
Results from Genetic Studies in
Patients Affected with
Craniosynostosis: Clinical and
Molecular Aspects
Ewelina Bukowska-Olech1*†, Anna Sowińska-Seidler1†‡, Dawid Larysz2,3†‡,
Paweł Gawliński4†‡, Grzegorz Koczyk5,6†‡, Delfina Popiel 5†, Lidia Gurba-Bryśkiewicz7†,
Anna Materna-Kiryluk1,5†, Zuzanna Adamek8, Aleksandra Szczepankiewicz9†,
Paweł Dominiak8‡, Filip Glista8‡, Karolina Matuszewska1,5† and Aleksander Jamsheer1,5*†

1Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland, 2Department of Head and Neck
Surgery for Children and Adolescents, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland, 3Prof. St. Popowski Regional
Specialized Children's Hospital, Olsztyn, Poland, 4Department of Medical Genetics, Institute of Mother and Child, Warsaw,
Poland, 5Centers for Medical Genetics GENESIS, Poznan, Poland, 6Biometry and Bioinformatics Team, Institute of Plant
Genetics, Polish Academy of Sciences, Poznan, Poland, 7Celon Pharma S.A., Medicinal Chemistry Department, Lomianki,
Poland, 8Poznan University of Medical Sciences, Poznan, Poland, 9Molecular and Cell Biology Unit, Department of Paediatric
Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland

Background:Craniosynostosis (CS) represents a highly heterogeneous genetic condition
whose genetic background has not been yet revealed. The abnormality occurs either in
isolated form or syndromic, as an element of hundreds of different inborn syndromes.
Consequently, CS may often represent a challenging diagnostic issue.

Methods:We investigated a three-tiered approach (karyotyping, Sanger sequencing, followed
by custom gene panel/chromosomal microarray analysis, and exome sequencing), coupled
with prioritization of variants based on dysmorphological assessment and description in terms of
human phenotype ontology. In addition, we have also performed a statistical analysis of the
obtained clinical data using the nonparametric test χ2.

Results: We achieved a 43% diagnostic success rate and have demonstrated the
complexity of mutations’ type harbored by the patients, which were either
chromosomal aberrations, copy number variations, or point mutations. The majority of
pathogenic variants were found in the well-known CS genes, however, variants found in
genes associated with chromatinopathies or RASopathies are of particular interest.

Conclusion: We have critically summarized and then optimised a cost-effective diagnostic
algorithm, which may be helpful in a daily diagnostic routine and future clinical research of
various CS types. Moreover, we have pinpointed the possible underestimated co-occurrence
of CS and intellectual disability, suggesting it may be overlooked when intellectual disability
constitutes a primary clinical complaint. On the other hand, in any case of already detected
syndromic CS and intellectual disability, the possible occurrence of clinical features suggestive
for chromatinopathies or RASopathies should also be considered.
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INTRODUCTION

Premature fusion of calvarial sutures, i.e., craniosynostosis (CS),
represents a highly heterogeneous neurocranium malformation
(Morriss-Kay and Wilkie, 2005). The disease can be classified
following at least three criteria: the origin, the number of affected
sutures, and the occurrence of additional clinical features. Regarding
the etiology, CS is distinguished as a primary condition, i.e., genetic;
or secondary, if it arises from mechanical, metabolic, or hormonal
defects. The assessment of affected sutures’ numbers allows
recognising single or compound CS, and finally, a syndromic CS
is described when additional features other than secondary to
premature suture fusion occur. Otherwise, CS should be classified
as an isolated condition (Wilkie et al., 2007; Johnson and Wilkie,
2011; Lattanzi et al., 2017).

The neonatal skull comprises six calvarial sutures—one
metopic, one sagittal, two coronal, and two lambdoid, closing
physiologically from 3 months to late 50 years of postnatal life.
Calvarial sutures are fibrous junctions, which allow the skull to
grow and develop during the expansion of the brain and permit
skull compression during delivery (Baer, 1954; Opperman, 2000;
Rice, 2008). Thus, the lack of physiological sutural patency
impedes the allometric cranial growth, resulting in cranial
deformities and, frequently, increased intracranial pressure,
i.e., craniostenosis. Consequently, affected patients present
with facial dysmorphism, cortex lesion, seizures, intellectual
disability, visual and hearing impairments, or breathing
difficulties that are all secondary to CS (Renier et al., 1982;
Thompson et al., 1995; Tubbs et al., 2001; Gupta et al., 2003;
Mathijssen and Arnaud, 2007; Chieffo et al., 2010).

CS affects approximately one in 2,500 births and burdens
public health due to the requirement of extensive surgical
treatment in the first year of life and multi-level specialist
medical care in the subsequent postnatal periods (Wilkie et al.,
2010; Lattanzi et al., 2017). Despite recent advancements in
genetic diagnostics, the pathogenesis of CS remains still
unknown or partially understood. The large cohort screenings
reveal genetic etiology in barely 21–62% of all recruited cases,
depending on the size of the study, ethnicity of the population,
and range of the molecular analysis. Conversely, about 40–80% of
CS cases remain molecularly unresolved (Roscioli et al., 2013;
Paumard-Hernandez et al., 2015; Timberlake et al., 2016; Lee
et al., 2018; Topa et al., 2020). In this paper, we have presented the
study results encompassing 166 individuals in whom we had
applied a three-step diagnostic algorithm to identify different
mutation types. In addition, we have also performed a statistical
analysis of the clinical data we had obtained.

