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SUMMARY

B cells undergo somatic hypermutation (SHM) of the Immunoglobulin (Ig) variable
region to generate high-affinity antibodies. SHM relies on the activity of activa-
tion-induced deaminase (AID), which mutates C>U preferentially targeting
WRC (W=A/T, R=A/G) hotspots. Downstream mutations at WA Polymerase h

hotspots contribute further mutations. Computational models of SHM can
describe the probability of mutations essential for vaccine responses. Previous
studies using short subsequences (k-mers) failed to explain divergent mutability
for the same k-mer. We developed the DeepSHM (Deep learning on SHM) model
using k-mers of size 5–21, improving accuracy over previous models. Interpreta-
tion of DeepSHM identified an extended WWRCT motif with particularly high
mutability. Increased mutability was further associated with lower surrounding
G content. Our model also discovered a conserved AGYCTGGGGG (Y=C/T) motif
within FW1 of IGHV3 family genes with unusually high T>G substitution rates.
Thus, a wider sequence context increases predictive power and identifies fea-
tures that drive mutational targeting.

INTRODUCTION

Upon encountering antigen, germinal center (GC) B cells undergo several programmed mutational events

in secondary lymphoid organs to mount an effective humoral immune response. Somatic hypermutation

(SHM) takes place in the GC dark zone whereby mostly point mutations are introduced into the Immuno-

globulin (Ig) variable (V) region. Selection for mutations leading to higher binding B cell receptors to

cognate antigen occurs in the GC light zone, thus, producing a diverse repertoire of high-affinity antibodies

(Methot and Di Noia, 2017; Pilzecker and Jacobs, 2019; Rajewsky, 1996). Themutagenic enzyme, activation-

induced deaminase (AID), initiates SHM (Muramatsu et al., 2000) by converting cytosine (C) to uracil (U) in

single-stranded DNA (ssDNA), resulting in a U:G (guanine) mismatch (Bransteitter et al., 2003). AID displays

preferential targeting at WRC/GYW "hotspot" motifs (where W=A/T, R=A/G, Y=C/T, and the underlined

base indicates the mutated base in the top and bottom strand, respectively), whereas SYC/GRS "cold-

spots" (S=C/G) are significantly less targeted (Pham et al., 2003; Rogozin and Diaz, 2004; Rogozin and Kol-

chanov, 1992; Yu et al., 2004). If left unrecognized, U mismatches will act as a template T and be replicated

over (Pilzecker and Jacobs, 2019). The resulting C>T transition mutation is commonly referred to as the

DNA "footprint" of AID (Liu et al., 2008). Downstream DNA repair further contributes to antibody diversity

that is mediated by low-fidelity polymerases. During non-canonical base-excision repair (ncBER), the U:G

mismatch is recognized and excised by uracil-DNA glycosylase (UNG), resulting in an abasic site (Rada

et al., 2004). Repair of these abasic sites by REV1 can cause both transition and transversion mutations

at C:G base-pairs (Jansen et al., 2006). In the case of non-canonical mismatch repair (ncMMR), the U:G

mismatch is recognized by the MSH2/MSH6 heterodimer. Next, EXO1 exonuclease is recruited to create

a patch of ssDNA, which then allows error-prone polymerases, particularly Polymerase eta (Polh), to resyn-

thesize. Polh is known to create mutations at neighboring adenine (A) and thymine (T) sites of the initial

AID-induced lesion, most notably at WA/TW hotspot motifs (Matsuda et al., 2001; Mayorov et al., 2005).

Several computational models have been developed for the SHM process and intrinsic biases exhibited by

key proteins such as AID and Polh. These models have mainly utilized k-mer subsequences, where k is a

specified integer length, ranging between 3-mers to 7-mers (Cui et al., 2016; Elhanati et al., 2015; Shapiro

et al., 1999, 2002; Yaari et al., 2013). Two of these models (Cui et al., 2016; Yaari et al., 2013) are widely used
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and have leveraged 5-mer motifs to capture the dependency of the local surrounding sequence for the

middle nucleotide to mutate, while simultaneously bypassing any influence of selection. The first of these

targeting models ("S5F00) evaluates all possible 5-mers and synonymous (silent) mutations derived from

functionally rearranged, or productive, VDJ coding sequences (Yaari et al., 2013). The second model

("RS5NF") similarly assesses 5-mers but uses both synonymous and non-synonymous (replacement) muta-

tions from non-productively (non-functional) rearranged sequences (Cui et al., 2016). Such models have

been used to simulate B cell repertoire lineages by constructing a set of hypothetical sequences that

have been mutated in a sequential manner as governed by, for example, the underlying S5F substitution

scores (Krantsevich et al., 2021; Sheng et al., 2017). Although k-mer approaches are generally able to cap-

ture some key local intrinsic biases of SHM, such as hotspot targeting, there is evidence that shorter k-mers

are insufficient to properly characterize differential SHM targeting. For example, a recent study extended a

local sequence (5-mer) context model and improved accuracy by including parameters describing the po-

sition within the IGHV gene (Spisak et al., 2020). Another study compared the mutability of identical 5-mer

(middle position +/�2nt) motifs at different positions within an IGHV gene (Zhou and Kleinstein, 2020), and

found that the mutation frequency of these motif-allele pairs (MAPs) positively correlates with the overall

mutability of a wider neighborhood of motifs, suggesting that an extended k-mer may better capture SHM.

Current efforts towards the development of HIV and influenza vaccines aim to recreate the mutations lead-

ing to known broadly neutralizing antibodies (bnAbs) (Haynes et al., 2012). A major obstacle to this

approach is that, particularly in the case of HIV, bnAbs have acquired large numbers of mutations. A pre-

vious study used a methodology (ARMADiLLO) that combined the S5F model with simulations and found

that many key bnAbs mutations had a low probability of occurring naturally (Wiehe et al., 2018). Simulation

approaches using mutability models such as S5F are needed due to non-independence between sites,

most obviously when mutations create or destroy hotspots at adjacent sites (Krantsevich et al., 2021).

Improvedmutability models can therefore be used to better evaluate the probability of generating key mu-

tations in the context of vaccine development.

Earlier studies have shown that using deep learning is effective in different genomic applications; for

example, convolutional neural networks (CNNs) in extracting conserved sequence motifs among target se-

quences (Alipanahi et al., 2015; Kelley et al., 2016; Zhou and Troyanskaya, 2015). In this study, we adopted a

deep learning approach using a 2-D CNN to analyze extended k-mer lengths to better understand the un-

derlying SHM process. We demonstrate that our model, DeepSHM (Deep learning on SHM), can more

accurately represent the SHM process by evaluating longer k-mers of up to 21 nts. In addition, DeepSHM

using 15-mers as inputs was able to recapitulate AID WRC/GYW hotspot motifs and identify an extended

WWRCT motif. Neural network predictions are notoriously difficult to explain (the "black box" problem),

but many new methods are available to interpret results (Koo and Ploenzke, 2020). We used one such

method to identify a negative association between increasedmutability at a site and its surrounding G con-

tent. On the other hand, lower mutation frequency was correlated with increased substitution rates of

certain substitution types, particularly for G>T and C>A mutations. Furthermore, many highly conserved

sites within G-rich subregions belonging to several IGHV3 genes display an extremely high bias towards

creating G mutations, some of which may participate in the formation of G-quadruplex (G4) structures.

