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The grade of malignancy differs among cancer cell types, yet it remains the burden of
genetic studies to understand the reasons behind this observation. Metabolic studies of
cancer, based on the Warburg effect or aerobic glycolysis, have also not provided any
clarity. Instead, the significance of oxidative phosphorylation (OXPHOS) has been found to
play critical roles in aggressive cancer cells. In this perspective, metabolic symbiosis is
addressed as one of the ultimate causes of the grade of cancer malignancy. Metabolic
symbiosis gives rise to metabolic heterogeneities which enable cancer cells to acquire
greater opportunities for proliferation and metastasis in tumor microenvironments. This
study introduces a real-time new imaging technique to visualize metabolic symbiosis
between cancer-associated fibroblasts (CAFs) and cancer cells based on the metabolic
oscillations in these cells. The causality of cellular oscillations in cancer cells and CAFs,
connected through lactate transport, is a key point for the development of this
novel technique.
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INTRODUCTION

Cancers are classified into more than one hundred types owing to different organs and tissues of
origin, cellular shapes, and physiological characteristics (1: https://www.cancer.net/cancer-types).
The cancer type determines the grade of malignancy which is diagnosed by parameters such as five-
year survival rate, prognosis, and resistance to therapy. The famous statement by Bert Vogelstein,
“Cancer is, in essence, a genetic disease” (2) is widely accepted and the grade of cancer malignancy is
often discussed in relation to gene expression. However, frontiers of genetic studies have not yet
uncovered the causes of variable malignancies in different cancers (3).

Other studies have focused on cancer metabolism (4) and consider cancers to be metabolic
diseases (5). Cancer cells are metabolically reprogrammed and enhance glycolysis even under
aerobic conditions known as theWarburg effect (6, 7). TheWarburg effect indicates that cancer cells
produce adenosine triphosphate (ATP) and other biomolecules with high efficiency (8) which is
necessary for proliferation and metastasis—one of the hallmarks of cancer (9).

Thus, the grade of cancer malignancy can be explained by the Warburg effect. If we compare
cancers in different organs using the five-year survival rates, defined as the percentage of people who
live longer than five years following diagnosis (10), pancreatic (8.2%) and liver (17.6%) cancers with
low five-year survival rates are reported to enhance glycolysis more than breast (89.7%) and prostate
(98.6%) cancers that have high five-year survival rates (11). Even in the case of cancer cells in the
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same type, for instance breast cancer, the cell lines with higher
glycolysis rates are reported to be more malignant in terms of
proliferation and metastasis (12). A review also reports that
aerobic glycolysis is a crucial component of the malignant
phenotype (13).

However, these studies are contradicted by big data analyses
of approximately 10,000 malignant tumors using the Cancer
Genome Atlas (14–16). The big data analyses obtained indexes
that characterize the enhancement of the glycolytic pathway.
The glycolysis score was obtained by using gene set variation
analysis (GSVA) (16) and the hypoxia score was obtained by
calculating mRNA-based signatures (15), see Figure 1A captions
in detail. There is a reasonable correlation between these
scores (Figure 1A).

In the present study, these scores were plotted as a function of
the five-year cancer survival rate (10), as shown in Figure 1B.
Notably, no negative correlation was observed between glycolysis
scores and the five-year survival rate. The scores are very low for
tumors with low five-year survival rates such as pancreatic
(PAAD), liver (LIHC), lung (LUAD), esophagus (ESCA),
Frontiers in Oncology | www.frontiersin.org 2
glioma (LGG), and stomach (STAD) tumors. The above plot
does not meet the expectation that the glycolysis scores of high-
grade malignant cancers would be relatively high and that there
should be a negative correlation between the glycolysis scores
and the five-year survival rate. The reasons remain unknown
why the pan-cancer analyses (15, 16) disagree with the widely
accepted statement that “aerobic glycolysis is a crucial
component of the malignant phenotype” (13).
SIGNIFICANCE OF MITOCHONDRIAL
BIOGENESIS AND RESPIRATION

In addition to the Warburg effect, the past two decades have
witnessed a significant role of OXPHOS and a hybrid of
glycolysis and OXPHOS in cancer progression and metastasis
(17–21). Emerging evidence shows that mitochondrial energy
pathways are reprogrammed to meet the challenges of high
energy demand and biomass synthesis (20, 21). For instance,
both enhanced glycolytic and increased OXPHOS activities were
A B