PATIENTS AND METHODS

All procedures involving human participants were performed
under the Helsinki Declaration. The Institutional Review
Board of Poznan University of Medical Sciences granted
ethics approval (no. 742/17). All patients agreed to
participate in this study, and written informed consent for
participation and publishing the information and images in an

online open-access publication was obtained from all
participants and the parents of minors before genetic testing.

Cohort Description
The patients were recruited provided they were born from
pregnancies without exposure to environmental factors
potentially causative for CS. Our cohort consisted of 166
individuals (33 patients belonging to 18 families and 133
sporadic patients), of whom 85 were males and 81 females.
All patients underwent dysmorphological assessment, which
allowed us to section off the two subgroups—isolated (if CS
was accompanied only by the secondary defects directly
resulting from CS) and syndromic (if CS was accompanied
by additional defects, not resulting from CS).

Statistical Analysis
STATISTICA (version 13.3) TIBCO software was used for data
analysis. The statistical significance of the phenotypic diversity
of the cohort and the differences between the frequency of
identified genetic modification in the different phenotypic
groups was tested using the nonparametric test χ2.

Genetic Studies
We extracted genomic DNA from peripheral blood leukocytes
drawn into EDTA-coated tubes using either the manual
salting-out method or automated extraction using the
MagCore® HF16 Automated Nucleic Acid Extractor (RBC
Bioscience Corp.). Whole blood for lymphocyte culture was
drawn into heparin-coated tubes. The study has been divided
into three tiers. Tier 1 included karyotyping and screening of
the most frequent mutations located in exon no. 7 of FGFR1
(NM_023110.3), exons no. 7 and 8 of FGFR2 (NM_000141.5),
and exon no. 7 of FGFR3 (NM_000142.5), and the entire
coding sequence of TWIST1 (NM_000474.4). In tier 2,
chromosomal microarray analysis and targeted next-
generation sequencing (NGS) of custom gene panel were
performed. Exome sequencing (ES) was applied in Tier 3.

Tier 1
PCR and Sanger Sequencing
We performed molecular screening for all recruited patients
(n = 166) utilizing targeted PCR followed by Sanger sequencing.
We tested the occurrence of the most frequent, recurrent
mutations located in exon 7 of FGFR1 (NM_023110.3), exons
7 and 8 of FGFR2 (NM_000141.5), and exon 7 of FGFR3
(NM_000142.5), and the entire coding sequence of TWIST1
(NM_000474.4). Specific primers for amplification were
designed using the online available Primer3 tool v. 0.4.0. For
the detailed list of primers, see Supplementary Table S1. PCR
products were sequenced using dye-terminator chemistry (kit
v.3, ABI 3130XL) and run on automated sequencer Applied
Biosystems Prism 3700 DNA Analyzer.

Karyotyping
Whole blood lymphocyte culture was performed following the
standard protocol. Next, we used the Giemsa-banding (GTG)
technique at 550 band resolution per haploid genome.
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Tier 2
Chromosomal Microarray Analysis
Patients suspected of harboring pathogenic copy number
variations (CNVs) were tested using (CMA). Depending on
the research stages’, different CMA formats were used. Firstly,
the assay was performed employing a high resolution 1.4
NimbleGen oligonucleotide array comparative genomic
hybridization (aCGH; Roche NimbleGen) according to
standard protocols provided by the manufacturer. Results
were analysed with Deva software (Roche Nimblegen) using
the ADM2 segmentation algorithm (Sowińska-Seidler et al.,
2018). The chromosomal profile was visualized using
SignalMap software (NimbleGen Systems Inc.). Next, we
applied SurePrint G3 Human CGH Microarray 8 × 60 k,
4 × 180 k, 1 × 1M arrays (Agilent Technologies). The
hybridization signals were detected with SureScan Dx
Microarray Scanner (Agilent Technologies) and visualized
with the use of Agilent CytoGenomics software (Agilent
Technologies) (Bukowska-Olech et al., 2020b). The
pathogenicity of CNVs was evaluated using the following
tools and available online databases-Cytoscape 3.7.1,
ClinGen, DECIPHER, database of Genomic Variants
(DGV), Mouse Genome Informatics (MGI), or UCSC
Genome Browser applying tracks such as Conservation,
VistaEnhancers, ENCODE Regulation or HiC.