RESULTS

Deep learning can more accurately represent SHM mutability and substitution biases

The objective of our analysis was to use supervised deep learning to build an accurate convolutional neural

network (CNN) for SHM and, as much as possible, identify features contributing to mutability. We chose

CNNs because we still expected mutation frequency to depend on recurring motifs that might occur at any po-

sition in the sequence (most obviously, AID hotspots), a task CNNs are well suited to. The workflow of our

network consists of an input layer that processes a k-mer subsequence represented in its one-hot encoding

format (i.e., a 43k matrix of zeros and ones), followed by a convolution layer and two fully connected layers

as the hidden layers, and finally the output layer of size 431 or 131, depending on the task that is being pre-

dicted (Figure 1, see STAR Methods). Several hyperparameters, including dropout rate and learning rate,

were fine-tuned with our model as well (Table S1A). We defined a model that would separate mutations on

each strand (which are predominantly at C and A on the top strand and at G and T on the bottom strand) at

the input level. To achieve this, we identified a simple solution using padding that assigns a row in each channel

of the convolution layer output separately to each strand (Figure 1). CNNs are also often used together with attri-

bution methods such as Integrated Gradients, to help with interpretation of the results.
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As a starting point, we trained two CNN models, which we collectively refer to as DeepSHM (Deep

learning on SHM), to separately predict mutation frequency and substitution rates, calculated from pre-

viously published B cell repertoire data containing non-productively rearranged and clonally indepen-

dent VDJ coding sequences (Tang et al., 2020), for varying k-mer lengths (see STAR Methods). We

trained both models independently using different combinations of k-mer lengths and hyperparameters

as listed in Table S1A. We found that for predicting mutation frequency, 15-mers were moderately better

than 9-mers (purple boxplots in Figure 2A, Mann-Whitney U test: P < 1.1 3 10�11) and that further ex-

tending the motif length to 21 did not improve accuracy because both produced an overall maximum

correlation (across hyperparameters) of �0.81 (Figure 2A, Table 1). Thus, using k-mers of length 15 or

longer outperformed shorter lengths, specifically 5-mers and 9-mers (Table 1), suggesting that an

extended DNA motif can better model the SHM process. However, using longer k-mers did not substan-

tially improve the model that predicts SHM substitution bias alone, achieving an average correlation of

0.56 for 15-mers (green boxplots in Figure 2B, Table 1), but which is similar for different lengths. For the

interpretability analysis below, we chose to use the best 15-mer models to keep the k-mer length consis-

tent for comparisons across all models. To check if the performance of the models leading to the best

results was consistent, we also trained 30 different iterations of each model, keeping the hyperpara-

meters fixed but using different random seeds. We found the standard deviation across correlations

was very small, at 0.002 for the mutation frequency model and 0.001 for the substitution rate model,

showing the strong consistency of our results.

We next sought to compare DeepSHM against the widely used S5F model that is based on 5-mer motifs

(Yaari et al., 2013). To ensure a fair comparison, we generated an S5F targeting model using the same

data set that was used to train DeepSHM, as well as the same cross-validation scheme (see STAR

Methods). Using the same test set splits as above, we found that there was an average correlation of

0.69 between the predicted S5F model mutability and empirical mutation frequency, and an average

correlation of 0.52 for predicted S5F substitution scores and empirical substitution rates (red dashed

lines in Figure 2, Table 1). The substitution model slightly outperformed S5F for all k-mer values we

analyzed. The mutation frequency model achieved a modest improvement over S5F using 5-mers as

an input, and this difference became more evident for 9-mers, 15-mers, and 21-mers (Figure 2A, Table

1). To shed light on performance variation not due to changing hyperparameters, we used 30 iterations

(using different random seeds) of the best 15-mer models for both mutation frequency and substitution

models discussed above and found these iterations to have significantly greater accuracy than S5F both

individually and in aggregate (P < 1.8 3 10�6 for each model, Wilcoxon signed-rank test). Overall, these

results show that our deep learning approach successfully extracts meaningful information from the

wider sequence context to improve predictions.

Figure 1. DeepSHM model architecture

Each model had an input layer, one convolution layer, two fully connected layers, and an output layer. The input layer was a 43k dimensional one-hot

encoded matrix (k is the length of the subsequence). The dimension of the output layer was dependent on the task: substitution (431), mutation frequency

(131), or weighted substitution (431). For the convolutional layer, ‘same’ padding was used to allow the model to process top and bottom strand mutations

separately. With ‘same’ padding, the output of each convolutional channel has the same shape as the input (43k) with the following properties: the first and

the fourth rows are populated with zeros only (there was no real input, only padding; cyan, and magenta rows); the input used for the second (light blue) row

contained two rows of padding and two data rows corresponding to A or C nucleotides only; and similarly, the input used for the third (green) row also

contained two rows of padding and two rows of data corresponding to G or T nucleotides. Because AID and Polh target C and A sites, respectively, this

approach was taken with the expectation of helping the model distinguish top and bottom strands.
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To identify associations between mutation frequency and specific substitutions, we further constructed a

DeepSHM model to predict the "weighted substitution" of a k-mer, i.e., the product of the percentage

of each observable substitution type (e.g G>N) and the mutation frequency of the k-mer (see STAR

Methods). Note that this weighted substitutionmetric is a vector representing the four ordered DNAbases,

with a ‘‘0’’ placed at the position that matches the middle nucleotide of the k-mer. Because weighted sub-

stitution constitutes aspects of both the observable mutation frequency and substitution rate of the middle

nucleotide of a given k-mer, we were able to evaluate DeepSHM on each metric separately. Although this

model made poorer substitution rate predictions on average (varying hyperparameters) than S5F (Table 1),

the best model performed similarly to S5F for substitution rates while performing almost as well as any

model in predicting mutation frequency. Cross-validation in this instance produced a range of correlations

between 0.51 and 0.57 for predicted substitution rates – a level similar to that of S5F (Figure 2B, Table 1). On

the other hand, the DeepSHM model for weighted substitution values was almost as good at predicting

mutation frequency for 15-mers (correlation: 0.79) as the standalone model that was tasked to learn muta-

tion frequency only, as well as outperforming S5F (Figure 2A, Table 1).

Interpretation of the DeepSHM network reveals extended hotspot motifs

A complication often associated with deep neural networks is model interpretability (the ‘‘black box’’ prob-

lem). One way we interrogated the predictions made by DeepSHM, and what it has learned about the SHM

process, was to analyze the output of the penultimate layer of each 15-mer based model. In particular,

analyzing the output, or ‘‘encodings’’, of this layer can be viewed as an alternative, and more informative,

way of representing the input 15-mer. To visualize the multi-dimensional encodings of the individual 15-

mers, we used t-SNE, a dimensionality reduction technique, to project each onto a 2-dimensional embed-

ding (see STAR Methods). At this point in order to make full use of the data, we merged all of the 15-mer

data into one training set, and then trained three new individual models (one for each output type) using

the hyperparameters which previously led to the best cross-validation results. The analyses we present

below are derived from the DeepSHM models that were trained using this merged data set.

We began by identifying features learned by DeepSHM that predicted weighted substitutions. Because

weighted substitution is a measure of both mutation frequency and substitution bias, the embedding

should capture bothmetrics simultaneously. Each point in the resulting t-SNE embedding in Figure 3A rep-

resents a single 15-mer and is colored according to its corresponding mutation frequency. We found that

the k-mers separated into a relatively small number of clusters and that within the four largest clusters there

was a gradient of mutability. When we considered the middle nucleotide of each 15-mer, we observed that

these clusters also shared the same middle nucleotide (Figure 3B), suggesting that the network identified

as a key feature the ‘‘0’’ value in the weighted substitution output vector that is associated with the middle

nucleotide.

Next, we applied clustering on the embedding as a way to generate smaller clusters for further analysis

(Figure S1, see STAR Methods). We subsequently created a sequence logo plot representing each cluster

as shown in Table S2. As expected, clusters with the highest mutation frequencies had inner subsequences

Figure 2. Performance of DeepSHM

(A and B) Boxplots describing the distribution (across random hyperparameters) of Pearson correlations between

DeepSHMpredictions and empirical data (y-axis) are shown for different input k-mers (x-axis) for (A) mutation frequencies,

and (B) substitution rates, for all three models (mutation frequency, substitution, and weighted substitution). Red dashed

lines signify correlations of predicted S5F values, which uses 5-mers.
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containing AID (C cluster 8, G cluster 12) and Polh (A cluster 3, T cluster 20) hotspots. For AID, these are

WRC (Figure 3C) and GYW motifs (Figure 3D). Within the two most highly targeted AID hotspot clusters

there is a substantial presence of both WGC/GCW and WAC/GTW contexts, rather than only the well-

known WGCW overlapping hotspot motif (Tang et al., 2020; Wei et al., 2015). Furthermore, even when

we include WAC/GTW, there is a preference for a T base at the 30 end of the WRC hotspot, and conversely,

a bias for an A base at the 50 end of the GYW hotspot (Figures 3C and 3D). This motif is consistent with a

genome-wide study of AID mutations in mice that reported observing high mutability at AACT and AGCT

motifs in both strands (Álvarez-Prado Á et al., 2018). When we assessed the mutability of all possibleWRCN

(N = A/C/G/T) motifs separately, we observed WRCT to be the most highly mutated in each case (Fig-

ure S2). Previous studies identified WRCY/RGYW (Y=C/T, R = A/G) and later WRCH/DGYW (H = A/C/T,

