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Abstract

Ulcerative colitis is a gastrointestinal disorder characterized by local inflammation and impaired epithelial barrier. Previous
studies demonstrated that CXC chemokine receptor 4 (CXCR4) antagonists could reduce colonic inflammation and mucosal
damage in dextran sulfate sodium (DSS)-induced colitis. Whether CXCR4 antagonist has action on intestinal barrier and the
possible mechanism, is largely undefined. In the present study, the experimental colitis was induced by administration of
5% DSS for 7 days, and CXCR4 antagonist AMD3100 was administered intraperitoneally once daily during the study period.
For in vitro study, HT-29/B6 colonic cells were treated with cytokines or AMD3100 for 24 h until assay. DSS-induced colitis
was characterized by morphologic changes in mice. In AMD3100-treated mice, epithelial destruction, inflammatory
infiltration, and submucosal edema were markedly reduced, and the disease activity index was also significantly decreased.
Increased intestinal permeability in DSS-induced colitis was also significantly reduced by AMD3100. The expressions of
colonic claudin-1, claudin-3, claudin-5, claudin-7 and claudin-8 were markedly decreased after DSS administration, whereas
colonic claudin-2 expression was significantly decreased. Treatment with AMD3100 prevented all these changes. However,
AMD3100 had no influence on claudin-3, claudin-5, claudin-7 and claudin-8 expression in HT-29/B6 cells. Cytokines as TNF-a,
IL-6, and IFN-c increased apoptosis and monolayer permeability, inhibited the wound-healing and the claudin-3, claudin-7
and claudin-8 expression in HT-29/B6 cells. We suggest that AMD3100 acted on colonic claudin expression and intestinal
barrier function, at least partly, in a cytokine-dependent pathway.
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Introduction

Ulcerative colitis (UC) is a gastrointestinal disorder character-

ized by inflammatory response and mucosal damage [1].

Uncontrolled local inflammation disrupts the epithelial lining,

resulting in mucosal edema and ulceration, and even crypt abscess

in the bowel wall [2]. In healthy individuals, the intestinal barrier

is constituted of an intact layer of epithelial cells, act as the gateway

restricting uncontrolled entry of luminal antigens [3]. Intestinal

epithelial barrier is maintained by intracellular junctional

complexes, such as tight junctions (TJ), adherent junctions, and

desmosomes [4]. TJ form an intra-membranous fence between the

apical and lateral plasma membrane domains, and intimately

involved in both paracellular permeability and cell polarity [3,5].

TJ is composed of transmembrane proteins, such as claudins

and occludin, and cytosolic proteins, such as ZO-1. Claudins,

which is the major integral membrane proteins forming the

continuous TJ strands, interact in a tissue-specific manner to form

a charge-selective and size-selective barrier, and predominantly

contribute to epithelial barrier function [6–10]. In UC, epithelial

barrier function is impaired. Previous investigations by freeze

fracture electron microscopy demonstrated a reduction of TJ

strands in UC, which is considered to be a possible cause of barrier

dysfunction [4,11]. Additionally, the disrupted morphology of TJ

is often the result of changes in TJ protein expression [4]. Li et al.

and Amasheh et al. have reported down-regulation of claudin-1,

claudin-3, claudin-5, claudin-7 and claudin-8 in UC [1,12].

Another study by Oshima et al. showed a reduced expression of

claudin-4 and claudin-7 in UC, whereas expression of claudin-2

was increased, as claudin-1 and claudin-3 expression levels were

unchanged in controls and active UC [13]. Moreover, Mennigen

et al. have recently demonstrated that expressions of TJ proteins

such as claudin-1, claudin-3, claudin-4 and claudin-5 were

decreased in acute colitis [14]. So far, only a few researches

concert on the expression patterns of claudins in UC, and the

results are still controversial, thus needs further investigation.

CXCR4 is specific receptor for the chemokine CXCL12, and

also functions as an entry receptor for human immunodeficiency

virus [15]. Early studies showed that the CXCL12/CXCR4

chemokine axis is involved in several inflammatory diseases such

as rheumatoid arthritis, acute lung injury, and sepsis [16–19].

Recent studies demonstrated that CXCL12 and CXCR4 are
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constitutively expressed on intestinal epithelial cells, lamina

propria T cells, and peripheral blood T cells of control patients,

and the expression is increased in those of UC patients [20,21].

Mikami et al. previously reported that blocking of CXCR4

significantly ameliorates mice experimental colitis, and the effect

was partially dependent on the reduction of migration and

cytokines production from mesenteric lymph node cells [22].

Whether CXCR4 antagonist has action on intestinal barrier and

the possible mechanism, is largely undefined.

In the present study, we firstly assessed the effects of CXCR4

antagonist AMD3100 on cytokines, intestinal barrier, and colonic

claudins expression in DSS-induced colitis in mice. To further

elucidate the role of CXCR4 in intestinal barrier function, we also

investigated the effects of CXCL12, AMD3100, and cytokines on

claudin expression in HT-29/B6 colonic cells.