NGS of Custom Gene Panel
A cohort with negative results was subjected to targeted next-
generation sequencing of a custom 225.709 kb in size gene
panel (Agilent Technologies). Captured and indexed libraries
were sequenced on the previously described Ion Torrent S5
sequencing system. Variants identified by TorrentSuite, as
first described by Bukowska-Olech et al., were further
analyzed using an extended custom pipeline (Bukowska-
Olech et al., 2020c). For prioritizing candidate variants in
probably causative genes, local Phen2Gene installation was
used. For final SNV/indel prioritization, the updated pipeline
combined Exomiser 12.1.0 with ANNOVAR (all non-
commercially available databases, downloaded on 16th
December 2020), Ensembl/VEP 102.0, and CADD 1.6
Exomiser default phenotype scoring was supplemented with
alternate scoring where the original formula used Phen2Gene
scores instead (Zhao et al., 2020). Two prioritizers (OMIM
and HIPHIVE) were used with Exomiser. For both
Phen2Gene and Exomiser, each sample was labeled with
Human Phenotype Ontology terms assigned according to
clinical notes (manual curation) (Supplementary Table
S2). Common (AF>0.001 in population frequency datasets)
and benign (as per strong ClinVar support) alleles were
dropped out for reporting. The final pathogenicity of
detected variants was analysed in line with the American
College of Medical Genetics (ACMG) classification
(Richards et al., 2015). Confirmation and segregation
studies were performed applying PCR followed by Sanger
sequencing as described in section PCR and Sanger
sequencing. A list of primers was summarized in
Supplementary Table S1.

Tier 3
Exome Sequencing
The coding region and flanking intronic regions were enriched
using a custom-designed in-solution exome enrichment (TWIST
bioscience, San Francisco, United States) and were sequenced
using the Illumina NovaSeq system (Illumina, San Diego,
United States). Sequencing reads were demultiplexed using
Illumina bcl2fastq2. The removal of the adapter was
performed with Skewer. The trimmed reads were mapped to
the human reference genome (hg19) using the Burrows-Wheeler
Aligner, and variants were called using in-house software. First,
Only SNVs and small indels in the coding regions and the
flanking intronic regions (±8 bp) with a minor allele frequency
(MAF) < 1.5% were evaluated. Second, the known disease-
causing variants (according to Human Gene Mutation
database; HGMD) were also evaluated in up to ±30 bp of
flanking regions and up to 5% MAF. Downstream analysis
was carried out using pipeline described for Tier 2 above. As
before, the variant evaluation was based on the ACMG guidelines
for interpreting sequence variants. Confirmation and segregation
studies were performed applying PCR followed by Sanger
sequencing as described in section PCR and Sanger sequencing.
A list of primers was summarized in Supplementary Table S1.

RESULTS

We summarized all differentiating phenotypic features in our cohort
in Table 1 and Supplementary Table S3. Patients involved in this
study were more frequently sporadic (81%) than familial cases
(19%)–χ2 (1;166) = 62.67; p < 0.001. We have not revealed any
differences between the occurrence of isolated (56%) and syndromic
forms of CS (44%)–χ2 (1; 146) = 2.22; p = 0.14. However, we have
reported more frequently single CS (66%) thanmultiple CS (34%)–χ2
(1;144) = 14.69; p < 0.001. Next, we have also shown that the most
often affected suture in isolated CS was coronal (53%), followed by

TABLE 1 | The phenotypic characterization of the cohort of 166 patients affected
with craniosynostosis.

Sex Frequency (%)

Female 49
Male 51

Total 100

Number of affected sutures Frequency (%)

Multiple 34
Single 66
metopic 25
coronal 53
sagittal 22
lambdoid 0

Total 100

Occurence Frequency (%)

Familial 19
Sporadic 81

Total 100
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TABLE 2 | The list of point variants found in the cohort of 166 patients affected with craniosynostosis. HGMD, Human GeneMutation database (accession date: October 2021); B, bilateral; C, coronal; I, isolated; L, lambdoid;
M, metopic; SA, sagittal; U, unilateral.