D = A/G/T) to be a better predictor of mutability at C:G bases (Rogozin and Diaz, 2004; Rogozin and Kol-

chanov, 1992). However, we discovered some inconsistencies with these definitions, as AGCC was found to

Table 1. Cross-validation of various input k-mer sequences

Model Test set

S5F

(5-mer)

DeepSHM

(5-mer)

DeepSHM

(9-mer)

DeepSHM

(15-mer)

DeepSHM

(21-mer)

Substitution rate IGHV1 0.52 0.57 0.57 0.56 0.56

IGHV3 0.51 0.54 0.55 0.55 0.54

IGHV4 0.54 0.57 0.57 0.58 0.57

IGHV2, 5, 6, 7 0.53 0.55 0.56 0.56 0.55

Avg correlation 0.52 0.56 0.56 0.56 0.55

Best - S5F NA 0.04 0.04 0.04 0.03

Mean - S5F NA 0.02 0.03 0.01 �0.01

p-value NA 3.52E-15 3.46E-17 3.78E-9 0.52

Mutation

frequency

IGHV1 0.69 0.74 0.79 0.82 0.82

IGHV3 0.68 0.74 0.79 0.8 0.79

IGHV4 0.69 0.74 0.79 0.84 0.84

IGHV2, 5, 6, 7 0.70 0.69 0.76 0.78 0.77

Avg correlation 0.69 0.73 0.78 0.81 0.80

Best - S5F NA 0.04 0.09 0.12 0.11

Mean - S5F NA 0.03 0.07 0.09 0.09

p-value NA 2.76E-15 2.31E-17 2.31E-17 2.31E-17

Weighted substitution

(substitution rate)

IGHV1 0.52 0.55 0.53 0.55 0.53

IGHV3 0.51 0.52 0.53 0.52 0.51

IGHV4 0.54 0.55 0.54 0.57 0.54

IGHV2, 5, 6, 7 0.53 0.53 0.54 0.55 0.53

Avg correlation 0.52 0.54 0.54 0.55 0.53

Best - S5F NA 0.02 0.02 0.03 0.01

Mean - S5F NA �0.06 �0.08 �0.11 �0.17

p-value NA 4.19E-14 2.91E-16 6.82E-17 2.31E-17

Weighted substitution

(mutation frequency)

IGHV1 0.69 0.74 0.78 0.80 0.81

IGHV3 0.68 0.73 0.78 0.80 0.78

IGHV4 0.69 0.74 0.78 0.80 0.82

IGHV2, 5, 6, 7 0.70 0.70 0.75 0.77 0.78

Avg correlation 0.69 0.73 0.77 0.79 0.80

Best - S5F NA 0.04 0.08 0.10 0.11

Mean - S5F NA 0 0.04 0.04 0

p-value NA 0.001 2.33E-8 1.49E-7 0.25

The correlations of repeatedly trained models using different random seeds (but the same hyperparameters) for neural network training had small standard de-

viations, in all cases below 0.01. p-values are from a Wilcoxon signed-rank test comparing the training results for each model with the corresponding S5F model

accuracy. p-values were corrected (Benjamini-Hochberg) for multiple comparisons.
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be the least mutated of the AGCN motifs and WRCG was not always the least mutated, on both strands

(Figure S2). Overall, these early hotspot definitions may have been too broad, and WRCT/AGYW is a

more consistent predictor of AID targeting. Lastly, we also noted that among the least mutated k-mer clus-

ters, many were G-rich in their surrounding context (for example, C cluster 9, A cluster 5, T cluster 17), and

particularly for G (G cluster 15) (Table S2).

As a complementary way to find sequence motifs associated with mutability, we used TF-MoDISco (Tran-

scription Factor Motif DIScovery), a program for identifying recurring motif patterns in genomic data (see

STAR Methods) (Shrikumar et al., 2018). We applied TF-MoDISco to the standalone model that predicts

only mutation frequency because we reasoned that sequence features related to mutability would be

more easily identifiable because the model is only required to learn a single task. TF-MoDISco uses impor-

tance scores, which can be derived frommanymachine learningmethods, to produce a set of uniquemotifs

learned by the model (see STAR Methods). We began by analyzing the importance scores derived from In-

tegrated Gradients (Sundararajan et al., 2017) of 15-mers whose middle nucleotide conformed to a WRC/

GYW AID hotspot motif. As expected, the positively contributing sites in the set of ensuing motifs aligned

with the hotspot motifs (Figures 4A and 4B). Moreover, TF-MoDISco again revealed a preference for having

a T base at the +1 position of the WRC (WRCT, Figure 4A) and an A base at the �1 position of the GYW

(AGYW, Figure 4B). In addition to WRCT/AGYW being a well-represented motif identified by TF-MoDISco,

as measured by having positive contributions to mutability (above horizontal axis on Figure 4), we also

noticed many neighboring C and G bases contained negative contributions (below horizontal axis on Fig-

ure 4), most evidently at the�3 position of theWRC hotspot, and to an extent at the +3 position of the GYW

hotspot (Figure 4). Here, the negative contribution at the �3 position signifies that having an S (S=C/G) at

that position reduces mutational targeting to the middle C.

We next sought to determine whether adding the 5’ W or 30 T context of the canonical WRC hotspot is more

influential in terms of increasing its susceptibility to AID mutagenesis. To address this, we increased the

hotspot specificity step by step, starting from SWRCV (V=A/C/G), and assessed the impact a single change

in the motif at either S or V site, causing a WWRCV or SWRCT intermediate motif to form, respectively, has

on mutability (Figure 5A). We found that both WWRCV and SWRCT intermediate hotspots were shown to

mutate significantly more than SWRCV (Figure 5B). We also discovered that the mutability of the WWRCT

hotspot, which contains the extended hotspot in both 5’ and 30 directions, was significantly higher than

both intermediate hotspots (Figure 5B). Performing a pairwise comparison between the mutation fre-

quency of all 16 individual (W/S)WRC(T/V) contexts further confirmed that those containing both a 5’ W

and 30 T were significantly more mutated than the remaining hotspot motifs, with WAGCT being the

Figure 3. Neural network encodings analysis: weighted substitution model

(A and B) Each point in the t-SNE embedding represents a single 15-mer processed through the truncated model (to

extract the output of the penultimate layer) originally trained to learn the associated weighted substitutions (see STAR

Methods) and is colored according to its corresponding (A) mutation frequency (log10) and (B) middle nucleotide.

(C and D) Consensus sequences derived from the highest mutated cluster identified using PAM clustering on the

embedding of 15-mers containing either (C) a middle C nucleotide or (D) a G nucleotide (clusters 8 and 12 in Table S2).
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most mutated (Figure 5C, Table S3). In addition, the next four successively mutated hotspots followed an

SWRCT context, overall suggesting the 3’ T to be more impactful to AID recognition than the 50 W.

The motif TA emerged when we applied TF-MoDISco to the 15-mers conforming to either a WA (Fig-

ure S3A) or TW Polh hotspot (Figure S3B). In addition to our model identifying the TA hotspot motif as

important, it also suggested TAT, TAH (where H=A/C/T, because 30 G makes a negative contribution)

on the top strand, and its bottom strand equivalent DTA (D=A/G/T, because 50 C makes a negative contri-

bution). However, when we compared the mutation frequencies of TAH and TAG, there was no significant

difference, although we did find that AAH > AAG, DTA > CTA and DTT > CTT (Figure S4). Now considering

the case of TAT, we also foundmore generally thatWAT/ATW hotspots mutate significantly more than their

WAV/BTW (B=C/G/T) counterparts (Figure 6). Thus, although TA hotspots consistently have higher muta-

bility than AA, the presence of a 30 T individually increases the mutability of each of these Polh hotspots.