Materials and Methods

Materials
Dextran sulfate sodium (DSS, 5000 Daltons) was purchased

from Wako Pure Chemical Industry (Osaka, Japan). CXCR4

antagonist AMD3100, fluorescein isothiocyanate conjugated

dextran (FD4, 4000 Daltons), and fluorescent DNA-binding dye

Hoechst-33342 were purchased from Sigma (St. Louis, MO,

USA). Primary antibodies such as rabbit anti-claudin-1, claudin-2,

claudin-3, claudin-5 and rabbit anti GAPDH were purchased

from Abcam (OFW, UK). Rabbit anti-claudin-7 and claudin-8

were purchased from Zymed Laboratories (South San Francisco,

CA, USA). Horseradish peroxidase-conjugated secondary anti-

body was purchased from Kangchen Biotech (Shanghai, China).

Chemiluminecent HRP substrate was purchased from Millipore

(Boston, MA, USA). Power vision two-step histostaining reagent

was purchased from ImmunoVision Technologies (Norwell, MA,

USA). HT-29 colonic cells were purchased from American Tissue

Type Culture Collection (Rockville, MD, USA). CXCL12, tumor

necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interferon-c
(IFN-c) were purchased from Chemicon International (Temecula,

CA, USA). DMEM/F12 culture medium and fluorescein

isothiocyanate (FITC) conjugated goat anti-rabbit IgG were

purchased from Invitrogen (Carlsbad, USA). Trans-well bicameral

chambers with 8 mm pores were purchased from Greiner Bio-One

(Frickenhausen, Germany).

Animals
Female BALB/c mice (9 weeks of age, weighing 20,22 g) were

obtained from the Animal Facility of the Jinling Hospital (Nanjing,

China). Animals were housed under controlled temperature,

humidity and day-night cycles, with free access to standard

laboratory feed and water. Experiments were carried out in

accordance with the Guidelines laid down by the NIH in the USA

regarding the care and use of animals for experimental procedures

(NIH publication No. 86-23, revised1985). The Animal Studies

Ethics Committee of Jinling Hospital approved the experiments

(approval ID, 2009065).

Experimental colitis
For the induction of colitis, mice were given 5% DSS in their

drinking water for 7 days. Control mice received regular drinking water

throughout the experiment. Twenty-five micrograms of AMD3100

dissolved in 200 ml of phosphate-buffered saline (PBS) or 200 ml of PBS

alone were administered intraperitoneally once daily during the study

period. Eight mice were studied in each experimental group. On day 8,

all mice were anesthetized with intraperitoneal administration of

ketamine (50 mg/kg) and acepromazine (2 mg/kg), and the intestinal

segments from the ileocecal valve to the anus (5,6 cm in length) were

collected for subsequent assays.

Clinical Scores
Clinical scores (also mentioned as disease activity index, DAI)

were determined by assessing the degree of body weight loss, stool

consistency, and detection of fecal blood, as previously described

[23,24]. Body weight, rectal bleeding and stool consistency were

monitored daily. For each parameter a score of 0 to 4 was

attributed, giving rise to maximal score of 12. Weight loss score:

0 = no weight loss; 1 = 1%–3% weight loss; 2 = 3%–6% weight

loss; 3 = 6%–9% weight loss; 4$9% weight loss. Stool consistency

score: 0 = normal; 2 = loose stools; 4 = watery diarrhea. Fecal

blood score: 0 = normal; 2 = slight bleeding; 4 = gross bleeding.

Colonic cytokines and morphology examination
The distal segments of the colon (2 cm from the anal verge)

were fixed in 10% neutral buffered formalin, and embedded in

paraffin wax. The sections were cut at a thickness of 4 mm,

deparaffinized with xylene, stained with hematoxylin and eosin

(H&E), and examined by two experienced pathologists in a

blinded fashion. The following morphological criteria were

considered: score 0, no damage; score 1 (mild), focal epithelial

necrosis; score 2 (moderate), diffuse necrosis of the villi; score 3

(severe), necrosis with neutrophil infiltrate in the submucosa; score

4 (highly severe), widespread necrosis with massive neutrophil

infiltrate and hemorrhage [25].

The colonic levels of TNF-a, IL-6, and IFN-c were evaluated

using commercial colorimetric kits according to the manufactur-

er’s instructions. The tissue homogenate enzyme-linked immuno-

sorbent assay was determined with respect to the concentration of

protein.