# Patient ID Sex Gene Reference sequence Genomic Location (GRCh38) coding DNA Protein HGMD Affected suture(s) Type of CS

1 P94 M ALX3 NM_006492.3 Chr1:110064600-110064603del c.578_581del p.Thr193Argfs*137 - CU I
2 P134 M ARID1A NM_006015.6 Chr1:26697194C>A c.791C>A p.Ser264* - M, SA S
3 P91 F EFTUD2 NM_004247.4 Chr17:44883094T>C c.491A>G p.Asp164Gly CM2018685 M S
4 P132 M ERF NM_001301035.1 Chr19:42249493G>A c.394C>T p.Arg132* - SA, LU S
5 P136 F FAM111A NM_022074.4 Chr11:59152581A>G c.913A>G p.Arg305Gly - CB, LB S
6 P21 M FGFR1 NM_023110.3 Chr8:38424690G>C c.755C>G p.Pro252Arg CM940776 N/A N/A
7 P22 M FGFR1 NM_023110.3 Chr8:38424690G>C c.755C>G p.Pro252Arg CM940776 N/A N/A
8 P23 F FGFR1 NM_023110.3 Chr8:38424690G>C c.755C>G p.Pro252Arg CM940776 N/A N/A
9 P25 F FGFR2 NM_000141.5 Chr10:121520163G>C c.755C>G p.Ser252Trp CM950458 N/A N/A
10 P31 F FGFR2 NM_000141.5 Chr10:121520163G>C c.755C>G p.Ser252Trp CM950458 N/A N/A
11 P32 F FGFR2 NM_000141.5 Chr10:121520163G>C c.755C>G p.Ser252Trp CM950458 N/A N/A
12 P35 M FGFR2 NM_000141.5 Chr10:121520163G>C c.755C>G p.Ser252Trp CM950458 N/A N/A
13 P29 F FGFR2 NM_000141.5 Chr10:121520160G>C c.758C>G p.Pro253Arg CM950459 CB S
14 P30 F FGFR2 NM_000141.5 Chr10:121520160G>C c.758C>G p.Pro253Arg CM950459 N/A N/A
15 P33 F FGFR2 NM_000141.5 Chr10:121520160G>C c.758C>G p.Pro253Arg CM950459 CB, LU N/A
16 P34 F FGFR2 NM_000141.5 Chr10:121520160G>C c.758C>G p.Pro253Arg CM950459 N/A N/A
17 P27 M FGFR2 NM_000141.5 Chr10:121520076T>C c.842A>G p.Tyr281Cys CM013715 N/A N/A
18 P12 F FGFR2 NM_000141.5 Chr10:121520052T>G c.866A>C p.Gln289Pro CM950462 CB, SA S
19 P47 M FGFR2 NM_000141.5 Chr10:121520050A>C c.868T>G p.Trp290Gly CM1313533 S S
20 P24 M FGFR2 NM_000141.5 Chr10:121517445T>C c.958A>G p.Thr320Ala CM1919088 N/A I
21 P26 F FGFR2 NM_000141.5 Chr10:121517411T>A c.992A>T p.Asn331Ile CM960645 N/A N/A
22 P5 M FGFR2 NM_000141.5 Chr10:121517378C>T c.1025G>A p.Cys342Tyr CM940779 CB, SA I
23 P65 F FGFR2 NM_000141.5 Chr10:121517378C>T c.1025G>A p.Cys342Tyr CM940779 M, S I
24 P6 F FGFR2 NM_000141.5 Chr10:121517378C>A c.1025G>T p.Cys342Phe CM960648 M, SA I
25 P28 F FGFR2 NM_000141.5 Chr10:121517377G>C c.1026C>G p.Cys342Trp CM950468 N/A N/A
26 P14 M FGFR2 NM_000141.5 Chr10:121517342G>C c.1061C>G p.Ser354Cys CM940784 CB, SA S
27 P54 F FGFR2 NM_000141.5 Chr10:121496701T>C c.1694A>G p.Glu565Gly CM020141 CB, LB, M, SA S
28 P3 F FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 CU I
29 P7 F FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 CB I
30 P11 F FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 CU, SA I
31 P15 F FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 CU I
32 P36 F FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 N/A N/A
33 P37 F FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 N/A N/A
34 P38 F FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 N/A N/A
35 P39 F FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 N/A N/A
36 P42 M FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 CB, SA S
37 P45 F FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 CB I
38 P46 M FGFR3 NM_000142.5 Chr4:1801844C>G c.749C>G p.Pro250Arg CM960655 CB, L I
39 P135 F FGFR3 NM_000142.5 Chr4:1806581C>T c.2066C>T p.Thr689Met - CU I
40 P137 M KMT2A NM_001197104.2 Chr11:118436605_118436675del c.93_163del p.Arg32Leufs*91 - LU, M, SA S
41 P114 F KMT2D NM_003482.4 Chr12:49030893_49030901del c.13663_13671del p.Leu4555_Gln4557del - SA S
42 P63 M MN1 NM_002430.3 Chr22:28146983C>T c.3883C>T p.Arg1295 CM162266 M, SA S
43 P58 M NSD1 NM_022455.5 Chr5:177211351_177211352del c.2954_2955del p.Ser985Cysfs*25 CD054393 M S
44 P99 F NSD1 NM_022455.5 Chr5:177269630C>T c.5332C>T p.Arg1778* CM030076 SA S
45 P62 F RECQL4 NM_004260.4 Chr8:144517096G>A c.308C>T p.Pro103Leu CM033805 CB, M, SA S

Chr8:144512318C>T c.3062G>A p.Arg1021Gln CM033810
46 P119 M TCF12 NM_207,037.2 Chr15:57166432T>C c.356T>C p.Leu119Pro - CB, LB, M, SA I
47 P106 F TCF12 NM_207,037.2 Chr15:57231251del c.679del p.Met227Cysfs*18 - CU I
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metopic (33%), sagittal (15%), and lambdoid (0%)–χ2 (3;95) = 51.54;
p < 0.001.