Highly targeted sites display a lower surrounding GC content

We next applied the same t-SNE methodology to the DeepSHM model that predicted only mutation fre-

quency. We found that the organization of the subsequent embedding followed a direction of descending

mutation frequency, with the highest mutating 15-mers located at the bottom-right portion of the plot (Fig-

ure 7A) and low-mutating 15-mers at the upper-left, which was enriched with FW1 15-mers (Figure 7B). In

addition, we examined the possible influence of the local surrounding sequence by calculating the individ-

ual base content of the four DNA bases in each 15-mer. However, the inner 5-mer, which contains the domi-

nant context, was excluded when computing all base counts. When we colored the t-SNE embedding ac-

cording to the GC content of each 15-mer, we observed that GC content increases along the same

direction as decreasing mutability seen previously (Figure 7C). Quantifying this observation more formally,

we indeed found a significant negative correlation between the GC content and the mutation frequency of

the 15-mers (R =�0.32, P < 2.23 10�16; Figure 7D). On the other hand, when we considered each individual

base count independently, we observed that the count of G nucleotides specifically shows a stronger nega-

tive correlation (R =�0.22) than the C nucleotide count (R =�0.074) alone (Figure S5A), although both cor-

relations are highly significant (P < 2.2 3 10�16). This result is consistent with the cluster analysis above (Ta-

ble S2) where we observed several clusters with G-rich k-mers and low mutation frequencies. If we further

separate themutation frequencies into categories defined by themiddle nucleotide, we find that G content

has a consistent negative correlation regardless (column G of Figure S5B). More generally, A and T richness

(columns A and T of Figure S5B) mostly shows a consistent positive correlation, whereas C and G richness

shows a consistent negative (or nonsignificant) correlation. In summary, it appears that low-mutating sites

Figure 4. Recurrent motifs identified by TF-MoDISco

(A and B) TF-MoDISco results using the Integrated Gradients as base-level importance scores of 15-mers whose middle nucleotide conformed to a (A) WRC

or (B) GYW AID hotspot motif.
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generally have a high local GC (and particularly G) content, and conversely, that highly targeted sites

display an elevated local AT (particularly A) content.

Conserved FW1 sites in IGHV3 genes display a high T > G transversion bias

We now analyzed the standalone model predicting only substitution rates to gain possible insight into

additional substitution biases exhibited by AID or downstream error-prone DNA damage response path-

ways, for example, as a result of REV1 or Polh intervention during noncanonical base-excision repair (BER)

and noncanonical mismatch repair (MMR), respectively. The resulting t-SNE embedding from this model

identified four main clusters, as well as two much smaller satellite clusters, with each cluster containing

15-mers that share a common middle nucleotide (Figure 8A). A distinction between 15-mers with high

and lowmutation frequencies could also be observed based on their location on opposite ends of the clus-

ter, especially for clusters containing a C, G, or T middle nucleotides (Figure 8B). Because the model was

tasked with learning the distributed substitution rates of each 15-mer, we next sought to evaluate the rate

of each individual substitution type (e.g. C>T) within the embedding. In certain clusters, a similar gradient

of high to low substitution rates could also be seen as we observed for mutation frequency (Figures 8C–8F).

For instance, we noticed the rate of G>T substitutions was highest at the outer boundaries of the cluster

(top-right cluster in Figure 8F), which was also associated with low mutation frequencies in the same cluster

(Figure 8B). To evaluate this trend more closely, we analyzed three human IGHV genes from different fam-

ilies for which we had the most data (IGHV1-18, IGHV3-23, IGHV4-34), so as to include sites with low mu-

tation frequencies at high coverage, and calculated the correlation between mutation frequency and

rate of substitution for each substitution type. As an example, for IGHV3-23 we found a significant negative

correlation for G>T mutations (R = �0.29, p = 0.0057; Figure S6). Alternatively, we observed a significant

positive correlation between mutation frequency and A>T mutations (R = 0.35, p = 0.0076; Figure S6)

and G>A (R = 0.22, p = 0.039). Similar patterns to IGHV3-23 were also observed for IGHV1-18*01 and

IGHV4-34*01, although there was some variation in which correlations were significant (Figure S6). The

fact that the trend for C>T and G>A transitions is positive and that for C>A and G>T transversions is

Figure 5. Mutability of extended AID hotspots

(A) Schematic showing an increase of AID hotspot specificity (left to right).

(B) Boxplots displaying the mutability of different (W/S)WRC(T/V) hotspot contexts, where W=A/T, S=C/G, R=A/G, V=A/

C/G. Asterisks indicate significance (p % 0.0001) of a one-sided Mann-Whitney U test comparing the greater mutation

frequency of the boxplot on the right against the one on the left.

(C) Pairwise comparison of mutability for all 16 (S/W)WRC(T/V) hotspot contexts. Boxes represent the p-value - adjusted

for multiple comparisons (Benjamini-Hochberg correction) - of a one-sided Mann-Whitney U test comparing the greater

mutation frequency of the hotspot indicated by the row to the left, against the hotspot shown in the column below. Rows

and columns are ordered by mean mutation frequency (high to low). The color and size of each box is scaled according to

the adjusted p-value. Gray dots inside boxes indicate p-values % 0.05.
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negative (though not always significant) for all three genes, is consistent with replication bypass, which pre-

dominantly causes C>T transitions, being favored over BER at sites with high mutation frequency.

In the t-SNE analysis of the substitution model, we also discovered two small clusters of 15-mers containing

a C and T as their middle nucleotide (left side of Figure 8A) that did not group with their respective larger

clusters, suggesting that these particular sites might have distinct substitution patterns. Generating the

consensus sequence of the outlier T k-mers revealed a partially conserved AGYCTGGGGG sequence (Fig-

ure 9A). When we examined these subsequences more closely, we discovered that they were located only

in IGHV3 family genes at either position 21 or position 45 according to the IMGT unique numbering system

(Lefranc, 2001). The motif was also surprisingly common. At position 21 it appeared in 26 different alleles

(across 16 genes) and was fully conserved in all alleles. Coincidentally, the motif also appeared in 25

different alleles (across 15 genes) at position 45, although it sometimes differed slightly at the +4 position

(Figure 9A). These two sets of alleles only partially overlap, such that 15 alleles had the motif at both posi-

tions 21 and 45. Thus, this specific motif in FW1 of the IGHV3 family genes appears to be highly conserved

evolutionarily, suggesting a possible functional role. The rates of substitution at these sites were also found

to be highly biased towards creating T>Gmutations, with an average T>G rate of about 0.74 at position 21,

and an even greater rate of 0.88 at position 45 (background rate: 0.27 G 0.22) (Figure 9B, Table 2). A pre-

vious study using Sanger sequencing data that was limited to IGHV3-23 and the pseudogene IGHV3-h had

noted similarly high T>G substitution rates at positions 21 (for IGHV3-h) and 45 (for IGHV3-23) (Ohm-

Laursen and Barington, 2007). Although the T subjected to mutation at both positions did not conform

to a bottom strand TW Polh hotspot, these genes at position 45 displayed a relatively high average muta-

tion frequency of 0.17G 0.08 (Table 2), which is somewhat unusual given that mutations are generally more

biased towards the CDRs than FW regions (Cohen et al., 2011; Shapiro et al., 2002), and that we reported

above that many sites within FW1 tended to display low mutability (Figures 7A and 7B).

While examining the C outlier cluster (left of Figure 8A), we found the consensus sequence to be more

conserved compared to the outlier with a middle T (Figure S7A). On the other hand, we noticed some overlap

between both outlier clusters because, in some cases, the C corresponded to position 44 that preceded the

middle T of the other outlier cluster (Figure S7A, Table 2). We further found this site to have a similar elevated

C>G substitution rate (mean rate of 0.87 compared to backgroundmean of 0.35, P < 2.23 10�16) (Figure S7B,

Table 2), suggesting the model distinguished sites with a general preference to create G mutations.

Given that the sites with strikingly high T>G and C>G substitution rates we identified here have adjoining

G-rich subregions (Figures 9A and S7A), we evaluated the possible influence these mutations might have

on the formation of G-quadruplex (G4) structures. In a recent study, we assessed the potential for DNA G4

structures to form in the Ig V region, using a pre-trained deep learning model that computes the G4 po-

tential of a linear DNA sequence (Tang and MacCarthy, 2021). There we found that the IGHV3 family

had the highest propensity to form stable G4s in the top strand. We now sought to assess the overall muta-

tional effect on G4 assembly of the IGHV3 sites that are biased towards G mutations. Following the

Figure 6. Mutability of extended Polh hotspot motifs

Boxplots comparing the mutation frequency of various top strand WAT against WAV (blue), and bottom strand ATW

against BTW (red) motifs. Asterisks indicate significance (p% 0.0001) of a one-sided Mann-Whitney U test comparing the

greater mutation frequency of the boxplot on the left against the one on the right.
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methodology of our previous study, we calculated the difference between the predicted G4 potential of

the germline with that of the sequence with a single mutation at either position 21 or 45. Here, we found

that a T>G mutation at position 21 elevated average G4 potentials to a very high value of 0.83 G 0.12

compared to a germline value (already relatively high) of 0.55G 0.21, whereas the samemutation occurring

at position 45 displayed a far smaller average increase of 0.04G 0.03 (Figure 9C, Table 2). As for position 44,

there seemed to be little effect of C>Gmutations on G4 potential (Table 2). Interestingly, we made another

observation regarding the instances where an A nucleotide disrupts the run of G nucleotides at IMGT po-

sition 49 (Figure 9A) which was that these sites also displayed a high A>G substitution rate (0.77 G 0.18;

Table 2). This hypothetical mutation also caused a moderate, though substantial, increase in G4 potential

(0.17 G 0.02, Table 2). These findings reveal that particular recurring mutations in this subregion may pro-

mote G4 formation, and that the bias toward generating newG sites suggests specific DNA repair enzymes

may be recruited to these subregions within FW1.

