
 International Journal of 

Molecular Sciences

Review

Interactions of Glutamatergic Neurotransmission and
Brain-Derived Neurotrophic Factor in the Regulation
of Behaviors after Nicotine Administration

Jieun Kim 1, Ju Hwan Yang 1, In Soo Ryu 1,2 , Sumin Sohn 1, Sunghyun Kim 1 and
Eun Sang Choe 1,*

1 Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu,
Busan 46241, Korea; jieun0479@pusan.ac.kr (J.K.); juhwanyang@pusan.ac.kr (J.H.Y.);
insoo.ryu@kitox.re.kr (I.S.R.); soomin@pusan.ac.kr (S.S.); s.hyun@pusan.ac.kr (S.K.)

2 Research Center for Safety Pharmacology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu,
Daejeon 34114, Korea

* Correspondence: eschoe@pusan.ac.kr

Received: 7 May 2019; Accepted: 14 June 2019; Published: 16 June 2019
����������
�������

Abstract: Nicotine causes tobacco dependence, which may result in fatal respiratory diseases.
The striatum is a key structure of forebrain basal nuclei associated with nicotine dependence. In the
striatum, glutamate release is increased when α7 nicotinic acetylcholine receptors expressed in
the glutamatergic terminals are exposed to nicotine, and over-stimulates glutamate receptors in
gamma amino-butyric acid (GABA)ergic neurons. These receptor over-stimulations in turn potentiate
GABAergic outputs to forebrain basal nuclei and contribute to the increase in psychomotor behaviors
associated with nicotine dependence. In parallel with glutamate increases, nicotine exposure
elevates brain-derived neurotrophic factor (BDNF) release through anterograde and retrograde
targeting of the synapses of glutamatergic terminals and GABAergic neurons. This article reviews
nicotine-exposure induced elevations of glutamatergic neurotransmission, the bidirectional targeting
of BDNF in the striatum, and the potential regulatory role played by BDNF in behavioral responses
to nicotine exposure.
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1. Introduction

Nicotine is a major constituent of the tobacco plant and commercial cigarettes, and is considered
to be the cause of compulsive tobacco smoking [1,2]. Nicotine delivered to the striatum increases
extracellular dopamine and glutamate concentrations by stimulating nicotinic acetylcholine receptors
(nAChRs) [3–6]. An increase in the level of extracellular dopamine in the striatum in turn increases
glutamate release by stimulating basal ganglia [7–9]. Resulting elevated glutamate levels stimulate
ionotropic- and metabotropic glutamate receptors (iGluRs and mGluRs) expressed in striatal gamma
amino-butyric acid (GABA)ergic neurons [10–12]. These stimulations cause short- and long-term
changes in neuronal activities and gene expressions and cause behavioral changes by upregulating
GABAergic outputs to other parts of basal ganglia [7,13,14].

Nicotine exposure upregulates expression of brain-derived neurotrophic factor (BDNF)
in glutamatergic terminals and GABAergic neurons of the striatum [15–17]. Furthermore,
evidence demonstrates that BDNF gene expression is upregulated by increased glutamate release in
the striatum [16,18–20]. Cleaved BDNF is the most abundant neurotrophic factor in the brain and
binds to mature-BDNF-activated tropomyosin receptor kinase B (TrkB) and pro-BDNF-stimulated
p75 receptors [21–23]. This study was undertaken to review spatiotemporal interactions of glutamate
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and BDNF in the striatum that modulate psychomotor and nicotine-seeking behaviors in response
to nicotine exposure.

2. The Striatum Potentiates Glutamate Release after Nicotine Administration

In the human brain, the striatum is a key structure of forebrain basal ganglia and is composed
of dorsal and ventral striatum. The dorsal striatum is comprised of the caudate nucleus and
putamen (CPu), and the ventral striatum of the nucleus accumbens (NAc) [8,24]. The CPu receives
dopaminergic inputs from the substantia nigra pars compacta in the midbrain and glutamatergic inputs
mainly from the somatosensory cortex [24,25]. On the other hand, the NAc receives dopaminergic
inputs from the ventral tegmental area (VTA) in the midbrain and glutamatergic inputs from the
prefrontal cortex (PFC) [25]. GABAergic medium spiny neurons constitute >90% of the striatum,
integrate glutamatergic and dopaminergic inputs, and potentiate glutamatergic response when a drug
of abuse is administered [7,24,25].

