survival Analyses
The R package “corrplot” was used to analyze the correlation of
immune cells. The correlation of KRT23 and C-X-C motif
chemokine ligand 9 (CXCL9) and CXCL10 and C-C motif
chemokine ligand 5 (CCL5) in TCGA dataset was analyzed
through cbioportal (www.cbioportal.org/). The correlation of
KRT23 and immune cells as well as KRT23 expression in the
pan-cancer dataset was determined by the online website TIMER
(https://cistrome.shinyapps.io/timer/). Correlation analysis in
tumor tissues from patients was conducted by Prism7
(GraphPad, San Diego, CA, USA). For survival analyses,
samples were divided into four clusters or “hot” and “cold”
tumor. The R package “survival” was used to assess the survival
difference using the log-rank test.

Real-Time Reverse Transcription-
Quantitative Polymerase Chain Reaction
Total RNA was extracted by TRIzol®Reagent according to the
manufacturer ’s (TaKaRa Biotechnology, Shiga, Japan)
instructions, and the concentration was measured using a
spectrophotometer (NanoDrop™ 2000; Thermo Fisher,
Waltham, MA, USA). RNA (1 µg) was used to reverse DNA
using the PrimeScript™ RT Reagent kit (TaKaRa Biotechnology).
The primers for KRT23 were constructed by PrimerBank (https://
pga.mgh.harvard.edu/primerbank/index.html/) and synthesized
by Sangon Biotech (Shanghai, China) (Supplementary Table
S1). Glyceraldehyde-3-phosphate dehydrogenase was used for
data normalization.

Small Interfering RNA Transfection
Knockdown of KRT23 expression was achieved using the
jetPRIME® Transfection Reagent kit (Polyplus-transfection,
Illkirch-Graffenstaden, France). HeLa cells (1 × 105) were
seeded in six-well plates with RPMI1640 medium. Before
transfection, the small interfering RNA (siRNA) of KRT23 was
diluted to 20 µM according to the manufacturer’s instructions.
Then, 200 µl of transfection buffer and 4 µl of jetPRIME reagents
were mixed and incubated for 10 s at room temperature.
Subsequently, 50 nM of siRNA was added and incubated for
15 min at room temperature. siRNA efficacy was analyzed by
real-time reverse transcription-quantitative polymerase chain
reaction (RT-qPCR) after 48 h. The sequence of siRNA
synthesized by Gene Pharma (Shanghai, China) is listed in
Supplementary Table S2.

Transwell™ Assay
Migration of CD8+ T cells was analyzed through the Transwell
assay. CD8+ T cells (2 × 104) isolated by microbeads from healthy
Frontiers in Oncology | www.frontiersin.org 3
donors were activated with CD3/CD28 beads and seeded in the
upper chamber of the Transwell apparatus with serum-free
medium (Millipore, Billerica, MA, USA). HeLa cells (2 × 104)
were seeded in the lower chamber with RPMI1640 medium. The
number of CD8+ T cells was calculated using flow cytometry.

Enzyme-Linked Immunosorbent Assay
Tumor cells were transfected with siRNA for 48 h. Then,
supernatants were collected and centrifuged (1,500 rpm,
5 min) to remove debris. The CCL5 concentration was
measured by the LEGEND MAX™ Human CCL5 (regulated
upon activation normal T cell expressed and secreted factor,
RANTES) ELISA kit according to the manufacturer’s (Biolegend,
San Diego, CA, USA) instructions. Briefly, standard dilutions
and samples were prepared, followed by the addition of 50 ml of
Assay Buffer B to each well. Then, 50 ml of the standard or sample
was added to the appropriate well, followed by incubation at
room temperature for 2 h with agitation at 200 rpm. Then, 100 ml
of Human CCL5 Detection Antibody solution was added to each
well, followed by 100 ml of Avidin-HRP A solution. Results were
read at an optical density of 450 nm.