DISCUSSION

In this study, we leveraged deep learning to gain insights into SHM, a key process in antibody affinity matu-

ration. We trained multiple deep learning models using a convolutional neural network (CNN) framework

to analyze DNA k-mer subsequences of various lengths, ranging from 5 to 21 nts, derived from human IGHV

germline sequences. Using a high-quality data set containing non-productive B cell repertoire data, the

model was tasked to learn two focal aspects of SHM: the frequency of mutation at a given site, and the

spectrum of mutations that can arise at this site (substitution). Understanding the propensity of a site to

mutate and the underlying substitution biases that ensue can lead to a better understanding of how AID

Figure 7. Neural network encodings analysis: mutation frequency model

(A and B) Each point in the t-SNE embedding represents a single 15-mer processed through the truncated model (to

extract the output of the penultimate layer) trained onmutation frequencies (see STARMethods) and is colored according

to its corresponding (A) mutation frequency (log10), and (B) Ig V subregion location as defined by IMGT.

(C) The t-SNE embedding is colored according to the GC content of each 15-mer. The calculated GC content excludes the

middle 5-mer context of the 15-mer to remove any confounding AID hotspot or coldspot bias.

(D) Computed Pearson correlation between mutation frequency and GC content, again excluding the middle 5-mer.
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is recruited to and targets the Ig V region, as well as the associated downstream DNA repair mechanisms

that follow AID deamination.

We began by developing threemodels, collectively referred to as DeepSHM, to predict separate tasks for a

given k-mer: observable mutation frequency; distributed substitution rates; and a combination of both

measures (weighted substitution). We found that predicting substitution rates did not substantially depend

on the k-mer size, whereas 15-mers were optimal for predicting mutation frequencies (Figure 2, Table 1). In

addition, DeepSHM predicted both substitution rates and mutation frequencies more accurately than the

widely used S5F targeting model for all k-mer sizes we evaluated (k = 5, 9, 15 and 21) (Table 1). Even though

we were able to outperform S5F in representing substitution biases, the correlation between our predic-

tions and empirical data was moderate (�0.56), suggesting that the processes underlying SHM substitution

biases may be more fundamentally random than mutational site targeting alone. Error-prone DNA repair

processes downstream of AID are highly complex. For example, although Polh is biased towards making

WA>WG mutations (Zhang et al., 2014) and plays a dominant role in generating mutations at A:T sites,

many A:T mutations still occur in its absence (Saribasak et al., 2009) that are mediated by other polymerases

(Maul et al., 2016). Similarly complex, BER is biased towards transversions but can also repair faithfully, with

a further dependence on hotspot mutability (Pérez-Durán et al., 2012). Thus, downstream repair processes

may simply be too complex, or genuinely random, to be captured well by a model that depends on

sequence context alone.

To uncover some of the hidden features learned by DeepSHM, we analyzed the output, or encodings, ob-

tained from the penultimate layer of the network predicting weighted substitution using input 15-mers, and

performed t-SNE, a method of dimensionality reduction, to visualize the encodings in two dimensions. The

subsequent embedding formed clusters of 15-mers that were distinguished by mutation frequency and

middle nucleotide (Figures 3A and 3B). Individual clusters containing a C or G middle nucleotide that

Figure 8. Neural network encodings analysis: substitution model

(A and B) Each point in the t-SNE embedding represents a single 15-mer processed through the truncated model (to extract the output of the penultimate

layer) trained to learn the associated substitution rates (see STAR Methods) and is colored according to its corresponding (A) middle nucleotide and (B)

mutation frequency (log10).

(C–F) The t-SNE embedding is colored by the rate of substitution for the middle nucleotide of every 15-mer to mutate to A (N > A); to C (N > C); to G (N > G);

and to T (N > T), respectively.
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were associated with highmutability, assumed to be relevant to AID hotspots, revealed a strong preference

for a T base at the +1 position of the top strand AIDWRC (W=A/T, R=A/G) hotspot, including for WACmo-

tifs that are not part of aWGCWmotif, and similarly, an A base at the�1 position of the bottom strand GYW

(Y=C/T) context (Figures 3C and 3D). As an alternative way to identify sequence features, we applied TF-

MoDISco (see STAR Methods) to reveal recurrent genomic patterns using importance scores extracted

from the model predicting mutation frequency for each 15-mer. This approach supported the importance

of the T base at the +1 position of WRC (Figure 4A) and the A base at the �1 position of the bottom strand

GYW hotspot (Figure 4B). An early study by Rogozin and Diaz reported the WRCH/DGYW (H=A/C/T,

D=A/G/T) to be a good predictor of mutability at C:G bases (Rogozin and Diaz, 2004); however, we found

WRCT to be a more consistent definition (Figure 5). The authors of the S5F model also supported the

WRCH definition because they found their model can capture the higher mutability rate seen at certain

WRCA motifs (Yaari et al., 2013), presumably at the AGCA overlapping hotspot. Previous hotspot

definitions have largely failed to describe targeting beyond the �2 position of the WRC motif. We further

identified having a C or G at the �3 position of WRC, or at the +3 position of GYW, as a strong negative

contribution, i.e., as a reduced effect on targeting. Thus, our results suggest the typical AID hotspot

definition might be extended to WWRCT. Comparing the mutation frequencies of the individual WWRCT

hotspot motifs showed the 3’ T to be more important for AID recognition than the 50 W alone, however,

together they have a synergistic effect that makes mutability between 2.2-fold (for TAC) and 4.3-fold (for

TGC) higher (Figure 5C, Table S3).

We next applied the same t-SNE methodology on the two developed standalone models that separately

predicted either the mutation frequency or substitution rates of the 15-mer middle nucleotides. The t-SNE

embedding on the independent DeepSHM model predicting only mutation frequency revealed a signifi-

cant negative correlation between the mutability of a site and the surrounding GC content of the 15-

mer (Figure 7D). This finding alternatively suggests that highly mutated sites may have evolved to have a

richer local AT content. This in vivo result is consistent with earlier in vitro results that considered AID tar-

geting artificial substrates (Abdouni et al., 2018).

On the other hand, the t-SNE embedding stemming from the standalone substitution model hinted at

plausible associations, both positive and negative, between mutation frequency and certain transition

and transversion mutations (Figures 8B–8F). We next analyzed multiple genes representing different

Figure 9. Evaluation of the T outlier cluster in the DeepSHM substitution model

(A) Sequence logo representation of the 15-mers appearing in the T outlier cluster in Figure 8A (left-hand side, red dots).

(B) Substitution rates of T>A, T>C, and T>G for 15-mers corresponding to 26 and 25 IGHV3 alleles at IMGT positions 21

and 45, respectively. Bars represent G1 standard deviation.

(C) G-quadruplex (G4) formation potential for the same IGHV3 alleles in (B). G4 potentials (y-axis) are computed using the

germline IGHV sequence ("Germline") and the mutated sequence ("Mutated") containing a single simulated T>G

mutation at either IMGT positions 21 or 45.
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IGHV families containing the largest amounts of mutation data in order to avoid any potential sites with few

observable mutations, such as coldspots. We observed a negative correlation between mutability and sub-

stitution rates specifically for C>A and G>T transversion mutations (Figures 8 and S6) and, on the other

hand, positive correlations for C>T and G>A transitions (Figure S6). The trend for increased transition mu-

tations at highly mutating AID hotspots mediated by UNG2 had previously been observed in experiments

using 3T3 (mouse fibroblast) cells (Pérez-Durán et al., 2012), although the particular bias against C:G>A:T

transversions was not apparent. Previous work has also shown that UNG2 is cell-cycle regulated, possibly

mediated by FAM72A (Feng et al., 2021), and active primarily during G1 (Sharbeen et al., 2012). Although

AID is also primarily active during G1, it may sometimes persist for slightly longer than UNG2 and thus high-

ly targeted sites may avoid BER especially when the mutations occur just before the cell enters S phase,

which would lead to fixation of C>T transitions via replication bypass. Alternative polymerases may also

be preferentially recruited to some sites. For example, in DT40 (chicken) B cell lines, the POLD3 subunit

of Polymerase delta (Pold) has been proposed as a specific mechanism for both C>A and G>T mutations

(Hirota et al., 2015; Pilzecker and Jacobs, 2019).