FIGURE 1 | Glycolytic activities across pan-cancers. (A) Correlation between glycolysis and hypoxia scores obtained from gene set variation analysis (16) and
mRNA-based signatures (15), respectively. This plot was made from the median values of these scores taken from the literature. The straight line is the linear
regression line and the decision coefficient is R2 = 0.601. The glycolysis score in 9,229 tumors across 25 cancer types was calculated as follows (16): first, a 22-
gene expression signature (SLC2A1, HK1, HK2, HK3, GPI, PFKL, PFKM, PFKP, ALDOA, ALDOB, ALDOC, TPI1, GAPDH, PGK1, PGAM1, PGAM4, ENO1, ENO2,
ENO3, PKLR, PKM and LDHA) that belongs the glycolysis core pathway was selected in each sample; second, in order to classify the glycolytic status, a gene set
variation analysis (GSVA) (16) was employed to calculate the GSVA score based on the 22-gene expression signature; third, this score was scaled from -1 to 1 to
yield the glycolysis score. On the other hand, the hypoxia score in 8,006 tumors across 19 cancer types was calculated as follows (15): Level 3 mRNA abundance
data for all genes in a hypoxia signature developed by Buffa et al. and others (15 and references therein) were extracted from each of the cancer types. Signature-
specific mRNA abundance data from all 19 cancer types were joined and scored as one cohort to compare hypoxia across cancer types. Tumors with the top 50%
of mRNA abundance values for each gene in a signature were given a score +1, and tumors with the bottom 50% of mRNA abundance values for that gene were
given a score -1. This procedure was repeated for every gene in the signature to generate a hypoxia score for each subject by using each signature (15). (B) Relation
between five-year survival rates, defined as the percentage of people who live longer than five years following diagnosis (10), and the glycolysis scores as shown in
(A). These scores of high-grade malignant tumors of low five-year survival rates, indicated by the dotted circle, are unexpectedly very low. The scores of low-grade
malignant tumors, indicated by the dotted circle, such as THCA and PRAD are low. A negative correlation between the glycolysis scores and five-year survival rates
cannot be seen because the scores of the high-grade malignant tumors are too low. The abbreviations of cancer types are as follows: BLCA, bladder urothelial
carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, colon adenocarcinoma; ESCA,
esophageal carcinoma; GBM, glioblastoma multiforme; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LICH, liver hepatocellular
carcinoma; LGG, lower grade glioma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PAAD,
pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; THCA, thyroid
carcinoma; UCEC, uterine corpus endometrial carcinoma.
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exhibited in highly metastatic mouse breast cancer 4T1 cells as
compared with its isogenic non-metastatic 67NR cells (22).
Consistently, significantly higher mitochondrial activities were
found in circulating tumor cells (CTCs) derived from 4T1 cells
(23) with no observable decrease in glycolytic activity. This
indicates a hybrid of glycolysis and OXPHOS, which was also
found in SiHa human cervix squamous cell carcinoma cells (24).
Theoretically, a mathematical model based on the regulatory
network of glycolysis and OXPHOS has found three stable
metabolic phenotypes, the Warburg state, the OXPHOS state,
and the hybrid glycolysis/OXPHOS state (19). All these studies
clearly demonstrate the crucial roles of mitochondrial OXPHOS
in cancer metastasis, and indicate that cancer cells are able to
acquire and switch between different metabolic phenotypes.
METABOLIC SYMBIOSIS IN CANCER AND
GRADE OF CANCER MALIGNANCY

Metabolic symbiosis is probably one the leading mechanisms,
which can answer the varied malignancy in cancers (25–28).
Cancer-associated fibroblasts (CAFs) are one of the candidates
for establishing metabolic symbiosis with cancer cells in complex
microenvironments (20, 26, 27, 29). Two types of metabolic
symbiosis occur: i) cancer cells enhance their glycolytic pathway
and produce lactate which is received by CAFs and oxidized in the
mitochondria; ii) CAFs enhance their glycolytic pathway and
produce lactate which is received by cancer cells and oxidized in
the mitochondria. The first type of metabolic symbiosis has been
reported in the lung (30) and colorectal (31) cancers, whereas the
second type has been reported in pancreatic (32), breast (26),
cervical (31) and prostate (33) cancers. In addition, the later
metabolic symbiosis is significant because it suggests a
modification of the Warburg effect on malignant cancers (13, 34).
Metabolic symbiosis has also been proposed to occur in the brain
and muscle tissue via lactate transport. In the brain, this is referred
to as the astrocyte-neuron lactate shuttle (ANLS) (35–37).