Immunohistochemical staining of colonic claudins
Colonic sections (4 mm) were dewaxed in graded alcohols, and

washed with tap water. Endogenous peroxidase activity was

blocked with 3% (v/v) H2O2, and antigen was retrieved with

microwave in 0.01 mol/L citrate buffer. The sections were then

washed with 0.1 mol/L PBS. Rabbit anti-claudin-1, claudin-2,

claudin-3, claudin-5, claudin-7 and claudin-8 were all applied at

1:100 and incubated overnight at 4uC. Sections were washed in

PBS, 20 min for four times. Power vision two-step histostaining

reagent was used for detection. All sections were developed using

diaminobenzidine and counterstained with hematoxylin.

Western blot analysis
Western blot analysis was performed as previously described

[1]. Total protein (20 mg) was separated from each sample by

electrophoresis on a 4%,20% SDS-polyacrylamide gel and

electroblotted onto polyvinylidene difluoride membranes. Mem-

branes were blocked in a blocking solution, incubated overnight

with primary antibodies, and developed with a horseradish

peroxidase-conjugated secondary antibody diluted at 1:1000.

Primary antibody was diluted as follows: claudin-1 at 1:100,

claudin-2 at 1:200, claudin-3 at 1:400, claudin-5 at 1:200, claudin-

7 at 1:300, and claudin-8 at 1:200. The immune complexes were

then visualized on X-ray film using chemiluminecent HRP

substrate. Additional immunoblots were performed using GAPDH

antibody as the primary antibody to evaluate equal loading.

Intestinal permeability measurement
Intestinal permeability was assessed by the mucosal-to-serosal

clearance of FD4 in everted gut sacs, as described in previous
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studies [26,27]. Intestinal segments from the ileocecal valve to the

anus (5,6 cm in length) were excised, and prepared in ice-cold

modified Krebs-Henseleit bicarbonate buffer [26]. The intestinal

segment was lavaged with 3 ml of PBS to remove fecal material,

and then closed at one end with a 4–0 silk ligature. The gut sac

was everted using a thin metal rod, then connected to a 1 ml

syringe containing 0.4 ml of the KHBB solution, and secured with

a 4–0 silk ligature 4 cm from the tip. The everted gut sac was

gently distended with 0.4 ml of KHBB, suspended in a 100 ml

beaker containing FD4 (20 mg/ml) in KHBB, maintained at 37uC
in a water bath, and continuously bubbled with a gas mixture

containing 95% oxygen and 5% CO2.

At the beginning of the incubation, a 1 ml sample was

withdrawn from the beaker to determine the initial external

(mucosal surface) FD4 concentration (FD4muc). After 30 min

incubation, the gut sac was removed from the beaker, its diameter

(D) and length (L) were measured, and the fluid on the serosal side

was aspirated into the syringe to determine the FD4 concentration

(FD4ser). The serosal and mucosal samples were centrifuged for

10 min at 1,000 g. One hundred microliters of the supernatant

was diluted with PBS (900 ml), and fluorescence was measured

(lex = 492 nm, slit width = 1.5 nm; lem = 515 nm, slit width

= 10 nm) in a spectrofluorometer (model F-7000, Hitachi, Japan).

The mucosal-to-serosal clearance of FD4 was calculated using the

following equations:

Mucosal surface area (A) = pLD

Mass of FD4 in the gut sac after 30 min incubation (M) =

(FD4ser) 60.4

Mucosal-to-serosal permeation rate of FD4 (PR, ng/min) =

M/30 min

Mucosal-to-serosal clearance of FD4 (C, nl/min/cm2) = (PR/

FD4muc)/A

Cell culture
HT-29/B6 cells, which were selected from HT-29 cells

differentiated by glucose-free culture, were used at passages 28–

30 [28]. HT-29/B6 cells were cultured in Trans-well bicameral

chambers (8 mm pores) with DMEM/F12 medium containing

10% fetal calf serum, 100 U/ml penicillin and 100 mg/ml

streptomycin at 37uC in an atmosphere of 5% CO2 at a relative

humidity of 90%.

Immunofluorescent staining of claudins in HT-29/B6 cells
Seven days after seeding, the HT-29/B6 cells were treated with

CXCL12 (50 ng/ml), AMD3100 (20 mmol/L), TNF-a (100 ng/

ml), IL-6 (100 ng/ml), or IFN-c (100 ng/ml) for 24 h with

untreated cells as control. Cells were then fixed with 4%

formaldehyde, permeablized with 0.1% Triton X-100, blocked

with 1% BSA in PBS for 1 h at room temperature, and incubated

overnight with rabbit polyclonal anti-claudin-3, claudin-5, clau-

din-7, and claudin-8 antibodies at 4uC. The immune complexes

were developed with FITC-conjugated goat anti-rabbit IgG and

visualized by fluorescent microscopy (model IX71, Olympus,

Japan) with 488 nm filters. In all cases, cellular viability was .95%

by trypan blue exclusion assay prior to use.