Our diagnostic success was 43% (n = 72). The following
paragraphs described the detailed results, entitled Tier 1–3,
which were also summarized in Tables 2–4. Mutations located
within the FGFR1, FGFR2, FGFR3 genes, and in the TWIST1 gene
constitute the most often occurring alterations (73%)–χ2 (1;71) =
14.43; p < 0.001. This diagnostic indicator occurred significantly
statistic (χ2 (1;52) = 4.92; p < 0.05) more often in a female group
of patients (48%, FGFR2 was the most frequently affected–19%)
than male–25% (the most common pathogenic variants were
located in the TWIST1 gene–12%).

Regarding sex, we have not revealed any relevant diagnostic
success rate changes, which were made in 62% among female
patients and 38% among male patients–χ2 (1;71) = 3.61; p = 0.06.
Next, we have shown that more often, we could diagnose the
patients affected with multiple CS (65%) than single CS (35%)–χ2
(1;49) = 4.50; p = 0.03. Detailed results were summarized in
Supplementary Table S4.

Tier 1
PCR followed by Sanger sequencing of the most frequent
mutations located within the FGFR1, FGFR2, FGFR3 genes
and screening of the entire TWIST1 coding sequence allowed
us to diagnose 43 patients from 32 different families. Out of them,
three patients carried the same alteration in the 7th exon of FGFR1
gene, 15 individuals presented with one from 10 mutations in the
FGFR2 gene, 10 patients harbored one recurrent variant in the
FGFR3, whereas 15 patients harbored nine distinct variants in the
TWIST1 gene (Table 2). Karyotyping revealed three
heterozygous deletions: one in locus 7q32.3-q35, second in
locus 9p, and third in locus 18q21.32-q23 (Supplementary
Table S5). The first two were additionally resized using 4 ×
180 k Agilent CMA, while the third was by ES.

Tier 2
We have detected four CNVs in four individuals using CMA,
i.e., three duplications in locus 1q22-q23.1, locus 2p21
encompassing solely the SIX2 gene, locus 17p13.3, and one
deletion in locus 5q35.3, which included exons 18–21 in the
NSD1 gene (Table 3; Supplementary Table S5) (Sowińska-
Seidler et al., 2018). Targeted NGS of a custom gene panel
allowed us to establish the molecular diagnosis in the
subsequent 14 sporadic patients (15 variants) (Table 2;
Supplementary Table S6). We have found 15 following
heterozygous variants, from which 9 were not reported in
HGMD–c.578_581del p.Thr193Argfs*137 in the ALX3 gene
(variant of unknown significance, VUS), c.491A>G p.
Asp164Gly in the EFTUD2 gene, c.394C>T p.Arg132* in the
ERF gene (linked to Craniosynostosis 4), c.868T>G p.Trp290Gly
(HGMD no: CM1313533), c.1025G>A p.Cys342Tyr (HGMD no:
CM940779), c.1694A>G p.Glu565Gly (HGMD no: CM020141)
in the FGFR2 gene (HGMD no: CM020141), and c.2066C>T
p.Thr689Met in the FGFR3 gene, c.356T>C p.Leu119Pro,
c.679del p.Met227Cysfs*18, c.932C>G p.Ser311*,
c.2015_2016ins p.Arg672Serfs*2 in the TCF12 gene (linked to
Craniosynostosis 3), c.1172C>A p.Ser391*, c.1210T>CT
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p.Ser404Pro (VUS) in the ZIC1 gene (linked to Craniosynostosis 6)
and two alterations in compound heterozygosity c.308C>T
p.Pro103Leu (HGMD no: CM033805), and c.3062G>A
p.Arg1021Gln (HGMD no: CM033810) located within the
RECQL4 gene (linked to Rothmund-Thomson, Baller-Gerold,
and RAPADILINO syndromes).

Tier 3
Finally, applying ES, we revealed seven heterozygous variants
in the subsequent seven patients–c.791C>A p.Ser264* in the
ARID1A gene (linked to Coffin-Siris type 2 syndrome),
c.93_163del p.Arg32Leufs*91 in the KMT2A gene (linked
to Wiedemann-Steiner syndrome), c.13663_13671del
p.Leu4555_Gln4557del in the KMT2D gene (linked to
Kabuki type 1 syndrome), c.3883C>T p.Arg1295* in the
MN1 gene (linked to MN1 C-terminal truncation
syndrome; MCTT syndrome, and CEBALID syndrome),
c.2954_2955del p.Ser985Cysfs*25, and c.5332C>T
p.Arg1778* in the NSD1 gene (linked to Sotos type 1
syndrome), and c.913A>G p.Arg305Gly in FAM111A
(linked to Gracile bone dysplasia, and Kenny-Caffey
syndrome type 2) (Table 2; Supplementary Table S6).
Those variants were not reported in the medical literature,
except for mutations detected in the NSD1
gene–p.Ser985Cysfs*25 (HGMD no: CD054393), and
p.Arg1778* (HGMD no: CM030076).