Previous studies have shown chronic administration of nicotine increases extracellular dopamine
concentrations in rat striatum [26]. Other studies have shown that dopamine release is increased
by the local infusion of nicotine into the CPu and NAc as determined by in vitro fast-scan cyclic
voltammetry analysis [27]. Repeated nicotine exposure increases extracellular glutamate concentrations
in rat CPu and NAc as determined by real-time glutamate biosensing and microdialysis [13,27].
Chronic administration of nicotine increases dopamine release in the striatum [27,28]. Systemic repeated
exposure to nicotine dose-dependently increases dopamine levels in the CPu and NAc [29], and that
local infusion of nicotine increases glutamate release in the striatum [6,30]. These findings suggest that
nicotine administration potentiates glutamate release in the GABAergic neurons of the striatum by
integrating dopaminergic neurotransmission.

3. Stimulation of α7 nAChRs in the Striatum is Required for Glutamate Release

N-AchRs are a heterogeneous family of pentameric ion channels ubiquitously expressed in
the central nervous system [31–33]. They are composed of eight α (α2-7, 9, 10) and three β (β2–4)
subunits which include heteromeric (α4)3(β2)2, (α4)2(β2)3, (α3)2(β4)3, α4α6β3(β2)2, and homomeric
(α7)5 [31–33]. Striatal exposure to nicotine by cigarette smoking binds and stimulates α4β2 and/or
α7 nAChRs and increases glutamate release [32,34]. Numerous studies have demonstrated nicotine
administration potentiates glutamate release by stimulating excitatory α7 nAChRs dominantly
expressed in glutamatergic terminals of the striatum [6,35–37]. For instance, blockade of α7 nAChRs
decreases increases in glutamate release in the CPu induced by repeated nicotine exposure [13].
Whereas blockade of α4β2 nAChRs reduced the nicotine-induced increase in dopamine release in
the CPu and NAc [27,29]. These findings suggest α7 nAChRs stimulation plays a crucial role in
enhancing striatal glutamate release, and this suggestion is supported by finding that blockade of α7
or α4β2 nAChRs in the CPu by local infusion of the receptor antagonist, methyllycaconitine (MLA)
or dihydro-β-erythroidine DhβE, respectively, reduced the nicotine-induced increase in glutamate
release [6]. It has also been reported that α7 nAChRs blockade reduced the nicotine-induced increase in
glutamate release in the CPu innervating neurons from the PFC [5,38,39]. However, the stimulation of
α4β2 nAChRs in the CPu by indirect glutamate release caused by stimulating dopaminergic systems via
basal ganglia in the forebrain has not been elucidated. Together, these findings suggest α7 stimulation
is responsible for potentiating glutamate release in the CPu and upregulating GABAergic outputs to
basal ganglia.

Repeated systemic injections of nicotine were found to increase behavioral sensitization,
as determined by assessing locomotor and stereotypy activities [13]. Furthermore, a challenge
injection following repeated exposure to nicotine also showed increased behavioral sensitization [13].
This increase in behavioral sensitization was reduced by pharmacological blockade of α7 nAChRs in
the CPu of rats [13]. Similarly, anxiety-like behaviors caused by nicotine withdrawal were attenuated
by α7 nAChR blockade in mice [40]. In addition, motivation induced by nicotine self-administration in
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rats was reduced by α7 nAChR blockade induced by intra-NAc infusion of the receptor antagonist,
PNU282987 [41]. Taken together, these findings suggest nicotine-induced α7 nAChR stimulation in the
striatum is required to sensitize psychomotor behaviors, such as locomotor and stereotype activities.