In addition, we investigated two outlier clusters from the substitution model embedding that contained 15-

mers having a C and Tmiddle nucleotide that did not group with their respective larger clusters (Figure 8A).

A closer analysis revealed that the T outlier contained a highly conserved AGYCTGGGGG consensus

sequence that was derived from two independent sites located in FW1 from multiple IGHV3 alleles (Fig-

ure 9A, Table 2). Both outlier clusters also displayed significantly elevated T>G (Figure 9B, Table 2) and

C>G substitution rates (Figure S7B, Table 2), respectively. In our recent study on G-quadruplexes (G4s)

in IGHV genes, we observed the IGHV3 family to form G4s more favorably on the top strand, as measured

by their predicted G4 potential using a pre-trained CNN model (Tang and MacCarthy, 2021). Given the

strong preference for creating Gmutations in these FW1 subregions, we evaluated the impact of these mu-

tations on G4 potential. In some cases, the resulting G mutation led to a strong increase in G4 potential,

particularly at position 21 (Figure 9C, Table 2), whereas for other sites, the effect was mostly negligible (Ta-

ble 2). Notably, however, a high A>G substitution rate was also observed at the +4 positions (Figure 9A),

which were also associated with increases in G4 potential (Table 2). These biased A>G mutations may

further be related to previous work that found that a repeatedmutation that occurs in one IGHV allele often

matches the sequence variant of a different allele (Saini and Hershberg, 2015). Alternatively, these muta-

tions may be related to R-loop initiation, which forms in G-rich non-template DNA, possibly forming in

FW1 of these IGHV3 genes. Studies have found that reducing G-density in mammalian Ig switch regions

compromises class-switch recombination efficiency and R-loops from forming (Roy et al., 2008; Zhang

et al., 2014). The high rate of T>G and C>G transversions also suggests that particular repair enzymes

may be recruited to these subregions during SHM.

Limitations of the study

In principle, a wider range of k-mers, as well as a greater variety of neural network architectures, might have

been considered for this study. However, because the tuning of each model takes a substantial amount of

computational resources and time, we considered a reduced number of models. In addition, we limited this

study to consider data only for humans, the species for which we had high quality (UMI barcoded) data in

high abundance, although the approach could be extended to other species such as mice in future work.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

Table 2. Summary statistics on outlier C and T clusters

IMGT

position

15-mer middle

nucleotide n

Avg. substitution

rate to G

Avg. Mutation

frequency

Avg. Germline

G4 potential

Avg. Mutated

G4 potential

Avg. Difference in G4

potential (mutated - germline)

21 T 26 0.74 G 0.15 0.05 G 0.02 0.55 G 0.21 0.83 G 0.12 0.28 G 0.11

44 C 21 0.87 G 0.11 0.03 G 0.01 0.58 G 0.16 0.62 G 0.16 0.04 G 0.03

45 T 25 0.88 G 0.08 0.17 G 0.08 0.58 G 0.16 0.62 G 0.16 0.04 G 0.03

49 A 4 0.77 G 0.18 0.03 G 0.04 0.35 G 0.06 0.52 G 0.05 0.17 G 0.02
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N.S., Álvarez-Quilón, A., Pezo, R.C., Perera,
M.L.W., Chan, K., Tong, A.H.Y., et al. (2021).
FAM72A antagonizes UNG2 to promote
mutagenic uracil repair during antibody
maturation. Nature 600, 324–328. https://doi.org/
10.1038/s41586-021-04144-4.

Haynes, B.F., Kelsoe, G., Harrison, S.C., and
Kepler, T.B. (2012). B-cell-lineage immunogen

design in vaccine development with HIV-1 as a
case study. Nat. Biotechnol. 30, 423–433.

Hirota, K., Yoshikiyo, K., Guilbaud, G., Tsurimoto,
T., Murai, J., Tsuda, M., Phillips, L.G., Narita, T.,
Nishihara, K., Kobayashi, K., et al. (2015). The
POLD3 subunit of DNA polymerase d can
promote translesion synthesis independently of
DNA polymerase z. Nucleic Acids Res. 43, 1671–
1683.

Jansen, J.G., Langerak, P., Tsaalbi-Shtylik, A., van
den Berk, P., Jacobs, H., and de Wind, N. (2006).
Strand-biased defect in C/G transversions in
hypermutating immunoglobulin genes in Rev1-
deficient mice. J. Exp. Med. 203, 319–323.

Kelley, D.R., Snoek, J., and Rinn, J.L. (2016).
Basset: learning the regulatory code of the
accessible genome with deep convolutional
neural networks. Genome Res. 26, 990–999.

Koo, P.K., and Ploenzke, M. (2020). Deep learning
for inferring transcription factor binding sites.
Curr. Opin. Syst. Biol. 19, 16–23.

ll
OPEN ACCESS

14 iScience 25, 103668, January 21, 2022

iScience
Article

https://doi.org/10.1016/j.isci.2021.103668
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref1
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref1
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref1
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref1
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref2
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref2
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref2
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref2
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref3
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref3
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref3
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref3
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref3
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref3
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref4
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref4
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref4
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref4
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref4
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref4
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref5
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref5
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref5
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref5
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref6
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref6
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref6
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref6
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref6
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref6
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref7
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref7
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref7
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref7
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref7
https://doi.org/10.1038/s41586-021-04144-4
https://doi.org/10.1038/s41586-021-04144-4
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref9
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref9
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref9
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref9
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref10
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref10
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref10
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref10
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref10
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref10
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref10
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref11
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref11
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref11
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref11
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref11
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref12
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref12
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref12
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref12
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref13
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref13
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref13


Krantsevich, A., Tang, C., and MacCarthy, T.
(2021). Correlations in somatic hypermutation
between sites in IGHV genes can be explained by
interactions between AID and/or polh hotspots.
Front. Immunol. 11, 3751.

Lefranc, M.P. (2001). IMGT, the international
ImMunoGeneTics database. Nucleic Acids Res.
29, 207–209.

Liu, M., Duke, J.L., Richter, D.J., Vinuesa, C.G.,
Goodnow, C.C., Kleinstein, S.H., and Schatz, D.G.
(2008). Two levels of protection for the B cell
genome during somatic hypermutation. Nature
451, 841–845.

Matsuda, T., Bebenek, K., Masutani, C., Rogozin,
I.B., Hanaoka, F., and Kunkel, T.A. (2001). Error
rate and specificity of human and murine DNA
polymerase eta. J. Mol. Biol. 312, 335–346.

Maul, R.W., MacCarthy, T., Frank, E.G., Donigan,
K.A., McLenigan, M.P., Yang, W., Saribasak, H.,
Huston, D.E., Lange, S.S., Woodgate, R., et al.
(2016). DNA polymerase iota functions in the
generation of tandem mutations during somatic
hypermutation of antibody genes. J. Exp. Med.
213, 1675–1683.

Mayorov, V.I., Rogozin, I.B., Adkison, L.R., and
Gearhart, P.J. (2005). DNA polymerase eta
contributes to strand bias of mutations of A
versus T in immunoglobulin genes. J. Immunol.
174, 7781–7786.

Methot, S.P., and Di Noia, J.M. (2017). Molecular
mechanisms of somatic hypermutation and class
switch recombination. Adv. Immunol. 133, 37–87.

Muramatsu, M., Kinoshita, K., Fagarasan, S.,
Yamada, S., Shinkai, Y., andHonjo, T. (2000). Class
switch recombination and hypermutation require
activation-induced cytidine deaminase (AID), a
potential RNA editing enzyme. Cell 102, 553–563.

Ohm-Laursen, L., and Barington, T. (2007).
Analysis of 6912 unselected somatic
hypermutations in human VDJ rearrangements
reveals lack of strand specificity and correlation
between phase II substitution rates and distance
to the nearest 3’ activation-induced cytidine
deaminase target. J. Immunol. 178, 4322–4334.