Detection of Multiple Chemokines
We used the LEGENDplex™ kit (BioLegend) to detect the
chemokines secreted by tumor cells. First, 25 µl of assay buffer
was added to the standard or sample in each tube. Then, we
added 25 µl of mixed beads (A and B) and incubated at room
temperature for 2 h with agitation at 500 rpm. Subsequently, we
added 25 µl of antibodies to each tube and incubated at room
temperature for 1 h with agitation at 500 rpm. Next, we added 25
µl of SA-PE to each tube and washed it with washing buffer. The
fluorescence intensity was detected by a flow cytometer and
analyzed by LEGENDplex v8.0.
Statistical Analyses
Statistical analyses were undertaken using Prism 7 (GraphPad)
and R 3.6.3. Two-tailed unpaired t-tests and the Wilcoxon test
were used to compare the difference between the two groups.
Spearman’s rank correlation coefficient was used to evaluate the
correlation. A p-value <0.05 was statistically significant.
RESULTS

Infiltration Pattern of Immune Cells in
Tumor and Adjacent Normal Tissue
We carried out a multistep analysis to explore the infiltration of
immune cells into CC (Figure 1). First, we estimated the number
of immune cells in each sample between tumor and adjacent
normal tissues by Single sample gene set enrichment analysis
(ssGSEA) and xCell algorithms. ssGSEA and xCell consistently
showed that the number of each cell type that infiltrated into the
TME was different, revealing the complexity of the TME. In
general, the number of adaptive immune cells, such as activated
CD4+ T cells, effector memory CD4+ T cells, type-17 T-helper
(Th17) cells, and Th2 cells, in tumor tissue was higher than that
June 2022 | Volume 12 | Article 779356
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in adjacent normal tissue, which indicated an activated immune
response in tumor tissue. The number of CD8+ T cells was higher
in tumor tissues, but the difference was not statistically
significant. Cells from the innate immune system were
significantly infiltrated in normal tissues (Figures 2A, B).
Tumor tissues had a lower Immune Score, but the difference in
Stromal Score was not significant (Figures 2C, D). We also
compared the difference in immune cells in patients who
received radiotherapy. After radiotherapy, pro-B cells and Th1
cells accumulated in tumor tissue (Supplemetary Figures
S1A, B) . Overall, the above results revealed distinct adaptive
and innate immune cell infiltration patterns.

Characterization of Immune Clusters in
Cervical Cancer Tissues
It is widely acknowledged that an efficient antitumor immune
response requires the synergistic action of multiple cells. To
explore the relationships between different cell types, we
performed a correlation analysis of infiltrating cells in tumor
tissues. Most infiltrating cells showed a high correlation with
each other, especially activated CD8+, CD4+ T, dendritic, and B
cells. We observed a high correlation between immunosuppressive
and immune cells, such as regulatory T cells, myeloid-derived
suppressor cells, and M2 macrophages, which suggested that
immune suppression was induced by tumor cells after activation
of the immune system. The innate immune system cells, such as
Frontiers in Oncology | www.frontiersin.org 4
monocytes, neutrophils, and natural killer cells, exhibited a weak
association with other cells, demonstrating a unique antitumor
immune process (Figures 3A, B).

Next, we performed consensus clustering of all samples based
on the proportions of immune cells to identify the subtypes of
infiltrating immune cells. The consensus matrix heatmap showed
four distinct groups estimated by two methods (Figures 3C, D).
We observed a gradual increase in immune cell infiltration in
tumor tissue from groups 1–4. Groups 1 and 2 demonstrated
little infiltration of immune-related cells, group 3 had modest
infiltration levels, and group 4 demonstrated high levels of
immune cells (Supplemetary Figures S2A, B) . Consistently,
group 4 had the highest Immune Score (Supplementary Figures
S2C, D) . To further characterize the clusters of CC cells, we
intersected each group obtained from the two methods and
denoted them as clusters 1–4 (Supplementary Figure S3A) .
In accordance with the results stated above, cluster 4 had a high
Immune Score (Figure 4A). Next, we analyzed the expression of
genes involved in the immune response, immune tolerance, and
antigen presentation in the four clusters. The expression of
immune checkpoint-related genes (CD276, CD274, CD40,
CTLA4, HAVCR2, LAG3, PDCD1), antigen presentation-
related genes (B2M, HLA-B, HAL-C, HLA-DQA1, TAP1, TAP2,
HLA-DQA2), cytokine-related genes (GZMB, GZMH, IFNG,
PRF1, TNF), and chemokine-related genes (CCL5, CXCL10,
CXCL13, CXCL9) increased gradually from cluster 1 to cluster
FIGURE 1 | Multiple-step analysis of this study.
June 2022 | Volume 12 | Article 779356
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4 (Figure 4B; Supplementary Figures S3B–D) . Survival
analyses revealed that cluster 4 had the longest survival relative
to clusters 1, 2, and 3 in terms of OS and progression-free
interval (PFI) and have potential trends of a higher percentage of
patients with low stages, although there was inconsistency with
grade (Figures 4C, D; Supplementary Figures S4A, B) .