DISCUSSION

Craniosynostosis represents a highly heterogeneous medical
condition whose etiology has not been yet fully elucidated.
The results obtained from cohorts screened worldwide
showed that the molecular background could be indicated
in merely 21%, to propitiously 62% of patients (Roscioli et al.,
2013; Paumard-Hernandez et al., 2015; Timberlake et al.,
2016; Lee et al., 2018; Topa et al., 2020). Positive genetic
testing is mainly achieved among subgroups with syndromic
CS. The reported germline mutations are usually classified as
point mutations, however, chromosomal aberrations, copy
number variations, minor exonic deletions/duplication, or
biallelic inheritance were also reported in the medical
literature (Timberlake et al., 2016; Goos and Mathijssen,
2019; Yilmaz et al., 2019).

In this study, we have reported 166 individuals affected with
different forms of CS in whom we had applied a three-step
diagnostic algorithm (Tier 1–3) (Figure 1). To our best
knowledge, this is the first large CS patients’ screening in which
multi-leveled methods, including chromosomal aberrations and
CNVs detection, were applied. The proposed approach allowed
us to identify an exact genetic cause in around 43% of all CS
patients. Since our multi-leveled molecular diagnostic strategy of CS
patients is unique and previously unreported, we were unable to
directly compare all the results obtained here with previous similar

TABLE 3 | The list of de novo aberrations and copy number variations (CNVs) found in the cohort of 166 patients affected by syndromic craniosynostosis. ISCN, International
System for Human Cytogenetic Nomenclature; N/A, not applicable. P140 was diagnosed with Sotos syndrome, P142 with 17p13.3 microduplication syndrome class I.

# Patient
ID

Sex Locus ISCN Size Affected
suture(s)

Candidate Gene Additional Phenotype

1 P138* M 1q22-q23.1 arr[GRCh38] 1q22-q23.1(chr1:
155961428–157217426)x3

1.3 Mb Metopic,
lambdoid
unilateral

BGLAP, LMNA Global developmental delay,
hypotonia, facial dysmorphism, low-
set, posteriorly rotated ears

2 P139 M 2p21 arr[GRCh38]2p21(chr2:
44990857–45008348)x3

17.5 kb Metopic,
sagittal

SIX2 Hyperactivity, ptosis, angioma of the
right eye socket, broad nasal bridge,
hypertelorism, microcephaly, mild
intellectual disability, delayed
myelinization, right cryptorchidism,
hydronephrosis, recurrent respiratory
infections, one cafe au lait spot on the
right thigh

3 P140 M 5q35.3 arr[GRCh38]5q35.3(chr5:
177277901–177283748)x1

5.8 kb Sagittal,
lambdoid
bilateral

NSD1 Macrocephaly, micrognathia,
retrognathia, high arched palate, cleft
palate, bilateral hearing loss, recurrent
otitis media, anaplastic ears lobes,
umbilical hernia, macrosomia

4 P141** F 7q32.3-q35 arr[GRCh38]7q32.3-q35(chr7:
131837067–144607071)x1

12.8 Mb Coronal
bilateral,
sagittal

BRAF Facial dysmorphism: proptosis,
hypertelorism, down-slanted palpebral
fissures, broad nasal bridge, and
bulbous nasal tip, intellectual disability,
delayed psychomotor development,
delayed speech, increased intracranial
pressure

5 P142 M 17p13.3 arr[GRCh38]17p13.3(chr17:
847,955–1641,601)x3

793.6 kb Metopic YWHAE, CRK Facial asymmetry, short frenum, heart
defect (PFO), cryptorchidism,
hypotonia, psychomotor delay

6 P143 F 18q21.32-q23 arr[GRCh38]18q21.32-q23(chr18:
620405559–80247,644)x1

21.8 Mb Coronal
unilateral

N/A Global developmental delay, speech
delay, heart defect (FoA), hearing loss

Note: this data are partially retrospective studies as CNVs, detected in P138 and P141 have been already published by our team *[20]; **[21] #Exome-sequencing analysis.
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research studies. This is because all reports that have been submitted
so far, were aimed at identifying only point mutations via targeted
Sanger sequencing, targeted gene panel NGS or ES. Similar to other
researchers analyzing these mutations type occurrence, we have
shown that causative variants in the FGFR1, FGFR2, FGFR3,
TWIST1, and TCF12 genes account for most common cause of
CS (Roscioli et al., 2013; Paumard-Hernandez et al., 2015; Lee et al.,
2018; Topa et al., 2020).

Notably, FGFR1, FGFR2, FGFR3 variants mainly occur in hot-
spot positions and, along with TWIST1 gene mutations, were
analyzed in Tier 1. Undeniably, this step was crucial in the CS
testing algorithm and cost-effective compared to other genetic
methods (73% of all diagnoses;–χ2 (1;71) = 14.43; p < 0.001). On
the other hand, four novel variants in the TCF12 gene and additional
FGFR2, FGFR3 alterations (other than hot-spots) were found using
custom gene panel NGS (Table 2). No other gene included in the
applied custom gene panel housed more than one pathogenic
variant. Interestingly, based on the medical literature, the EFNB1
gene is usually reported as the sixthmost commonly affected gene in

CS (Paumard-Hernandez et al., 2015; Miller et al., 2017; Lee et al.,
2018). However, we postulate that a very characteristic disease,
i.e., craniofrontonasal dysplasia (CFND) resulting from
pathogenic variants of the EFNB1, should be considered a
standalone genetic disorder in which features other than CS
guide the proper diagnosis (Bukowska-Olech et al., 2021).
Moreover, CFND represents a classic viscerocranium defect,
whereas CS is a neurocranium abnormality. Hence, we have
excluded all individuals suggestive of CFND and consequently
have not reported EFNB1 mutations in this study.