4. Stimulation of Glutamate Receptors in GABAergic Output Neurons Increases Behavioral
Sensitization and Nicotine-Seeking Behavior

Elevation of glutamate release due toα7 nAChR stimulation over-stimulates glutamate receptors in
GABAergic neurons of the striatum [42]. Two families of glutamate receptors expressed in the striatum
are iGluRs and mGluRs [43–45]. Stimulation of the iGluRs, N-methyl-d-aspartate receptor (NMDAR),
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), and kainate receptor (KAR)
in the striatum is known to upregulate Ca2+ and Na+ conductance [43–46]. Previous studies have
demonstrated that increased glutamate release in the striatum alters the functions of iGluRs [26,30].
Repeated nicotine administration increases the phosphorylation of the NMDAR GluNR2B subunit
in the NAc [47,48]. Furthermore, electrophysiological recordings obtained from rat NAc reveals
that local nicotine infusion increases NMDA currents in neurons [42,49]. These findings suggest
that stimulation of iGluRs by elevated glutamate release after nicotine administration leads to
changes in neuronal excitability and subsequent behavioral changes. This suggestion is supported
by findings that increases in nicotine-seeking behavior in response to nicotine self-administration
are associated with phosphorylation of the NMDAR GluNR2B and AMPAR GluR2 subunits in the
NAc [47,48]. While blockade of NMDAR in the VTA suppresses the nicotine-induced increase in
self-administration [50].

The mGluRs are classified into group I, II, and III in accord with the pharmacology and biochemistry
of GTP-binding proteins [44]. Stimulation of mGluR5 linked to excitatory Gq, which is dominantly
expressed in the striatum, upregulates the productions of inositol trisphosphate (IP3) and diacylglycerol
(DAG) via the hydrolysis of phospholipase C (PLC)-mediated phosphatidylinositol 4,5-bisphosphate
(PIP2) [44]. In turn, IP3 increases Ca2+ release from the ER, while DAG activates protein kinase C (PKC)
and upregulates Ca2+ signaling cascades, and thus, induces behavioral changes [9]. Growing evidence
shows that blockade of mGluR5 in the striatum reduces nicotine-induced increases in locomotor activity,
motivation, conditioned place preference, and self-administration [51–54]. These findings support
that stimulation of mGluR5 in the striatum by glutamate increase is required for nicotine-induced
behavioral sensitization and nicotine-seeking behavior.

Group II (mGluR2/3) and III (mGluR4/6-8) expressed mainly in the necks of glutamatergic terminals
are also stimulated by excessive glutamate release [42,55,56]. These receptors linked to inhibitory
Gi/o control glutamate release by inhibiting adenylyl cyclase-mediated signaling cascades [42,55,56].
Previous studies have demonstrated stimulation of group II/III mGluRs attenuates nicotine-induced
self-administration by reducing glutamate release in the CPu and NAc [57]. Pharmacological stimulation
of these receptors or their potentiation by peptides, such as mGluR2 PAMs AZ8418, and AZD8529,
in the medial forebrain reduces nicotine-induced increases in self-administration [58]. These findings
suggest stimulation of group II/III mGluRs downregulates nicotine-induced increase in glutamatergic
neurotransmission by reducing glutamate release in a feedback control manner.

5. Nicotine Increases Bidirectional BDNF Release in the Striatum

Nicotine increases BDNF expression in the striatum [16,19,20], but the mechanisms responsible
have not been elucidated. BDNF is constitutively transcribed and synthesized in the ER as a
prepro-(35 kDa), and pro-peptide (32 kDa) [59]. Rodent BDNF genes contain nine exons (I-IX) which
include their own promoters [60]. The promoter region of exon IV contains three Ca2+-responsive
element (CaRE1-3 also called CRE1-3), and interaction between CaRE3 and phosphorylated CREB
increases the transcriptional activity of BDNF on promoter at exon IV of the BDNF gene and induces
the translation of pro-BDNF [61].
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Pro-BDNF is then proteolytically processed through the trans-Golgi network (TGN) by
endopeptidases, such as the Golgi-resident- and secretory granule-resident proprotein convertases
1–7 (PC), or the membrane-anchored protein, furin [61,62]. Cleaved BDNF in vesicles associated
with either PC or furin undergoes posttranslational modifications, such as N-acetylation and
carboxyl-terminal amination [63], which are transported to glutamate terminals. During this process,
phosphorylated Huntingtin (htt), which is activated by a variety of TGN signaling cascades, recruits the
motor proteins, kinesin 1 and dynein [64–66]. Binding of the htt complex to vesicles determines whether
the targeting of cleaved BDNF is anterograde or retrograde [64–66]. Cleaved BDNF is known to be sorted
by two different types of vesicles, that is, secretion vesicles and secretory granules, which are linked
to furin and PC, respectively [61,62]. In addition, secretory granules contain TGN-originated sorting
protein complex in which cleaved BDNF is released in a pH-dependent manner. Subsequent exocytosis
triggered by the stimulation of α7 nAChRs by nicotine binding then results in the release of a mixture
of pro- and mature-BDNF [23]. Released pro-BDNF is further regulated by endopeptidases, such as
tissue-plasminogen activator (tPA) plasmin cascade or matrix-metalloproteinases (MMPs), which are
located outside of neurons [67,68]. These extracellular enzymes convert pro-BDNF into mature-BDNF,
which stimulates TrkB in striatal GABAergic neurons. However, not all pro-BDNF is converted to
mature-BDNF [59].