Survival Status and Signaling Alterations
Between Hot Tumors and Cold Tumors
To further explore the mechanisms of immune cell infiltration,
we redefined cluster 1, cluster 2, and cluster 3 as cold tumors and
cluster 4 as a hot tumor based on infiltration of immune cells and
survival status. Hot tumors had longer OS and PFI than those in
cold tumors (Figures 5A, B). Next, we analyzed the difference
between the two groups at the transcriptional level. Hot and cold
tumors showed different transcription patterns according to
volcano plots (Figure 5C). In this study, 657 and 55 mRNAs
were upregulated in hot and cold tumors, respectively. To further
explore the function of DEGs, functional enrichment analyses
were conducted using GO and KEGG. The GO analysis revealed
that DEGs in cold tumors were significantly enriched in the
“apical part of cell,” “actin-based cell projection,” and “apical
plasma membrane” (Figure 5D), while those in hot tumors were
Frontiers in Oncology | www.frontiersin.org 5
primarily enriched in “T cell activation,” “regulation of
lymphocyte activation,” “leukocyte cell–cell adhesion,”
“regulation of T cell activation,” and “leukocyte proliferation”
(Figure 5E). KEGG analyses of enrichment of DEGs revealed
that DEGs in hot tumors were enriched mainly in “cytokine–
cytokine receptor interaction,” “chemokine signaling pathway,”
and “cell adhesion molecules,” which indicated an active
immune response in hot tumors (Figures 5F); none of the
KEGG annotations were enriched in cold tumors. These results
suggested that the immune system was activated in hot tumors,
especially the T cell-mediated immune response. Finally, the PPI
networks revealed that the DEGs of hot tumors were mainly
immune-related chemokines and cytokines, and DEGs of cold
tumors were metabol ic genes and Kerat in fami ly
(Supplementary Figures S5A, B) .

Inhibition of KRT23 Expression Promotes
Infiltration of CD8+ T Cells
The above results revealed a correlation between immune cell
infiltration and longer survival, suggesting that inducing immune
cell infiltration in cold tumors may enhance antitumor immunity
and prolong survival time. Among the DEGs between cold and
hot tumors, we found that KRT23 was most significantly
A

B D

C

FIGURE 2 | Infiltration pattern of immune cells in adjacent normal and tumor tissues. (A, B) Level of immune cells in normal and tumor tissues estimated by ssGSEA
and xCell. (C, D) Immune and Stromal score in normal and tumor tissues estimated by ESTIMATE. ns, not significant; *p ≤ 0.05, **p ≤ 0.01.
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expressed in cold tumors than in hot tumors. Pan-cancer analysis
revealed that KRT23 has a higher expression in tumor tissues in
most types of cancers (Supplementary Figure S6A) . Functional
enrichment analyses using the KEGG and GO databases revealed
that KRT23-related genes were negatively correlated with
immune response (Figures 6A, B). Knockdown of KRT23
expression in HeLa cells inhibited cell proliferation
(Figures 6C, D), which suggested an important role of KRT23.
To explore how KRT23 affected immune cell infiltration, we used
cytometric bead arrays to detect the chemokines derived from
tumor cells with KRT23 knockdown. Results revealed that the
secretion of CD8+ T cell-related chemokines (CCL5, CXCL9, and
CXCL10) was increased in the knockdown group (Figure 6E).
Then, we quantified the expression of KRT23 and CD8+ T cell-
related chemokines in clinical tumor samples; the detailed
information of patients was listed in Table 1. Results showed
that KRT23 expression was negatively correlated with these
chemokines, and this result was confirmed using TCGA
Frontiers in Oncology | www.frontiersin.org 6
database (Figure 6F; Supplementary Figure S6B) . We further
found that KRT23 was negatively correlated with CD8+ T cells
(Supplementary Figure S6C) . In addition, we validated the
CCL5 expression because CCL5 changed most obviously after
knocking down KRT23. Results revealed that the knockdown of
KRT23 expression increased CCL5 secretion (Figure 6G).
Transwell assays further indicated that knockdown of KRT23
promoted the recruitment of CD8+ T cells (Figure 6H).