Next, we have revealed that six patients with syndromic CS carried
pathogenic variants in genes involved in epigenetic regulations such as
ARID1A (P134), KMT2A (P137), KMT2D (P114), NSD1 (P58, P99,
P166) (Table 2), resulting in Coffin-Siris syndrome type 2,
Wiedemann-Steiner syndrome, Kabuki syndrome type 1, and Sotos
syndrome type 1, respectively. Such Mendelian disorders, i.e., those
resulting from disruptions of epigenetic processes, were termed
chromatinopathies. They are all characterized by intellectual
disability, immune deficiencies, or skeletal anomalies. However,

FIGURE 1 | The scheme of the diagnostic algorithm applied in our study regarding 166 patients affected with craniosynostosis. The algorithmwas divided into three
tiers.
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CS was rarely described among them (Zollino et al., 2017).
Occasionally, CS has been reported only in Kabuki syndrome
and Sotos syndrome thus far (Tatton-Brown et al., 2005;
Martínez-Lage et al., 2010; Topa et al., 2017). The second group
of Mendelian diseases in which CS has been noted are RASopathies
resulting from the dysregulation of RAS/MAPK pathway.
Retrospectively, we have described here one patient carrying
CNVs in which BRAF gene deletion occurred (P141)
(Bukowska-Olech et al., 2020b). Similar to our finding, other
researchers have also highlighted the co-occurrence of both CS
and RASopathy, resulting from mutations in other components
of RAS/MAPK pathway (Kratz et al., 2009; Takenouchi et al.,
2014; Ueda et al., 2017).

Custom genes panel allowed us to detect novel pathogenic
variants–p.Arg132* in the ERF gene (P129), and p.Ser391* in the
ZIC1 gene (P131), resulting in Craniosynostosis 4 and
Craniosynostosis 6, respectively (Twigg et al., 2013, 2015). Both
ERF and ZIC1 are newly recognized CS-related genes, however, only
a few cases carrying variants in those two have been reported (Twigg
et al., 2015;Miller et al., 2017; Glass et al., 2019). In addition, we have
evaluated one variant in the ZIC1 gene as VUS p.Ser404Pro (P130)
since it was present in the patient’s healthy father. However, this
alteration was absent from the gnomAD v3.1.2 database (accession
date: 3 December 2021). Finally, ES revealed two additional
alterations in individuals with syndromic CS–p.Arg1295* in the
MN1 (P63), which was recently discovered, and subsequently linked
to CS, and p.Arg305Gly in FAM111A (P136), resulting in Kenny-
Caffey syndrome type 2, in which CS represents an unseen clinical
feature (Table 2) (Mak et al., 2020).

Importantly, we have noted an apparent gap regarding screening
for chromosomal aberrations or CNVs among CS patients (Lattanzi

et al., 2012; Poot, 2019). To our knowledge, nomajor CS groups were
analyzed via karyotyping or CMA, therefore most research data
describing microscopic chromosomal changes or
submicroscopic CNVs causative for CS were published as
single case reports (Villa et al., 2007; Marques et al., 2015).
Besides, only a few chromosomal aberrations and CNVs known
thus far represent recurrent changes underlying CS (e.g.,
deletions in 7p21, 9p22-p24, and 11q23-q24 or duplication in
5q33.3), however none of them was present in our cohort
(Reardon et al., 1993; Shiihara et al., 2004; Poot, 2019). All
genomic losses or gains reported in this research were not
commonly associated with CS (Budisteanu et al., 2010;
Dilzell et al., 2015). Hence, we could not recommend
additional loci to be screened regarding the cohort of
syndromic CS, especially those associated with intellectual
disability. Here, karyotyping followed by GTG banding
allowed us to detect two intrachromosomal deletions 7q32.3-
q35, and 18q21.32-q23, both resized to chr7:131837067-
144607071, and chr18:620405559-80247644, respectively.
Next, using CMA, we have detected four CNVs including
three duplications–1q22-q23.1 (chr1:155961428-157217426),
2p21 (chr2:44990857-45008348), 17p13.3 (chr17:847955-
1641601), and one deletion 5q35.3 (chr5:177277901-
177283748) from which the largest encompassed 1.3 Mb,
whereas the smallest 5.8 kb (Sowińska-Seidler et al., 2018;
Bukowska-Olech et al., 2020a). The detailed mutations
description following the International System for Human
Cytogenomic Nomenclature (ISCN) was listed in Table 3; for
a list of genomic mutations’ content, see Supplementary Table
S5. Notably, in most chromosomal aberrations or CNVs
identified here, CS occurred as an additional phenotype. The

FIGURE 2 | The scheme of the proposed diagnostic algorithm was prepared based on results obtained from the current study.
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above findings suggest that karyotyping and CMA cannot be
replaced by targeted chromosomal testing when applied in a
cohort of syndromic CS associated with an intellectual disability
or developmental delay.