Measurement of Apoptosis
Cytokine-induced apoptosis in HT-29/B6 cells was assessed

using a fluorescent DNA-binding dye Hoechst-33342 [29]. Briefly,

cells were cultured in Trans-well bicameral chambers and treated

with cytokines (100 ng/ml TNF-a, 100 ng/ml IL-6, or 100 ng/ml

IFN-c) for 24 h with untreated cells as control. After washing twice

with PBS, the treated and nontreated cells were fixed by adding

4% formaldehyde for 10 min, washed three times with pre-chilled

PBS, and then stained with Hoechst 33342 (working concentration

5 mg/ml) in dark for 15 min. The cells were immediately washed

with PBS and then examined using fluorescent microscopy. The

characteristic apoptotic morphological changes were chromatin

condensation and fragmentation.

To quantify apoptotic cells, HT-29/B6 cells were harvested

after exposed to cytokines for 24 h, washed twice with cold PBS,

resuspended in FITC-conjugated annexin V and propidium iodide

(PI) for 10 min at room temperature in the dark., and analyzed by

a FACScan flow cytometer (Becton Dickinson, NJ, USA).

Monolayer Permeability Assays
Permeability studies were performed using confluent monolay-

ers 14 days after seeding. The stock solution of permeability probe

FD4 (25 mg/ml) was prepared by dissolving the compound in

HEPES-buffered DMEM/F12 medium and passing it through a

filter (0.45-mm pore size). For permeability studies, the medium on

the apical side of the Trans-well chambers was replaced with

200 ml FD4 solution. The medium on the basolateral side of the

Trans-well chambers was replaced with 500 ml of control medium

or medium containing cytokines (100 ng/ml TNF-a, 100 ng/ml

IL-6, or 100 ng/ml IFN-c). After 24 h of incubation, 30 ml of

medium was aspirated from apical or basolateral compartments

for spectrofluorometric determination of FD4 concentration, as

previously described [30,31]. Measurements were made using a

spectrofluorometer. Samples were diluted with 270 ml of diluted

with PBS (900 ml), and fluorescence was measured (lex = 492 nm,

slit width = 1.5 nm; lem = 515 nm, slit width = 10 nm). The

permeability of the monolayers was expressed as a clearance (nl/

cm2/h) as described previously [32].

Migration Assays
Cells migration was investigated using a ‘scratch wound’

method [33]. HT-29/B6 cells were cultured to confluent cell

monolayers and starved overnight in DMEM/F12 medium. Cells

were carefully wounded using sterile 20-ml pipette tips. The

wounded monolayers were washed twice with PBS to remove

nonadherent cells and incubated at 37uC in complete media. The

cells were then incubated in control medium or medium

containing cytokines (100 ng/ml TNF-a, 100 ng/ml IL-6, or

100 ng/ml IFN-c) for 24 h. The progress of migration was

photographed immediately and again 24 h after wounding at the

same location along the wound edges with an inverted microscope

(model IX71, Olympus, Japan). The extent of healing was defined

as the ratio of the difference between the original and the

remaining wound areas versus the original wound area [34].

Statistical analysis
Results are presented as mean and standard error of the mean

(SEM). One-way repeated-measures ANOVA (followed by

multiple pair-wise comparisons using the Student-Newman-Kleus

method) were used for the analysis of differences between the

experimental and control groups. All statistical analyses were

carried out using the SPSS version 11.5 for Windows (Chicago, IL,

USA), with statistical significance set at P,0.05.

Results

CXCR4 antagonist AMD3100 attenuated colonic damage
and disease activity index in DSS-induced colitis

After induction of colitis with DSS, the colonic mucosa showed

congestion, erosion, and hemorrhagic ulcerations. Histological

findings demonstrated marked epithelial destruction, inflammato-

ry infiltration, and submucosal edema (Figure 1B). In AMD3100

AMD3100 Modulates Intestinal Barrier Function
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treated mice, the epithelial destruction, inflammatory infiltration,

and submucosal edema were markedly attenuated (Figure 1C). No

histological alteration was observed in the intestinal segments from

control mice (Figure 1A). Meanwhile, the levels of colonic TNF-a,

IL-6, and IFN-c in colitis mice were significantly higher than that

in control mice, and treatment with AMD3100 markedly reduced

the cytokines levels in colitis mice (Figure 1D-F). Accordingly, the

histological score in mice with DSS-induced colitis was signifi-

cantly higher than that in control mice, and treatment with

AMD3100 markedly reduced the histological score in mice with

colitis (Figure 1G).