Apart from anterograde BDNF release, cleaved BDNF is also constitutively transported to dendritic
spines of GABAergic neurons via retrograde axonal transport. The stimulation of glutamate receptors
by nicotine-induced glutamate release facilitates BDNF secretion into synaptic clefts [69]. Although the
cellular mechanisms responsible for the retrograde release of BDNF from the dendritic spines in
the striatum are not clear, they may involve increased Ca2+ influx due to iGluR stimulation [70,71].
Stimulation of mGluR5 may contribute to BDNF release by activating PLC-mediated IP3, which increases
Ca2+ mobilization from the ER, and DAG, which activates PKC and increases Ca2+ conductance by
stimulating NMDAR [72]. Furthermore, an increase in intracellular Ca2+ concentration may activate
the SNAP REceptor (SNARE) proteins, synpatotagamin-6 (SYT6) and complexin, and facilitate the
retrograde targeting of BDNF release [73].

6. Nicotine Activates BDNF-Mediated TrkB Signaling Cascades in GABAergic Neurons

BDNF released by either anterograde or retrograde targeting binds to its receptor tropomyosin
receptor kinase B (TrkB), also known as type 2 of neurotrophic tyrosine kinase [23], whereas pro-BDNF
binds to p75 neurotrophin receptor (p75NTR), though it may be converted to mature-BDNF by
MMPs [67]. Previous studies have shown nicotine increases BDNF levels and activates TrkB-mediated
signaling cascades in GABAergic neurons [74]. Furthermore, BDNF infusion into the NAc stimulates
TrkB phosphorylation [16], that is, binding of BDNF to TrkB results in the phosphorylations of
tyrosine and serine of TrkB at positions Tyr515, Tyr816, and Ser478 [75]. Phosphorylation at Tyr515
is linked to Shc adaptor protein and activates the Pi3K/Akt pathway [76,77], and Shc activation
upregulates Ras-signaling cascades [75]. The activation of Pi3K/Akt and Ras-signaling pathways
leads to ERK phosphorylation [76,77], which in turn results in the phosphorylation of CREB and
the activation of mammalian target of rapamycin (mTOR)-signaling cascades [75–77]. In addition,
phosphorylation at Tyr816 creates a binding site for PLCγ, and TrkB-PLCγ binding results in increases
of Ca2+ release from the ER by activating IP3 [75]. This release of Ca2+ into the cytoplasm then
activates a variety of Ca2+ signaling cascades, retrograde targeting of BDNF, and the upregulation of
neuronal activity [73,75]. Ser478 located in the juxtamembrane region of TrkB is phosphorylated by
cell division protein kinase 5 (CDK5), which activates Rac 1 that is involved in the BDNF-dependent
remodeling of dendritic spines [75]. Signaling cascades emanating from TrkB phosphorylation lead to
the synaptic remodeling of GABAergic neurons after nicotine exposure, which may act to downregulate
or upregulate nicotine-induced behaviors depending on the conditions of nicotine exposure [78].