Regarding the results presented in this study, we would like to
point to the possible underestimated co-occurrence of CS and
intellectual disability. Our clinical experience suggests that CS may
be overlookedwhen intellectual disability constitutes a primary clinical
complaint. Hence, we recommend calvarial sutures’ evaluation in
patients with intellectual disability. On the other hand, in any case of
already detected syndromic CS and intellectual disability, the possible
occurrence of clinical features suggestive for either chromatinopathies
or RASopathies should also be considered (Kratz et al., 2009; Cao et al.,
2017; Zollino et al., 2017; Davis et al., 2019).

Undeniably, the molecular diagnosis of CS should distinguish its
isolated or syndromic form, which presence determines the
subsequent diagnostic steps. In addition, syndromic CS should be
classified as a disorder associated with intellectual disability or a
disorder without intellectual disability (Figure 2). Targeted PCR and
Sanger sequencing of FGFR1, FGFR2, FGFR3, TWIST1, and TCF12
genes resulted in the highest diagnostic rate in our cohort of
craniosynostosis patients strongly recommend analysing those
genes first (isolated CS and syndromic CS without intellectual
disability). Because of many advantages of NGS-based methods,
including mosaicism detection, screening those genes using targeted
genes panel via NGS would be optimal. However, based on our
results, we suggest applying a custom genes panel limited to the
fewer genes, such as FGFR1, FGFR2, FGFR3, TWIST1, TCF12, ERF,
ZIC1, RECQL4, andNSD1 (Siitonen et al., 2009; Sharma et al., 2013;
Twigg et al., 2013, Twigg et al., 2015; Twigg andWilkie, 2015; Miller
et al., 2017; Kutkowska-Kaźmierczak et al., 2018; Lee et al., 2018;
Bukowska-Olech et al., 2020c; Topa et al., 2020). In the case of
syndromic CS and intellectual disability, the genetic
investigation should start from chromosomal aberrations or
CNVs detection. Lastly, when ES data bioinformatic analysis is
performed, genes associated with RASopathies and
chromatinopathies should be considered.

The heterogeneity of CS is enormous, resulting from either
anatomical variability of the disorder, in which different types
and number of sutures can be affected, or epidemiological
aspects, including isolated presentation of CS or occurrence
of various accompanying symptoms (Kutkowska-Kazmierczak
et al., 2018). It has also been shown that CS may be detected in at
least 180 different syndromes, which often are rare and in which
CS is not a pathognomic feature. Besides, some researchers have
also documented or postulated the association between CS and
two-locus inheritance. Consequently, molecular causes of the
disease seem to be complex in some CS individuals and, as
presented in this study, the pathogenic variant or affected gene
may be restricted to only one individual (Sharma et al., 2013;
Flaherty et al., 2016; Timberlake et al., 2016, Timberlake et al.,
2018; Wilkie et al., 2007; Timberlake and Persing, 2018).
However, in many CS patients, including our cohort, genetic
causes of observed phenotypes remain unrevealed. One may
suspect the presence of deep-intronic and regulatory variants,
polygenic inheritance, or even epigenetic influences. Another
explanation may be the technical limitations of currently

available diagnostic methods. It has been shown, for example,
that the application of long-read sequencing in NGS-based
methods may clarify the genetic background in many
unresolved cases (Fujimoto et al., 2021; Hiatt et al., 2021;
Miller et al., 2021; Rastegar and Yasui, 2021). Considering
the above, the next steps that we should consider to
implement for diagnosis of our unsolved cases include
whole-genome sequencing, RNA-seq, whole-genome bisulfite
sequencing, or long-read ES.

To conclude, our research may constitute a significant source of
epidemiological information as we have presented precise
phenotypic and genetic data derived from 166 consecutive CS
patients of Caucasian origin. We yielded a 43% diagnostic success
rate using the presented approach, highlighting the high occurrence
of pathogenic variants within “classic”CS genes, i.e., FGFR1, FGFR2,
FGFR3, TWIST1, and TCF12. Moreover, we have critically
summarized the applied diagnostic methods (Figure 1) and
proposed the optimized, cost-effective diagnostic algorithm, which
may be helpful in a daily diagnostic routine of various CS’ types
(Figure 2).
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index.php).
Human Phenotype Ontology (https://hpo.jax.org/app/).
Online Mendelian Inheritance in Man (https://www.omim.org).
Primer3 tool (http://bioinfo.ut.ee/primer3-0.4.0/).
UCSC Genome Browser (https://genome.ucsc.edu/index.html).
Varsome (https://varsome.com/).
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