Mice exposed to DSS for 7 days exhibited significant body

weight loss (Fig. 1H) associated with diarrhea and fecal blood,

giving rise to high DAI scores (Fig. 1I). Intraperitoneal injection of

Figure 1. Effects of CXCR4 antagonist AMD3100 on colonic damage and disease activity index in mice. Colonic morphology from
control groups (A), colitis group (B), and AMD3100 group (C) was examined in a blind-fashion. Colonic TNF-a (D), IL-6 (E), and IFN-c (F) were evaluated
by enzyme-linked immunosorbent assay. The histological score (G) was also determined. The weight loss (H), the fecal characteristics and fecal blood
were monitored each day, and the disease activity index (I) was determined at day 4 and 8. The colonic epithelial barrier (J) was assessed using
mucosal-to-serosal clearance of permeability probe FD4 in everted gut sacs. Eight mice were studied in each experimental group. Results are mean 6
SEM. *P,0.05, colitis group vs control group; ** P,0.05, AMD3100 group vs colitis group. Original magnification, 2006.
doi:10.1371/journal.pone.0027282.g001
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AMD3100 from days 1–7 of DSS exposure, prevented weight loss

(Fig. 1H) and lowered DAI scores (Fig. 1I). These data indicate

that CXCR4 antagonist AMD3100 could alleviate mucosal injury

and clinical symptoms caused by DSS insult.

AMD3100 enhanced intestinal barrier in DSS-induced
colitis

The mucosal-to-serosal clearance of permeability probe FD4 in

everted gut sacs was measured to assess the intestinal barrier. The

mucosal-to-serosal passage of FD4 was low in control mice,

and the calculated clearance was 11.1861.17 nl/min/cm2.

DSS-administered mice demonstrated a significant increase

in gut permeability, with the calculated clearance reaching

27.7762.70 nl/min/cm2. In AMD3100 treated mice, there was

a marked reduction in gut permeability, and the calculated

clearance was 16.8161.67 nl/min/cm2 (Figure 1J).

AMD3100 modulated the expression of colonic claudins
in DSS-induced colitis

Immunolocalization of colonic claudins was investigated using

immunohistochemical staining. Moderate claudin-1 immunostaining

was observed in control group, which was predominantly distributed

in colonic epithelium at the base of crypts, and smooth muscle cells at

the submucous layer. Luminal colonic epithelium showed scattered

immunostaining of claudin-1 (Figure 2A). The immunostaining of

claudin-1 was decreased in intensity in colitis mice (Figure 2B), and

enhanced when treated with CXCR4 antagonist AMD3100

(Figure 2C). Intense claudin-2 and claudin-3 immunostaining was

detected in control group, which was predominantly distributed in

colonic epithelium at the tip and lateral aspects of crypts (Figure 2D

and G). In colitis group, immunostaining of claudin-2 was increased

in intensity (Figure 2E), whereas the intensity of claudin-3

immunostaining was decreased (Figure 2H). Treatment with

AMD3100 moderately reduced claudin-2 immunostaining

(Figure 2F) but enhanced claudin-3 immunostaining (Figure 2I).

Intense claudin-5 immunostaining was observed in control

mice, which was predominantly distributed in colonic epithelium

at the tip and base of crypts, and colonic epithelium at lateral

crypts showed scattered immunostaining of claudin-5 (Figure 3A).

The immunostaining of claudin-5 was decreased in intensity in

colitis mice (Figure 3B), and enhanced when treated with CXCR4

antagonist AMD3100 (Figure 3C). In control group, intense

claudin-7 and moderate claudin-8 immunostaining were detected

in colon, and predominantly distributed in colonic epithelium at

the tip and lateral of crypts (Figure 3D and G). Intensity of

claudin-7 and claudin-8 immunostaining was markedly decreased

in colitis group (Figure 3E and H), and moderately elevated after

treatment with AMD3100 (Figure 3F and I).

Protein levels of colonic claudins were accessed by western blotting.

As shown in Figure 4, the expressions of colonic claudin-1, claudin-3,

claudin-5, claudin-7 and claudin-8 in colitis mice were markedly

decreased as compared with control mice. However, the expression of

colonic claudin-2 was significantly increased in colitis mice. Treated

with CXCR4 antagonist AMD3100 significantly promoted colonic

claudin-1, claudin-3, claudin-5, claudin-7 and claudin-8 expressions,

and also decreased colonic claudin-2 in colitis mice.

Figure 2. Representative photographs of colonic claudin-1, claudin-2 and claudin-3 immunostaining in mice. Moderate claudin-1
immunostaining was observed in colons from control group (A). The intensity was significantly decreased in colitis group (B), and increased when
treated with AMD3100 (C). Intense claudin-2 and claudin-3 immunostaining was detected in control group (D, G). In colitis group, immunostaining of
claudin-2 was increased in intensity (E), whereas claudin-3 immunostaining was decreased (H). Treatment with AMD3100 moderately reduced
claudin-2 immunostaining (F) but enhanced claudin-3 immunostaining (I). Original magnification, 2006.
doi:10.1371/journal.pone.0027282.g002
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AMD3100 had no influence on claudins expression in
HT-29/B6 cells

Present study also investigated the expression of claudins in HT-

29/B6 colonic cells treated with CXCL12 or CRXR4 antagonist

AMD3100. Moderate claudin-3, claudin-7 and claudin-8, and

intense claudin-5 immunofluorescence were detected in HT-29/

B6 cells. The immunofluorescence was predominantly distributed

along the cellular membrane (just the intercellular tight junction).