Pérez-Durán, P., Belver, L., de Yébenes, V.G.,
Delgado, P., Pisano, D.G., and Ramiro, A.R.
(2012). UNG shapes the specificity of AID-
induced somatic hypermutation. J. Exp. Med.
209, 1379–1389.

Pham, P., Bransteitter, R., Petruska, J., and
Goodman, M.F. (2003). Processive AID-catalysed
cytosine deamination on single-stranded DNA
simulates somatic hypermutation. Nature 424,
103–107.

Pilzecker, B., and Jacobs, H. (2019). Mutating for
good: DNA damage responses during somatic
hypermutation. Front Immunol. 10, 438.

Rada, C., Di Noia, J.M., and Neuberger, M.S.
(2004). Mismatch recognition and uracil excision
provide complementary paths to both Ig
switching and the A/T-focused phase of somatic
mutation. Mol. Cell 16, 163–171.

Rajewsky, K. (1996). Clonal selection and learning
in the antibody system. Nature 381, 751–758.

Rogozin, I.B., and Diaz, M. (2004). Cutting edge:
DGYW/WRCH is a better predictor of mutability
at G:C bases in Ig hypermutation than the widely
accepted RGYW/WRCY motif and probably
reflects a two-step activation-induced cytidine
deaminase-triggered process. J. Immunol. 172,
3382–3384.

Rogozin, I.B., and Kolchanov, N.A. (1992).
Somatic hypermutagenesis in immunoglobulin
genes. II. Influence of neighbouring base
sequences on mutagenesis. Biochim. Biophys.
Acta 1171, 11–18.

Roy, D., Yu, K., and Lieber, M.R. (2008).
Mechanism of R-loop formation at
immunoglobulin class switch sequences. Mol.
Cell Biol 28, 50–60.

Saini, J., and Hershberg, U. (2015). B cell variable
genes have evolved their codon usage to focus
the targeted patterns of somatic mutation on the
complementarity determining regions. Mol.
Immunol. 65, 157–167.

Saribasak, H., Rajagopal, D., Maul, R.W., and
Gearhart, P.J. (2009). Hijacked DNA repair
proteins and unchained DNA polymerases.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 364,
605–611.

Shapiro, G.S., Aviszus, K., Ikle, D., and Wysocki,
L.J. (1999). Predicting regional mutability in
antibody V genes based solely on di- and
trinucleotide sequence composition. J. Immunol.
163, 259–268.

Shapiro, G.S., Aviszus, K., Murphy, J., and
Wysocki, L.J. (2002). Evolution of Ig DNA
sequence to target specific base positions within
codons for somatic hypermutation. J. Immunol.
168, 2302–2306.

Sharbeen, G., Yee, C.W., Smith, A.L., and Jolly,
C.J. (2012). Ectopic restriction of DNA repair
reveals that UNG2 excises AID-induced uracils
predominantly or exclusively during G1 phase.
J. Exp. Med. 209, 965–974.

Sheng, Z., Schramm, C.A., Kong, R., Program,
N.C.S., Mullikin, J.C., Mascola, J.R., Kwong, P.D.,
and Shapiro, L. (2017). Gene-specific substitution
profiles describe the types and frequencies of
amino acid changes during antibody somatic
hypermutation. Front Immunol. 8, 537.

Shrikumar, A., Tian, K., Shcherbina, A., Avsec, Z.,
Banerjee, A., Sharmin, M., Nair, S., and Kundaje,
A. (2018). Technical note on transcription factor
motif discovery from importance scores (TF-

MoDISco). bioRxiv. https://arxiv.org/abs/1811.
00416.

Spisak, N., Walczak, A.M., and Mora, T. (2020).
Learning the heterogeneous hypermutation
landscape of immunoglobulins from high-
throughput repertoire data. Nucleic Acids Res.
48, 10702–10712.

Sundararajan, M., Taly, A., and Yan, Q. (2017).
Axiomatic Attribution for Deep Networks,
arXiv:1703.01365.

Tang, C., Bagnara, D., Chiorazzi, N., Scharff, M.D.,
and MacCarthy, T. (2020). AID overlapping and
poleta hotspots are key features of evolutionary
variation within the human antibody heavy chain
(IGHV) genes. Front Immunol. 11, 788.

Tang, C., and MacCarthy, T. (2021).
Characterization of DNA G-quadruplex
structures in human immunoglobulin heavy
variable (IGHV) genes. Front. Immunol. 12,
671944.

Wei, L., Chahwan, R., Wang, S., Wang, X., Pham,
P.T., Goodman, M.F., Bergman, A., Scharff, M.D.,
and MacCarthy, T. (2015). Overlapping hotspots
in CDRs are critical sites for V region
diversification. Proc. Natl. Acad. Sci. U S A 112,
E728–E737.

Wiehe, K., Bradley, T., Meyerhoff, R.R., Hart, C.,
Williams, W.B., Easterhoff, D., Faison, W.J.,
Kepler, T.B., Saunders, K.O., Alam, S.M., et al.
(2018). Functional relevance of improbable
antibody mutations for HIV broadly neutralizing
antibody development. Cell Host Microbe 23,
759–765.e6.

Yaari, G., Vander Heiden, J.A., Uduman, M.,
Gadala-Maria, D., Gupta, N., Stern, J.N.,
O’Connor, K.C., Hafler, D.A., Laserson, U.,
Vigneault, F., et al. (2013). Models of somatic
hypermutation targeting and substitution based
on synonymous mutations from high-throughput
immunoglobulin sequencing data. Front
Immunol. 4, 358.

Yu, K., Huang, F.T., and Lieber, M.R. (2004). DNA
substrate length and surrounding sequence
affect the activation-induced deaminase activity
at cytidine. J. Biol. Chem. 279, 6496–6500.

Zhang, Z.Z., Pannunzio, N.R., Hsieh, C.L., Yu, K.,
and Lieber, M.R. (2014). The role of G-density in
switch region repeats for immunoglobulin class
switch recombination. Nucleic Acids Res. 42,
13186–13193.

Zhou, J., and Troyanskaya, O.G. (2015). Predicting
effects of noncoding variants with deep learning-
based sequence model. Nat. Methods 12,
931–934.

Zhou, J.Q., and Kleinstein, S.H. (2020). Position-
dependent differential targeting of somatic
hypermutation. J. Immunol. ji2000496.

ll
OPEN ACCESS

iScience 25, 103668, January 21, 2022 15

iScience
Article

http://refhub.elsevier.com/S2589-0042(21)01638-2/sref14
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref14
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref14
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref14
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref14
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref15
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref15
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref15
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref16
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref16
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref16
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref16
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref16
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref17
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref17
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref17
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref17
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref18
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref18
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref18
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref18
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref18
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref18
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref18
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref19
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref19
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref19
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref19
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref19
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref20
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref20
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref20
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref21
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref21
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref21
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref21
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref21
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref22
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref22
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref22
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref22
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref22
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref22
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref22
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref23
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref23
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref23
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref23
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref23
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref24
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref24
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref24
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref24
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref24
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref25
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref25
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref25
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref26
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref26
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref26
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref26
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref26
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref27
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref27
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref28
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref28
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref28
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref28
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref28
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref28
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref28
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref29
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref29
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref29
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref29
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref29
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref30
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref30
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref30
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref30
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref31
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref31
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref31
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref31
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref31
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref32
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref32
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref32
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref32
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref32
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref33
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref33
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref33
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref33
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref33
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref34
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref34
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref34
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref34
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref34
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref35
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref35
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref35
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref35
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref35
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref36
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref36
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref36
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref36
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref36
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref36
https://arxiv.org/abs/1811.00416
https://arxiv.org/abs/1811.00416
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref38
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref38
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref38
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref38
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref38
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref40
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref40
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref40
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref41
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref41
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref41
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref41
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref41
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref42
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref42
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref42
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref42
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref42
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref43
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref43
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref43
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref43
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref43
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref43
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref44
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref44
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref44
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref44
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref44
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref44
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref44
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref45
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref45
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref45
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref45
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref45
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref45
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref45
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref45
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref46
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref46
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref46
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref46
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref47
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref47
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref47
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref47
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref47
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref48
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref48
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref48
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref48
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref49
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref49
http://refhub.elsevier.com/S2589-0042(21)01638-2/sref49