Construction and Validation of a
Prediction Model Based on Differentially
Expressed Genes
Next, we used DEGs to construct a prediction model. We
performed a univariate Cox analysis followed by a Least
absolute shrinkage and selection operator (LASSO) regression
analysis (Supplementary Figure S7A) . To optimize the model,
we carried out multivariate Cox analysis and finally identified 11
genes to construct our model (Supplementary Figure S7B) .
A

B D

C

FIGURE 3 | Correlations of immune cells. (A, B) Correlation of immune cells in tumor tissues estimated by ssGSEA and xCell. (C, D) The heatmap shows the
consensus clustering of CC based on levels of immune cells estimated by ssGSEA and xCell.
June 2022 | Volume 12 | Article 779356
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Heatmaps were generated to reveal the expression of these genes
in high- and low-risk groups in the training and internal test
cohorts; the detailed information of patients was listed in
Table 2. Survival analyses showed that patients with a high
risk had shorter survival in the training and test cohorts
(Figures 7A, B). To explore the accuracy of our model, we
analyzed receiver operating characteristic (ROC) curves in the
training and test cohorts at 1, 3, and 5 years. Our model yielded
high area under the ROC curve (AUC) values (Figures 7C, D).
Given that our model was established based on DEGs in hot and
cold tumors, we hypothesized that this model could also predict
tumor response to immunotherapy. Hence, we used two external
cohorts of CC patients treated with immunotherapy. The results
demonstrated that patients with a high risk had shorter survival
in both cohorts (Figures 7E, F), suggesting that our model could
predict the survival of patients who respond to immunotherapy.
DISCUSSION

Up to now, there is ample evidence suggesting that
chemotherapy for CC is associated with limited efficacy. The
optimal regimen against recurrent CC or mCC includes a
combination of cisplatin, paclitaxel, and bevacizumab,
associated with an overall response rate of 48% and a median
survival of 17 months (20). Moreover, the side effects associated
with radiotherapy limit their clinical application in CC (21),
highlighting the need for new and efficient therapeutic strategies.
Frontiers in Oncology | www.frontiersin.org 7
In recent years, immunotherapy has demonstrated sustainable
clinical response and is the first-line treatment for various
tumors (22). “Cancer immunotherapy” is a general term that is
described as harnessing a patient’s immune system to elicit
antitumor effects (23). Antibodies against PD-1 and PD-L1 are
commonly used for cancer immunotherapy. Their mechanism
involved releasing the “inhibitory brakes” of T cells, resulting in
robust activation of the antitumor immune response (24).

As previously stated, the major risk factor for CC is Human
Papilloma Virus (HPV) infection (25), and the retained viral
antigens in CC make immunotherapy an attractive option
because they could be recognized as foreign. This rationale has
led to the development of antibodies against PD-1 or PD-L1
assessed in several ongoing clinical trials (23, 26). Effective
immunotherapy is contingent on the infi ltration of
lymphocytes and antigen-presenting cells. In general, the TME
can be divided into two broad phenotypes: “T cell-inflamed” and
“non-T cell-inflamed” (27). Several methods have been used to
estimate the immune profile in the TME, encompassing ssGSEA,
CIBERSORT, TIMER, MCP-counter, and xCell (28–32). ssGSEA
and MCP-Counter use specific cell-maker genes and score the
immune profile through the expression of these genes.
CIBERSORT focuses on the ratios of each cell type using Nu-
support vector regression. xCell integrates these methods and
expands the cells that can be evaluated to 64 types. To more
accurately reflect the level of immune cells in the TME of CC, we
used two different methods. The comparison between tumor and
adjacent normal tissues and correlation analysis of estimated
A

B D

C

FIGURE 4 | Characterization of immune clusters of CC. (A) Expression of immune score, stromal score, and tumor purity in the four subtypes. (B) Expression of
cytotoxicity-related cytokines in the four subtypes. (C, D) Kaplan–Meier curve shows the OS and PFI of 4 clusters. **p ≤ 0.01, ****p ≤ 0.0001.
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immune cells yielded consistent findings, suggesting that these
two methods can be used to estimate immune levels. We found
that CC could be divided into 4 clusters based on consensus
clustering, and clusters with higher immune infiltration yielded
better survival rates. In a study by Wang et al. (33), CIBERSORT
showed that CD4+ T cells represent an independent prognostic
factor of CC. Meanwhile, immune cell infiltration has also been
correlated with the response to chemotherapy (34).