Neither CXCL12 nor AMD3100 could influence the integrity and

immunofluorescent intensity of claudins in HT-29/B6 cells

(Figure 5). In accordance, western blotting analysis showed that

protein levels of claudin-3, claudin-5, claudin-7 and claudin-8 in

HT-29/B6 cells remained unchanged after CXCL12 or

AMD3100 treatment (Figure 6).

Cytokines altered claudin expression in HT-29/B6 cells
Cytokines induced alteration of claudins was detected by

western blotting. In HT-29/B6 cells, TNF-a treatment signifi-

Figure 3. Representative photographs of colonic claudin-5, claudin-7 and claudin-8 immunostaining in mice. Intense claudin-5
immunostaining was observed in colons from control group (A). The intensity was significantly decreased in colitis group (B), and increased when
treated with AMD3100 (C). Intense claudin-7 and moderate claudin-8 immunostaining were detected in sections from control group (D, G), and the
intensity was markedly decreased in colitis group (E, H). Treatment with AMD3100 enhanced claudin-7 and claudin-8 immunostaining (F, I). Original
magnification, 2006.
doi:10.1371/journal.pone.0027282.g003

Figure 4. Effects of AMD3100 on colonic claudins expression in mice. Protein levels of colonic claudins were shown in (A). Representative
immunoblots were shown in (B). Eight mice were studied in each experimental group. Results are mean 6 SEM. *P,0.05, colitis group vs control
group; ** P,0.05, AMD3100 group vs colitis group.
doi:10.1371/journal.pone.0027282.g004

AMD3100 Modulates Intestinal Barrier Function
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Figure 5. Representative photographs of claudin-3, claudin-5, claudin-7 and claudin-8 immunofluorescence in HT-29/B6 colonic
cells. (A) claudin-3 in control group, (B) claudin-3 in CXCL12 group, (C) claudin-3 in AMD3100 group; (D) claudin-5 in control group, (E) claudin-5 in
CXCL12 group, (F) claudin-5 in AMD3100 group; (G) claudin-7 in control group, (H) claudin-7 in CXCL12 group, (I) claudin-7 in AMD3100 group;
(J) claudin-8 in control group, (K) claudin-8 in CXCL12 group, (L) claudin-8 in AMD3100 group. The immunofluorescence of claudin-3, claudin-5,
claudin-7 and claudin-8 was predominantly distributed along the cellular membrane, and the immunofluorescent intensity remained unchanged
after CXCL12 or AMD3100 treatment. Original magnification, 2006.
doi:10.1371/journal.pone.0027282.g005

Figure 6. Effects of AMD3100 on claudins expression in HT-29/B6 colonic cells. Protein levels of claudins in HT-29/B6 cells were shown in
(A). Representative immunoblots were shown in (B). Six wells were studied in each experimental group. Results are mean 6 SEM.
doi:10.1371/journal.pone.0027282.g006

AMD3100 Modulates Intestinal Barrier Function
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cantly decreased claudin-3, claudin-7, and claudin-8 levels as

compared with control groups. Meanwhile, IFN-c treatment

markedly decreased claudin-8 levels. However, IL-6 treatment

didn’t alter claudin-3, claudin-7, and claudin-8 levels, but

increased claudin-5 levels in HT-29/B6 cells (Figure 7).

Cytokines inhibited wound healing in HT-29/B6 cells
The wound healing was investigated using a ‘scratch wound’

method. As shown in Figure 8, the healed percentage in control

group was 70.8366.91. Treatment with TNF-a, IL-6, and IFN-c
significantly decreased the healed percentage (31.4764.08,

50.5267.35, 42.8065.24, respectively). These results indicated

that cytokines inhibited the cell migration, thus reduced wound

healing in HT-29/B6 cells.

Cytokines induced apoptosis and increased monolayer
permeability in HT-29/B6 cells

Apoptotic morphological changes were chromatin condensation

and fragmentation. There were few apoptotic cells in control

group (Figure 9A). Cytokines such as TNF-a, IL-6, and IFN-c
significantly increased apoptosis in HT-29/B6 cells (apoptotic

percentage 27.5262.94, 10.4361.32, 2.9860.23, respectively), as

compared to control group (apoptotic percentage 1.0160.11)

(Figure 9B–E).