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Thomas MacCarthy (thomas.maccarthy@stonybrook.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data used for this research was published previously by Tang et al. (2020).

d A custom Python package developed for this project is available at https://gitlab.com/maccarthyslab/

deepshm.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHODS DETAILS

Generating k-mer data

Germline IGHV reference sequences were downloaded from the international ImMunoGeneTics informa-

tion system (IMGT) website (Lefranc, 2001). The leader portion of each reference sequence was also ex-

tracted if available. To generate the k-mers of a given germline sequence, GPk/2R nt sequences were ex-

tracted from the start of the V exon, where k is the length of the subsequence, and Pk/2R represents the

greatest integer less than or equal to k/2. This process was continued, moving 1 nt at a time, until the

end of the exon was reached. Next, all k-mers were converted to their respective one-hot encodings. A

one-hot encoding is a transformation of a DNA sequence using a 2-D matrix containing only zeros and

ones, where each row represents one of the four ordered DNA bases and each column is an individual

site in the sequence. For each column, a "100 is filled in the row that matches the nucleotide of that site

and a "000 in the remaining unmatched rows (Figure 1).

Calculating mutation frequencies, substitution rates, and weighted substitutions of k-mers

We used a high-quality dataset previously published by us (Tang et al., 2020). This dataset contains only

non-productive sequences that contain a frameshift in CDR3 to minimize selection effects (Ohm-Laursen

and Barington, 2007) and which were derived from marginal, memory, and plasma B cell types. To avoid

any mutational artifacts due to B cell clonal relatedness, we sampled one sequence per clonal group for

each IGHV allele. We calculated the mutation frequencies of every k-mer in a germline sequence as the

number of observed mutations at each site (corresponding to a single k-mer), divided by the total number

of sequences for that germline IGHV allele. The substitution rate of each k-mer was computed as the

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Data from the memory, marginal zone, and plasma

cell subsets (B10-B14, B16-21, HD001-10)

Tang et al. (2020) NCBI SRA (BioProject: PRJNA381394, PRJNA591804)

Software and algorithms

DeepSHM This paper https://gitlab.com/maccarthyslab/deepshm

TF-MoDISco Shrikumar et al. (2018) https://github.com/kundajelab/tfmodisco

SHazaM Yaari et al. (2013) https://shazam.readthedocs.io/en/stable/
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number of times the middle nucleotide mutated from the germline nucleotide to the other three DNA ba-

ses, divided by the total number of overall mutations. Note that a zero was recorded if the mutated base

was the same as germline. Lastly, the weighted substitution of a k-mer was calculated as the observed mu-

tation frequency multiplied by the substitution rate vector. The data used for this study can be accessed via

the NCBI SRA (BioProject: PRJNA381394, PRJNA591804).

CNN architecture and model optimization

We implemented a convolutional neural network (CNN) to analyze the k-mer input data. Three separate

architectures were used to predict different SHM outcomes: mutation frequency, substitution rate, and

weighted substitution (see above). Although the hyperparameters that were ultimately selected varied

from model-to-model, all CNNs followed the same general architecture, which consisted of one convolu-

tion layer, followed by two fully connected layers (Figure 1). Additional parameters, such as dropout and

batch normalization, were optimized by generating 100 separate models with randomly selected hyper-

parameters for each k-mer and corresponding model architecture we generated. The range of values for

all parameters and hyperparameters that were tested for each architecture and output type are specified

in Table S1A, as well as the values used for the best 15-mer models.

Next, we utilized 4-fold cross-validation to evaluate the performance of the model on unseen (test) data. In

total, there are seven IGHV families (IGHV1-7), where each IGHV family consists of genes that share a high

percentage of sequence similarity (Lefranc, 2001). The k-mers derived from the three largest IGHV families,

IGHV1, IGHV3, and IGHV4, formed three separate groups, and the k-mers belonging to the remaining 4

smaller IGHV families constituted the final group in order to create a data set comparable in size with

the other groups (Table S1B). Thus, we separated the data by their respective IGHV family to reduce the

chances of model overfitting, since it is likely that k-mers from the same IGHV family will be similar even

if they come from different genes and, therefore, bias the results if they appear in both training and test

sets. In every cross-validation fold, three of the data groups were used as training set, and the fourth

used as test set. We also evaluated the model performance, for each fold, by calculating the Pearson cor-

relation(s) between the predicted mutation frequency and/or substitution rate of the test set k-mers and

the equivalent output type of the empirical data. The average correlation across the 4 validation folds

was reported for the model, as in Figure 2.

As an additional step, we wrote a custom, universal Python script (available at https://gitlab.com/

maccarthyslab/deepshm) to automatically generate the CNN architecture, parameters, and hyperpara-

meters of each model, regardless of the output specified, to ensure that all models were constructed in

a consistent manner. All CNNs were generated using the built-in Keras API in Tensorflow 2.4.1 and trained

on GPU processors using three Nvidia GeForce RTX 2080 graphics cards.

Inferring an S5F targeting model

In order to ensure a fair comparison between S5F values and our deep learning predictions, we used the

SHazaM R package (Yaari et al., 2013) to create an S5F targeting model, which provides analogous 5-mer

mutability and substitution scores based on the same data set we used to train our CNN models with. We

specified the S5F targeting model to count both silent and replacement mutations ("rs" parameter) since

the mutation data we used was derived from non-functionally rearranged VDJ coding sequences (i.e. in the

absence of selection) and with each sequence being clonally independent (see above). Multiple mutations

were handled specifying the "independent" parameter, which treats each mutation independently.

Default values were used for all other parameters.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests

Since training of Deep Learning models entails some stochasticity, we used the Wilcoxon signed-rank test

to compare the overall performance of DeepSHM against S5F, which we used as a benchmark. Thus, for

each value of k (5, 9, 15 or 21) and each type of model (mutation frequency, substitution, or weighted sub-

stitution) the performance of 100 models with randomly generated hyperparameters was compared

against the corresponding S5F accuracy. In order to compare the performance of the models using

different k-mers, we used a one-sided Mann-Whitney U test.
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We also used a one-sidedMann-Whitney U test to compare the specificity of different potential refined AID

and Polh hotspot motifs. Note that in Figures 5 and 6, asterisks indicate significance (p% 0.0001) of a one-

sided Mann-Whitney U test.

Neural network encodings analysis

The output (encoding) of the penultimate layer of the CNN model was used as a way to explain the SHM

patterns learned by the model. To generate the encodings from this layer, we removed the last layer of the

CNN while keeping the remaining layers intact. Next, we processed the k-mers through the truncated

model to retrieve the ensuing output values. We then applied t-distributed stochastic neighbor embed-

ding (t-SNE) in Python on thesemulti-dimensional encodings to visually represent the resulting embedding

in two dimensions.

Cluster identification

We implemented partitioning around medoids (PAM) clustering to identify clusters within the t-SNE

embedding of the weighted substitution model (Figure S1). The goal of PAM clustering is to minimize

the sum of dissimilarities between the objects in a cluster and the center of the same cluster (medoid). Pair-

wise dissimilarities between k-mers were computed using Gower’s distance as a way to group k-mers with

similar mutation frequencies. We separated all k-mers sharing the same middle nucleotide and then

applied PAM clustering independently on each group to facilitate the clustering process. All clustering as-

signments were performed using the cluster package in R. For each middle nucleotide, we specified the

algorithm to identify 5 distinct clusters.

Identifying recurring genomic patterns using TF-MoDISco

We applied TF-MoDISco (Shrikumar et al., 2018), a machine learning interpretability method, to identify

recurring motifs our model detected in the 15-mer data. From the data, we isolated four groups of 15-

mers based on the middle nucleotide (C, G, A, or T) of the 15-mer, with the additional condition that

the middle nucleotide conformed to WRC or GYW AID hotspots, or WA or TW Polh hotspots, respectively.

TF-MoDISco requires importance scores to be used as input, which can be generated by utilizing one of

several attribution methods. Here we generated the importance scores for each group by applying Inte-

grated Gradients (Sundararajan et al., 2017) to the most accurate 15-mer mutation frequency model. Using

the resulting importance scores, we then ran TF-MoDISco for all groups separately, still subject to the hot-

spot constraint, and requiring each of the identified patterns to be associated with at least 10 input sub-

sequences (or ‘‘sequelets’’).
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