The mechanisms of metabolic symbiosis in cancer have been
proposed based on the expression levels of enzymes and
transporters, such as glucose transporter 1 (GLUT1) and
monocarboxylate transporter 1 (MCT1) and 4 (MCT4), in
cancer cells and CAFs as determined immunohistochemical
analyses (26, 31–33).

In this study, a real-time new imaging technique to visualize
metabolic symbiosis between CAFs and cancer cells based on the
metabolic oscillations in these cells is demonstrated. The reverse
Warburg effect (38) is an essential mechanism for metabolic
symbiosis in cancer. The present real-time visualization of the
two-compartment tumor metabolism (26) will allow us to
measure the effectiveness of anticancer therapies and facilitate
more personalized cancer treatments (27).

Furthermore, the present technique has the potential to reveal
the spatiotemporal dynamics of metabolic symbiosis in tumor
microenvironments where populations of CAFs and cancer cells
may form a metabolic network. This method can clarify the time
and spatial characteristics of metabolic symbiosis between CAFs
Frontiers in Oncology | www.frontiersin.org 3
and cancer cells in tumor microenvironments. Thus, the
mechanism of two-compartment tumor metabolism (26, 27)
can be extended to that of multiple-compartment or network-
linked tumor metabolism.

Highly malignant cancers have the plasticity to change their
metabolism to glycolytic (32, 39), oxidative (27, 40), and their
hybrid (20, 21) depending on the experimental conditions or
microenvironments. Thus, they can acquire metabolic
heterogeneities that are closely connected with proliferation,
metastasis, angiogenesis, drug resistance, and other aggressive
behaviors of cancer cells (40); resulting in a low five-year survival
rate (Figure 1B).
METABOLIC OSCILLATIONS IN CANCER
AND OTHER CELLS

Metabolic oscillations, including glycolytic oscillations, can
provide evidence of metabolic symbiosis between cancer cells
and CAFs. The concentrations of all metabolites in the glycolytic
pathway, such as glucose-6-phosphate, fructose 1,6-biphosphate,
and pyruvate as well as ATP, adenosine diphosphate (ADP),
nicotinamide adenine dinucleotide (NAD+), and its reduced
form (NADH) oscillate in the millimolar range with periods of
a few tends of seconds, which is called glycolytic oscillation. This
has been primarily studied in yeasts (17, 41–44). Yeasts enhance
the glycolytic pathway even under aerobic conditions by short-
term phenotypic adaptation, known as the Crabtree effect (45,
46). Many types of cancer cells also exhibit Crabtree in addition
to the Warburg effect which is caused by genetic mutations that
enhance glycolytic activity (47).

We focused on the metabolic similarity between yeast and
cancer cells (47) and succeeded in observing glycolytic oscillations
in individual HeLa cervical cancer cells in monolayers and
in spheroids, and DU145 prostate cancer cells in monolayers
(48–51). The median frequencies were 0.0703 Hz, 0.0342 Hz,
and 0.0226 Hz for HeLa cells in spheroids, in monolayers, and
DU145 cells in monolayers, respectively. On the other hand, their
amplitudes of NADH fluorescence were nearly the same among
these cells. These oscillations directly reflect enzymatic activities in
the glycolytic pathway, thus can be a useful index for evaluating the
Warburg effect in cancer cells (49, 50). So far, glycolytic oscillations
have not been reported in cancer patients or in healthy people, and
thus it is challenging to observe their oscillations in vivo and to
characterize them across human cancer types.