Unlike mature-BDNF, pro-BDNF facilitates interactions between p75NTR and several adaptor
proteins, such as neurotrophin receptor-interacting factor (NRIF), melanoma-associated antigen
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(MAGE), neurotrophin receptor p75 interacting MAGE homologue (NRAGE), Schwann cell factor 1
(SC1), and RhoGDI [79], which function by activating the expression of pro-survival or pro-apoptotic
genes [80]. However, it is unclear whether p75NTR-linked signaling cascades contribute to behavioral
sensitization or nicotine-seeking behavior.

7. BDNF Differently Regulates Behavior According to the Conditions of Nicotine Exposure

Nicotine increases the anterograde and retrograde targeting of BDNF in striatal glutamate terminals
and GABAergic neurons, respectively, and anterograde targeting of BDNF occurs in cortical neurons
projecting to the striatum [81–84]. Evidence shows nicotine exposure induces the over-expression of
BDNF mRNA in cultured cortical neurons [84]. For example, chronic treatment with the nicotine analog,
choline, increased the expression and release of BDNF from cultured cortical neurons [83]. Stimulation of
α7 nAChRs in the SH-SY5Y cell line increased BDNF synthesis and secretion [82,83], whereas treatment
with MLA, an α7 nAChR antagonist, reduced the nicotine-induced BDNF over-expression in this cell
line [28]. These findings suggest that nicotine-induced α7 nAChR stimulation is responsible for the
expression of BDNF, which facilitates anterograde BDNF release to the striatum from cortices. A few
studies have examined the effects of nicotine on retrograde BDNF release from corticostriatal nerve
terminals [85]. Treatment with glutamate increases BDNF release in dendrites of cultured hippocampal
neurons [86,87].

The role played by BDNF in the regulation of nicotine-induced behaviors is not unequivocal.
Growing evidence demonstrates BDNF in the striatum regulates nicotine-induced behaviors in ways
that depend on the nature of nicotine exposure. Intra-striatal infusion of BDNF in rats augments
increases in locomotor activity induced by repeated cocaine exposure [88,89]. Intra-NAc infusion
of a TrkB antagonist reduced increases in cocaine-seeking caused by repeated exposure [90,91].
Systemic administration of a TrkB antagonist prior to repeated exposure to nicotine reduced nicotine
intake, motivation, and reinstatement of nicotine-seeking [90]. In addition, infusion of exogenous BDNF
after repeated exposure to nicotine increased new synapse formation in dendritic spines of the NAc
and CPu [92], which suggests BDNF elevation after repeated exposure to nicotine increases synaptic
strength in the striatum, and thus, enhances behavioral sensitization and nicotine-seeking behavior.

In contrast, intra-NAc infusion of BDNF during nicotine withdrawal decreased nicotine-induced
increases in the reinstatement of self-administration in rats [93]. Intra-CPu infusion of BDNF
prior to nicotine challenge reduced nicotine-induced increases in locomotor activity and stereotypy
movement [94]. As observed for nicotine withdrawal, intra-NAc infusion of a TrkB antagonist during
cocaine withdrawal before cue-induced reinstatement increased cocaine self-administration in rats [91].
Furthermore, cue-induced increase in reinstatement evoked by cocaine administration was decreased by
intra-NAc infusion of BDNF during cocaine withdrawal [91]. Intra-PFC infusion of BDNF during early
withdrawal reduced cocaine-induced increases in self-administration in rats [91,95–97]. These findings
suggest that GABAergic activity decreases during nicotine withdrawal. However, BDNF infusion into
the NAc lowered GABAergic activity to the basal level by activating BDNF-mediated TrkB signaling
cascades [91,96,97], which is believed to be why exogenous BDNF infusion in brain followed by
nicotine challenge reduces behavioral sensitization and nicotine-seeking as compared with nicotine
challenge alone. This notion is supported in part by the finding that exogenous BDNF infusion in the
PFC during early cocaine withdrawal increases ERK phosphorylation [97].