In this study, we further redivided the 4 clusters into 2 subtypes:
“hot” and “cold” tumors based on the immune levels. “Hot” tumors
exhibited a T cell-inflamed phenotype, and “cold” tumors acted as a
non-T cell-inflamed phenotype. Pathway enrichment analysis
confirmed that “hot” tumors were associated with an active
Frontiers in Oncology | www.frontiersin.org 8
immune response. Cold tumors are characterized by the
infiltration of few immune cells and are hence the most
challenging to eradicate, accounting for their poor prognoses
(35). Several strategies have been used to convert cold tumors to
hot tumors: radiotherapy, chemotherapy, targeted therapy, and
adoptive-cell therapy (36–40). In this study, we analyzed the
differences between hot and cold tumors and identified KRT23 as
the most significantly upregulated gene in cold tumors. Keratin is
the main component of epithelial cells, and malignant tumor cells
originate from these epithelial cells. KRT23 is a newly identified
gene in the KRT family (41, 42). Studies have reported that KRT23
overexpression promotes the migration of ovarian cancer cells via
epithelial–mesenchymal transition. Interestingly, KRT23 could
A B

D

E F

C

FIGURE 5 | Survival and transcriptome characteristics of cold and hot tumors. (A, B) Kaplan–Meier curve shows the OS and PFI of cold and hot tumors.
(C) Volcano plot shows the difference of gene expression in cold and hot tumors. (D) GO enrichment analysis in cold tumors. (E) GO enrichment analysis in hot
tumors. (F) KEGG enrichment analysis in hot tumors.
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promote the proliferation of colorectal tumor cells by increasing
telomerase reverse transcriptase expression (43). Although the
oncogenic role of KRT23 has been explored, it remains unclear
how KRT23 affects the immune response. We found that KRT23
expression was negatively correlated with the immune response.
Knockdown of KRT23 expression in tumor cells resulted in
increased secretion of CCL5 and inhibited tumor cell
proliferation. Our results corroborate that the inhibition of
KRT23 expression enhances the antitumor response. Hence, a
potential combination strategy of targeting KRT23 and
immunotherapy could be a rational approach against CC.

The large difference in survival between hot and cold tumors
inspired us to construct a prediction model based on the DEGs
between the two types of CC tumors. Thismodel performedwell in
the training cohort and internal and external validation cohorts.
Hence, our model was reliable and could be used to guide clinical
treatment. Over the years, several prediction models for CC have
been documented in the literatures. Mei et al. (44) conducted
immune profiling by ssGSEA and identified four immune-related
Frontiers in Oncology | www.frontiersin.org 9
prognostic gene signatures. Chen et al. (45) constructed a TME-
related signature to predict the prognosis of CC. The results from
those studies further substantiate ourfindings.Moreover,Ding et al.
(46) screened survival-related immune genes and constructed a
prediction model containing 13 genes. In addition, Yang et al. (47)
constructed a prediction model based on ferroptosis-related genes.
Of note, our model exhibited a high predictive power for the
survival of patients with melanoma and urothelial cancer
receiving immunotherapy.

However, there are some limitations in this study. First, we
did not explore the effect of KRT23 on migration or apoptosis of
tumor cells. Second, the prediction model lacks validation using
clinical specimens.
CONCLUSIONS

In the present study, we undertook a comprehensive analysis of
the infiltration of immune cells in CC. We identified hot and cold
A B
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F