Monolayer permeability was expressed as a clearance of probe

FD4. In confluent monolayers, TNF-a, IL-6, and IFN-c signifi-

cantly increased the FD4 clearance, as compared to control group

(63.2766.86 nl/cm2/h, 19.4561.68 nl/cm2/h, 37.0062.68 nl/

cm2/h, respectively, vs 8.6460.96 nl/cm2/h) (Figure 9F). These

Figure 7. Effects of cytokines on claudins expression in HT-29/B6 colonic cells. Protein levels of claudins in HT-29/B6 cells were shown in
(A). Representative immunoblots were shown in (B). Six wells were studied in each experimental group. Results are mean 6 SEM. *P,0.05, vs control
group.
doi:10.1371/journal.pone.0027282.g007

Figure 8. Effects of cytokines on wound-healing in HT-29/B6 colonic cells. (A) Control group, (B) TNF-a group, (C) IL-6 group, (D) IFN-c
group. The healing percentage was showed in (E). Six wells were studied in each experimental group. Results are mean 6 SEM. *P,0.05, vs control
group. Original magnification, 1006.
doi:10.1371/journal.pone.0027282.g008
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results indicated that cytokines increased the monolayer perme-

ability in HT-29/B6 cells.

Discussion

UC, known as inflammatory bowel disease, is characterized by

activated mucosal immune system leading to impaired epithelial

barrier function and tissue destruction [2,35]. Intestinal epithelial

barrier is maintained by intracellular junctional complexes, such as

TJ, adherent junctions, and desmosomes [4]. Acting as intestinal

barrier, TJ promotes the ‘‘fence’’ function that maintains the

differential composition of the crypts by preventing the free

diffusion of lipids and proteins between these compartments. By

freeze fracture electron microscopy, previous investigations

demonstrated reduction of TJ strands in UC, which is considered

to be a possible cause of barrier dysfunction [4,11]. Decrease of TJ

complexes between epithelial cells disturbs the epithelial barrier,

leads to increased intestinal permeability, which can facilitate the

access of toxins and microbes to underlying tissues, and aggravate

mucosal damage [11,36,37].

Additionally, the disrupted morphology of TJ is often the result

of changes in TJ protein expression [4]. Claudins is the major

integral membrane proteins forming the continuous TJ strands,

interacting in a tissue-specific manner to form a charge-selective

and size-selective barrier, and predominantly contributing to

epithelial barrier function [6–10]. Disruption of claudins increases

paracellular permeability, which may allow noxious contents to

enter interstitium, and impairs alveolar epithelial barrier or blood-

brain barrier, further aggravating local inflammation [38–41]. In

UC, epithelial barrier function is also impaired. Li et al. have

reported decreased expression of claudin-1, claudin-3, claudin-5

and claudin-8 in UC [1]. In accordance, Amasheh et al. recently

demonstrated decreased expression of claudin-1, claudin-5 and

claudin-7 in UC, whereas expression of claudin-2 was increased

[12]. Other study by Oshima et al. showed a reduced expression of

claudin-4 and claudin-7, and an increased expression of claudin-2

in UC, as claudin-1 and claudin-3 expression levels were

unchanged in controls and active UC [13]. Moreover, Mennigen

et al. have recently demonstrated that expressions of claudins such

as claudin-1, claudin-3, claudin-4 and claudin-5 were decreased in

acute colitis [14]. So far, researches concert on the expression of

claudins in UC is only a few, and the results are still controversial.

In the present study, we identified the localization of claudin-1,

claudin-2, claudin-3, claudon-5, claudin-7 and claudin-8 in colon

tissue. By immunohistochemical staining, we found that claudin-1

was uniformly and continuously distributed in colonic epithelium

at the tip and base of crypts, and in smooth muscle cells at the

submucous layer in control mice. Moreover, claudin-2 and

claudin-3 were predominantly distributed in colonic epithelium

at the tip and lateral aspects of crypts, while claudin-5 was

distributed in colonic epithelium along the crypts axis in control

group. Furthermore, claudin-7 and claudin-8 were detected in

colon of control mice, and predominantly distributed in colonic

epithelium at the tip and lateral of crypts.

Present study also accessed the protein levels of claudins in

colons by Western blotting. We found that DSS-induced colitis

was associated with decreased expression of colonic claudin-1,

claudin-3, claudon-5, claudin-7 and claudin-8, and also increased

expression of colonic claudin-2. The change of colonic claudins

was in parallel with aggravated mucosal damage and increased

intestinal permeability. These results were consistent with studies

from Li et al., Amasheh et al. and Mennigen et al.[1,12,14], and

suggested possible role of claudins in intestinal barrier function.

However, present study couldn’t address whether the differential

expression of claudins drives, or is a consequence, colitis.