Glycolytic oscillations in cancer cells were exhibited
when glucose, as the only carbon source, was added to glucose-
starved cells (48, 50). On the other hand, cancers prefer
alternative nutrients, such as acetate and fatty acids, in
addition to glucose as the source of ATP production (52–54).
However, this is observed under nutrient-rich conditions, such as
in conventional tissue culture conditions in vitro or in vivo.
Under the experimental conditions of glycolytic oscillations,
glucose is the only source of ATP production and thus we can
exclude ATP production from fatty acids, acetate, or glutamine,
which are oxidized in the tricarboxylic acid (TCA) cycle.
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Mitochondrial membrane potential is also known to oscillate
through glucose metabolism (55–57). In pancreatic b-cells, the
interaction between glycolysis and mitochondrial oxidative
phosphorylation affects metabolic oscillation and plays an
important role in pulsatile insulin secretion (57, 58). However, in
glucose-fermenting yeasts, glycolytic and mitochondrial
interactions are not fully understood. In this context, an
experimental study concluded that the mitochondria had little or
no regulatory effect on glycolytic oscillations (55). In contrast, other
experimental and modeling studies have addressed that glycolytic
andmitochondrial processes influence eachother throughATPand
NADH production in both glycolytic and mitochondrial pathways
(59, 60).

Little is known about the glycolytic and mitochondrial
interactions in cancer cells when they exhibit glycolytic
oscillations (48–50). We assume that extracellular glucose is
metabolized to lactate through glycolysis and fermentation
without entering the TCA cycle in glucose-starved cancer cells
under the experimental conditions of glycolytic oscillations (48).
This is due to several different reasons: The activity of the
mitochondrial pyruvate carrier (MPC) is reported to be
reduced in cancer cells (61), which mainly rely on glycolysis
for ATP production when glucose is the only nutrient supply; A
study using a genetically encoded biosensor, which enabled
monitoring of the MPC activity in living cells, showed that the
level of glucose-derived pyruvate that was converted into citrate
in the TCA cycle was significantly lower in cancer cells than in
Frontiers in Oncology | www.frontiersin.org 4
normal cells (61); This is further validated by another study using
13C NMR spectroscopy in living cancer cells (62); A review paper
by McCommis and Finck (63) also reported evidence of the low
activity of MPCs in various cancer cell lines and solid tumors
(63); In addition, an LC-MS-based isotope tracer study showed
that approximately 90–97% of pyruvate derived from
extracellular glucose is metabolized to lactate whilst only 3.1–
7.8% enters the TCA cycle in cancer cells (64).
A REAL-TIME NEW IMAGING TECHNIQUE
TO VISUALIZE METABOLIC SYMBIOSIS
BETWEEN CAFs AND CANCER CELLS
BASED ON CAUSALITY BETWEEN
GLYCOLYTIC AND MITOCHONDRIAL
OSCILLATIONS

If metabolic symbiosis occurs between cancer cells and CAFs, the
causality of the donor-acceptor relationship should exist through
lactate transport. This metabolic causality is possibly recorded in
the propagation of metabolic information from glycolytic
oscillations to those in mitochondrial membrane potentials, as
shown in Figure 2A. For example, in the case of symbiosis in
pancreatic cancer, the following processes may occur
chronologically: i) CAFs enhance the glycolytic pathway and
may exhibit glycolytic oscillations; ii) lactate is produced from
A B

FIGURE 2 | Metabolic oscillations and dynamic symbiosis between cancer cells and cancer-associated fibroblasts (CAFs). (A) Oscillatory symbiosis. Glycolytic CAFs
enhance the glycolytic pathway and produce lactate from glucose. This lactate is secreted through monocarboxylate transporter 4 (MCT4) of CAFs, received by an
oxidative cancer cell through MCT1 and metabolized in mitochondria of the cancer cells (metabolic symbiosis). Oxidative cancers, such as pancreatic and liver cancer
cells, may exhibit high-glycolytic activities without the symbiosis, however, parts of the cells may exhibit the reverse Warburg effect in tumor microenvironments. We
assume that causality of donor-acceptor relationships should exist between the CAFs and cancer cells metabolically connected through the lactate shuttle. Thus, if
these cells exhibit metabolic oscillations, causality analysis of glycolytic oscillations in CAFs and mitochondrial membrane potential oscillations in cancer cells may
directly prove the metabolic symbiosis. Glyc. Osci., glycolytic oscillations; Mit. Osci., mitochondrial membrane potential oscillations; Lac., lactate. (B) Lactate transport
in populations of CAFs and cancer cells. In an experimental system of co-culture of CAFs and cancer cells, a cancer cell is surrounded by some CAFs and receives
lactate from them. Causality analysis of their oscillatory data can determine the donor-accepter relationship between the CAFs and the cancer cell, indicating their
metabolic symbiosis.
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the CAFs and excreted into the extracellular space through
MCT4; iii) cancer cells incorporate this lactate through
MCT1 and metabolize it in mitochondria; iv) mitochondrial
membrane potential may exhibit oscillations accompanied by
oxidative phosphorylation.