G H

C

FIGURE 6 | KRT23 promotes CD8+ T cell recruitment. (A, B) GO and KEGG analysis of KRT23-related genes. (C) qPCR analysis shows the knockdown
efficacy of KRT23. (D) Proliferating rate of tumor cells with knockdown of KRT23. (E) The heatmap shows the concentration of cytokine and chemokine
secreted by tumor cells with knockdown of KRT23. (F) Correlation of KRT23 and CCL5, CXCL9, and CXCL10 in tumor tissues of CC. (G) ELISA shows the
CCL5 secretion by tumor cells with knockdown of KRT23. (H) Number of CD8+ T cells recruited by conditioned medium derived from tumor cells with
knockdown of KRT23. **p ≤ 0.01, ***p ≤ 0.001.
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tumors of CC; the former was associated with a more favorable
outcome. Moreover, we demonstrated that KRT23 is a negative
regulator of the immune response, and knockdown of KRT23
expression could promote CCL5 secretion. In addition, a
prediction model based on DEGs between the two types of CC
Frontiers in Oncology | www.frontiersin.org 10
was established. This model performed well in predicting the
survival of CC patients receiving immunotherapy. Overall, our
findings provided novel insights into immune cell infiltration in
TABLE 1 | Clinicopathological parameters of patients with cervical cancer in our
cohort in the study.

Characteristic Number

Histological type
Cervical squamous cell carcinoma 42
Non- squamous cell carcinoma 5

History of neoadjuvant treatment
No 35
Yes 12

Sample type
Primary 47
Metastatic 0

Age at initial diagnosis
≥60 21
<60 26

Clinical stage
I 9
II 22
III 11
IV 5

HPV infection
Yes 19
No 2
NA 26

Differentiation
Low 15
Moderate 28
High 4
TABLE 2 | Clinicopathological parameters of patients with cervical cancer in
TCGA dataset in the study.

Characteristic Number

Histological type
Cervical squamous cell carcinoma 235
Non- squamous cell carcinoma 50

History of neoadjuvant treatment
No 285
Yes 0

Sample type
Primary 283
Metastatic 2

Age at initial diagnosis
≥60 227
<60 58

Clinical stage
I 154
II 64
III 39
IV 22
NA 6

Histologic grade
G1 17
G2 124
G3 116
G4 1
GX 27

HPV infection
Yes 20
NA 265
June 2022 | Volume 12 | Articl
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FIGURE 7 | Construction and validation of the prediction model. (A, B) Kaplan–Meier curve shows the OS in the high- and low-risk group in the training and test
cohorts. (C, D) ROC curve analysis shows the AUC of the prediction model in the training and test cohorts. (E, F) Validation of the prediction model using the
dataset of patients with metastatic melanoma and urothelial cancer receiving immunotherapy treatment.
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CC and highlighted KRT23 as a potential target to enhance
immunotherapy against CC.
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Supplementary Figure 1 | the level of immune cells in tumor tissues that
received radiotherapy or not. (A-B) Comparison of immune cells estimated by
ssGSEA and xCell in tumor tissues with radiotherapy or not. ns: not significant,
*p ≤ 0.05, **p ≤ 0.01.

Supplementary Figure 2 | Immune infiltration of 4 groups. (A-B) Infiltration of
immune cells estimated by ssGSEA and xCell in 4 groups. (C-D) Expression of
immune score, stromal score and tumor purity in 4 groups.****p ≤ 0.0001.

Supplementary Figure 3 | Immune profiles in 4 clusters.(A) Venn plot shows
intersecting of samples in each cluster based on immune infiltration estimated by
ssGSEA and xCell.(B)Expression profiles of antigen presentation-related genes in 4
clusters. (C)Expression profiles of chemokines in 4 clusters.(D)Expression profiles
of checkpoints in 4 clusters.** p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

Supplementary Figure 4 | Comparison of clinical parameters among the 4
clusters. (A,B) Bar charts shows the percentage of clinical stage and histologic
grade among 4 clusters.

Supplementary Figure 5 | PPI network of DEGs. (A) PPI netwok of genes
upregulated in cold tumor. (B) PPI netwok of genes upregulated in hot tumor.

Supplementary Figure 6 | Correlation of KRT23 and immune level. (A) Box plot
shows the expression of KRT23 between tumor and normal tissue in pan-cancer
dataset. (B)Correlation of KRT23 and CCL5,CXCL9 and CXCL10.(C) Correlation of
KRT23 and immune cells.***p ≤ 0.001.

Supplementary Figure 7 | Selection of genes for constructing prediction model.
(A) Partial likelihood deviance plot. (B) Multi-Cox of selected genes by
LASSO.(C-D) Heatmap showing gene expression of genes in prediction model in
training and test cohort.
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