Chemokines, which are expressed on various cells of the

intestinal tissues, have been reported to regulate the recruitment of

inflammatory cells [42,43]. The chemokines CXCL12 is firstly

characterized as a pre-B cell growth stimulating factor and its

specific receptor is CXCR4, which also functions as an entry

receptor for human immunodeficiency virus [15]. The CXCL12/

CXCR4 chemokine axis is involved in several inflammatory

Figure 9. Effects of cytokines on apoptosis and monolayer permeability in HT-29/B6 colonic cells. (A) Control group, (B) TNF-a group,
(C) IL-6 group, and (D) IFN-c group showed respective apoptotic morphology. The apoptotic percentage was showed in (E). The monolayer
permeability was expressed as a clearance of probe FD4, and was showed in (F). Six wells were studied in each experimental group. Results are mean
6 SEM. *P,0.05, vs control group. Original magnification, 1006.
doi:10.1371/journal.pone.0027282.g009
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diseases such as rheumatoid arthritis, acute lung injury, and sepsis

[16–19]. Recent studies demonstrated that CXCR4 is constitu-

tively expressed on intestinal epithelial cells and lamina propria T

cells, and the expression is increased in those of UC patients

[20,21]. Block of CXCR4 significantly ameliorates murine

experimental colitis [22], indicating a possible role of this CXCR4

in intestinal inflammatory response.

In present study, we demonstrated marked mucosal damage

and inflammatory responses in DSS-induced colitis, and that could

be ameliorated by CXCR4 antagonist AMD3100. Moreover,

AMD3100 could prevent weight loss and lower DAI scores caused

by DSS administration. These results are in agreement with a

previous report that the CXCR4 antagonist, TF14016, could also

ameliorate DSS-induced colitis [22]. Furthermore, our present

study also demonstrated that AMD3100 could decrease intestinal

permeability (indicated by reduced mucosal-to-serosal clearance of

permeability probe FD4), thus enhance the intestinal barrier

function. Present study identified the therapeutic effect of CXCR4

antagonist AMD3100 on experimental colitis.

Moreover, in the present study, we found that treated with

CXCR4 antagonist AMD3100 significantly promoted colonic

claudin-1, claudin-3, claudin-5, claudin-7 and claudin-8 expres-

sions, and also decreased colonic claudin-2 in colitis mice.

Although CXCL12 and CXCR4 constitutively expressing on

intestinal epithelial cells [21], present study clearly demonstrated

that neither CXCL12 nor CXCR4 antagonist AMD3100 could

influence the integrity and protein levels of claudins in HT-29/B6

colonic epithelial cells. These results indicated that AMD3100

enhanced intestinal barrier function and modulated claudins

expression through indirect pathways.

Previous studies had demonstrated that combination of TNF-a
and IFN-c could decrease claudin-3, claudin-5, and claudin-7

expression, with marked increase in paracellular permeability in

rat colon [12,44]. Moreover, Mazzon et al. reported that

pharmacological and genetic TNF-a inhibition prevented the

redistribution of claudin-5, and reduced the tight junction

permeability in vivo [45,46]. In the present study, we found that

TNF-a could decrease the expression of claudin-3, claudin-7, and

claudin-8 in HT-29/B6 colonic cells, while IFN-c only decrease

claudin-8 expression. Neither TNF-a nor IFN-c could influence

claudin-5 expression. These results were slightly different from the

previous studies, probably attribute to the different targets (tissues

vs cells).

Our present study also demonstrated that AMD3100 increased

the expression of colonic claudin-1, claudin-3, claudon-5, claudin-

7 and claudin-8, decreased of colonic claudin-2 expression in DSS-

induced colitis. However, in HT-29/B6 colonic cells, TNF-a and

IFN-c decreased the expression of claudin-3, claudin-7 and

claudin-8. Considering that AMD3100 could reduce TNF-a and

IFN-c production in vivo and in isolated lymphocytes [47], we

speculated that CXCR4 antagonist AMD3100 acted on colonic

claudins, at least partly, in a cytokine-dependent pathway.

Previous studies demonstrated that the maintenance of intestinal

epithelial barrier was mainly dependent on the dynamic

equilibrium of proliferation and in epithelial cells [48,49]. Massive

apoptosis of epithelial cells disturbed epithelial barrier, facilitated

the infiltration of inflammatory cells, and aggravated mucosal

damage [48]. In the present study, we found that TNF-a, IL-6,

and IFN-c increased apoptosis and monolayer permeability in

HT-29/B6 cells. These cytokines also inhibited the wound-healing

in HT-29/B6 cells. Increased apoptosis and delayed wound-

healing of epithelial cells would augment monolayer permeability,

and damage the epithelial barrier, as mentioned in previous study

[48,49].

In conclusion, the present study demonstrated that CXCR4

antagonist AMD3100 modulated the expression of colonic

claudins, enhanced intestinal barrier function, also attenuated

colonic inflammation in DSS-induced colitis. Considering the

effects of cytokines on apoptosis, wound-healing, monolayer

permeability, as well as claudin expression in vitro, we suggested

that AMD3100 acted on colonic claudin expression and intestinal

barrier function, at least partly, in a cytokine-dependent pathway.
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