The effects of BDNF on glutamatergic neurotransmission, bidirectional BDNF releases in the
striatum, behavioral sensitization after repeated exposure to nicotine, and the effects of nicotine
withdrawal are summarized in Figure 1. Repeated exposure to nicotine increases glutamate release in
the striatum by stimulating α7 nAChRs, and dopamine may help to increase glutamate release [7–9].
In concert with increased glutamate release, BDNF release in the striatum is also enhanced by repeated
exposure to nicotine [16,19,20]. Furthermore, this increase in BDNF release, resulting from anterograde
and retrograde secretion, stimulates BDNF-mediated TrkB signaling cascades in GABAergic neurons,
and thus, leading to psychomotor sensitization and nicotine-seeking behavior [21,69,74,91]. In contrast,
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BDNF infusion in the NAc returned hypo-activated GABAergic neurons during nicotine withdrawal to
the basal level, which leads to downregulate nicotine challenge-induced increases in behaviors [96,97].
For this reason, infusion of BDNF during nicotine withdrawal might provide an effective means of
controlling nicotine-induced relapse after withdrawal. Therefore, understanding of the molecular
activities of BDNF and associated molecules in TrkB-mediated signaling cascades may aid the
identification of potential therapeutic targets for the prevention of nicotine relapse.
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Figure 1. (A) Changes in glutamatergic neurotransmission, bidirectional BDNF release, BDNF-mediated
signaling cascades, and behavioral sensitization after repeated exposure to nicotine and nicotine
withdrawal. (B,C) Proposed cellular mechanisms underlying repeated nicotine exposure and nicotine
withdrawal mediated effects in GABAergic neurons are schematically depicted and compared.
Exogenous BDNF infusion into the striatum during nicotine withdrawal returned hypoactivated
GABAergic neurons to the basal level by activating TrkB-linked signaling cascades [91,96,97].
Switched neural activity caused by BDNF does not alter after challenge nicotine administration.
Putative interactions are discussed in the text. Solid and broken arrows represent direct and indirect
stimulations of downstream molecules or behaviors, respectively. AP, action potential; [Ca2+],
Ca2+ concentration; EPSP, excitatory postsynaptic potential; IP3R, inositol trisphosphate receptor; mV,
membrane potential; [Na+], Na+ concentration; PKC, protein kinase C; RyR, ryanodine receptor; SYT,
synpatotagamin; tPAs, tissue-plasminogen activators; VGCC, voltage-gated calcium channel.
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BDNF Brain-derived Neurotrophic Factor
CaRE Ca2+-responsive Element
CDK5 Cell Division Protein Kinase 5
CPu Caudate and Putamen
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CREB cAMP Response Element-binding Protein
DAG Diacylglycerol
DhβE Dihydro-β-erythroidine
ER Endoplasmic Reticulum
ERK Extracellular-signal-regulated Kinase
GABA Gamma Amino-butyric Acid
GLUNR2B Ionotropic Glutamate Receptor Subtype 2B
GTP Guanosine-5′-triphosphate
Htt Huntingtin
iGluRs Ionotropic Glutamate Receptors
IP3 Inositol Trisphosphate
KAR Kainate Receptor
MAGE Melanoma-associated Antigen
mGluRs Metabotropic Glutamate Receptors
MLA Methyllycaconitine
MMP Matrix-metalloproteinases
mTOR Mechanistic Target of Rapamycin
NAc Nucleus Accumbens
nAChRs Nicotinic Acetylcholine Receptors
NMDAR N-methyl-d-aspartate Receptor
NRAGE MAGE Homologue
NRIF Neurotrophin Receptor-interacting Factor
Ras Ras GTPase
p75NTR p75 Neurotrophin Receptor
PC Proprotein Convertases
PFC Prefrontal Cortex
PI3K Phosphoinositide 3-kinases
PIP2 Phosphatidylinositol 4,5-bisphosphate
PKC Protein Kinase C
PLC Phospholipase C
RhoGDI Rho GDP-dissociation Inhibitor
SC1 Schwann Cell Factor 1
SH-SY5Y Thrice-cloned Sub-line of Bone Marrow Biopsy-derived Line SK-N-SH
Shc SHC-transforming Protein 1
SN Substantia Nigra
SNARE SNAP REceptor
SYT6 Synpatotagamin-6
TGN Trans-Golgi Network
tPA Tissue-plasminogen Activator
TrkB Tropomyosin Receptor Kinase B
VTA Ventral Tegmental Area
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