This series of processes can bemonitored by the autofluorescence
from NADH and fluorescence from membrane potential sensitive
dyes, such as Rhodamine 123 and tetramethylrhodamine methyl
ester (TMRM) (65), respectively. A more explicit way to monitor
glycolytic and mitochondrial processes independently is to use
genetically encoded ATP or NADH fluorescence resonance energy
transfer (FRET)-based sensors (66–68). These methods enable us to
monitor cytosolic or mitochondrial ATP and/or NADH
concentration levels independently.

If the above series of metabolic dynamics is observed by these
imaging techniques, and also causality between glycolytic
oscillations in CAFs and mitochondrial oscillations in cancer
cells is proved by a statistical analysis mentioned below, then it
can be the direct evidence of metabolic symbiosis between cancer
cells and CAFs. This result will directly prove that highly
malignant cancers, such as PAAD, LUAD, LICH, ESCA, LGG,
and STAD as shown in Figure 1B, are able to acquire and switch
between different metabolic phenotypes.
CAUSALITY ANALYSIS

Cancer cells and CAFs are co-cultured in an experimental system
for metabolic symbiosis as shown in Figure 2B. In this system, it is
necessary to determine the donor-acceptor relationship between
cancer cells and CAFs. For example, a cancer cell can receive lactate
from surrounding CAFs or metabolize glucose by itself without
receiving lactate from CAFs. In such circumstances, Granger
causality analysis (69), convergent cross-mapping (CCM) (70),
and other statistical analyses can be used to investigate the
causality between many time series of oscillatory data.

For instance, let x(t) be a time series of glycolytic oscillations
in a cell of CAFs:

x(t) =o
P

i=1
aix(t − i) + e0(t), (1)

where ai is a constant, P is the time required to track back the data
and e0(t) is a noise component. Equation 1 is an autoregressive
model of x(t) and represents x(t) based on its past values. In addition,
a time-series of mitochondrial membrane potential oscillations in a
cancer cell, y(t), can be given by equations (2) and (3):

y(t) =o
P

i=1
biy(t − 1) + e1(t), (2)

y(t) =o
P

i=1
biy(t − i) +o

P

i=1
aix(t − i) + e2(t), (3)

where bi is a constant and e1(t) and e2(t) are noise components.
Equation 3 expresses y(t) using its past values, as well as those of
x(t). If causality exists from x(t) to y(t), the prediction accuracy
Frontiers in Oncology | www.frontiersin.org 5
of y(t) is higher in Eq. (3) than that in Eq. (2). A multi-variable
vector model can be used for a system of time-series data.
SUMMARY

This perspective study attempted to answer the following
fundamental and unresolved question: Why does the grade of
malignancy differ among cancer cell types? Neither advanced
cancer genome studies nor cancer-metabolic studies have
completely answered this question. In addition, even the Warburg
effect, one of the hallmarks of cancer, cannot answer it consistently.
In the present study, the leading role of metabolic symbiosis in
cancer in the tumor microenvironment was addressed. Metabolic
symbiosis offers metabolic heterogeneities in cancer cells in the
tumor microenvironment, resulting in resistance to anti-cancer
therapies, thereby increasing the grade of malignancy. We propose
that a co-culture system of cancer cells and CAFs is a good in vitro
model. Moreover, single-cell-level metabolic oscillations and their
causality analysis can directly prove metabolic symbiosis in cancer.
Real-time visualization of metabolic symbiosis in cancer will allow
us tomeasure the effectiveness of anticancer therapies and facilitate
more personalized cancer treatments (27). Our symbiotic model
targets metabolic interactions between CAFs and cancer cells for
therapeutic strategies, including suppression of oxidative stress
from cancer cells to CAFs and inhibition of metabolite transport
fromCAFs to cancer cells by blockingMCTs (27, 40). Breaking the
network of metabolic symbiosis may result in effective anticancer
therapeutic outcomes.
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