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Abstract

Massive parallel sequencing technology has become the predominant technique for

genetic diagnostics and research. Many genetic laboratories have wrestled with the

challenges of setting up genetic testing workflows based on a completely new

technology. The learning curve we went through as a laboratory was accompanied

by growing pains while we gained new knowledge and expertise. Here we discuss

some important mistakes that have been made in our laboratory through 10 years of

clinical exome sequencing but that have given us important new insights on how to

adapt our working methods. We provide these examples and the lessons that we

learned to help other laboratories avoid to make the same mistakes.
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1 | INTRODUCTION

Massively parallel sequencing technology, or next‐generation

sequencing (NGS), has become the standard technique for genetic

diagnostics and research. Especially exome and genome sequencing

are now applied worldwide to molecularly diagnose patients

(Hartman et al., 2019; Marshall et al., 2020; Matthijs et al., 2016).

Over the last few years many laboratories have wrestled with the

challenges of setting up genetic testing workflows based on a

completely new technology. These challenges have been amplified

by the fact that sequencing technology has been evolving ever since

its introduction with novel instruments, chemistry and analysis

methods.

Throughout the past decade, new sequencing technologies have

come to market, whereas others have disappeared, and all of them

have undergone rapid changes and upgrades (Giani et al., 2020;

Heather & Chain, 2016). The same holds true for exome capture kits

(Zhou et al., 2021), concomitant equipment and consumables. In this

continuously changing field, laboratories have strived to consistently

generate high‐quality sequencing data. Various studies have reported

how biases in sequencing data may result in either reduced sensitivity

or false positive variants for exome and genome sequencing. For

example, with NGS, high sequencing error rates and polymerase chain

reaction (PCR) duplicates will result in potential false‐positive calls

whereas nonuniform sequence coverage or lack of coverage may lead

to reduced sensitivity (Barbitoff et al., 2020; Lelieveld et al., 2015).
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Other issues such as strand bias and insert size distribution may also

adversely affect sequencing results (Y. Guo, Li, et al., 2012).

NGS technology is also much more data‐intensive than

traditional genetic testing approaches and requires expertise in

information technology (IT) and bioinformatics which was initially

scarce in many laboratories. Bioinformatics has dealt with the

difficulty of setting up rigorous quality control for sequencing data,

but also with the challenge of reliable variant identification from

sequencing data (Y. Guo et al., 2014). For example, it is relatively

difficult to detect insertions and deletions, to identify variants in

repeat‐rich or low coverage regions (Jiang et al., 2015; Weißbach

et al., 2021), or to distinguish single nucleotide variants (SNVs) from

sequencing errors and mapping artifacts. Additionally, the detection

of copy number variants (CNVs) from exome data has become

a standard procedure giving rise to its own specific challenges

(Hong et al., 2016). Similarly, as with sequencing instruments,

bioinformatics needs to handle continuous updates from software

tools, gene panels and other annotation resources to ensure

that molecular geneticists have the latest information available for

up‐to‐date data interpretation (Lelieveld et al., 2016). This in turn

requires laboratories to implement strategies for automated testing

of their analyses as well as systematic approaches for the reanalysis

of existing data (Fung et al., 2020; Liu et al., 2019).

Driven by the new sequencing possibilities and the genetic and

phenotypic variability of many diseases, clinical genetic testing has

changed drastically in the last decade. From targeted gene testing

where only one or a few genes would be sequenced based on the

clinical phenotype, genetic requests now often concern the analysis

of large panels of disease genes. Compared to single gene analysis,

the interpretation of the large number of variants from exome or

genome sequencing is obviously quite different. This requires not

only in‐depth knowledge of the technique to assess the quality of

data and identified variants, but also new approaches for variant

interpretation. Initial reporting of NGS variants was sometimes too

stringent whereby variants that did not exactly match the patient

phenotype were omitted, or too lenient, giving rise to many variants

of uncertain significance (VUS) (Brownstein et al., 2014; Richards

et al., 2015). Over time the quality of the sequencing data has greatly

improved and the development of large publicly available databases

with variant frequencies, such as the GnomAD database (Karczewski

et al., 2020), have helped greatly in the development of more

efficient variant filtering options. Moreover, in the last few years

various recommendations and quality assessment schemes have been

developed that guide the interpretation, classification and reporting

of NGS variants (MacArthur et al., 2014; Miller et al., 2021;

Rehm et al., 2015; Richards et al., 2015).

There are now several guidelines available on NGS testing,

including concrete instructions from the College of American

Pathologists (CAP) that can aid in the design, optimization, validation,

quality management and bioinformatic aspects of NGS testing

(Santani et al., 2019). Nevertheless, many challenges remain and

mistakes are bound to happen, even in regulated clinical genetic

testing laboratories where quality is of foremost importance. Here we

show examples of some of the mistakes that were made in our

laboratory throughout 10 years of clinical exome sequencing and the

lessons we learned from these mistakes (Table S1). Whereas the

wet‐lab has its own particular challenges, here we focus mostly on

the issues related to data analysis and variant interpretation. We

hope that by sharing these examples other laboratories are safe-

guarded from making the same mistakes.

2 | DATA ANALYSIS

Data management and the development of analysis pipelines for

sequencing data have become important for many diagnostic

laboratories. Building a complete, efficient and robust NGS analysis

pipeline is an elaborate task that includes multiple delicate steps from

alignment of NGS reads to calling and annotation of different types

of genetic variation, such as SNVs, small insertions and deletions,

CNVs and short tandem repeats (STRs). Because of the many

different processing steps that need to be carried out and the large

amount of data, it is relatively easy to make a small mistake with a

large but nonobvious impact on the final results. Here we show five

examples of mistakes that we made throughout the process of data

analysis and that have so far not been abundantly highlighted in

literature.

2.1 | Sequence quality

“Garbage in, garbage out” is a well‐known saying in computer

science that captures the concept that flawed input data produces

flawed output or “garbage.” The same applies to sequencing data.

Our laboratory encountered many issues with sequencing results

that were not due to mistakes in the processing of the data, but

rather due to the fact that there were issues with the initial data

generation itself. Identifying the underlying cause of downstream

issues can be a challenging task because subtle quality issues in the

sequencing data can have large effects on subsequent variant

calling. A relatively common issue is data with many spurious variant

calls. This happened on occasion due to an unexpected high

sequencing error rate, sample contamination, or due to incorrect

trimming of adapter sequences (Figure S1). Most of these quality

issues can be recognized by inspecting the raw sequencing data or

by the observation that called variants have low‐quality scores and

deviate from the expected allele fraction of 50% for heterozygous

calls. The opposite, a reduced number of variant calls is in most

cases due to low sequence coverage. However, there may also be

other reasons for reduced sensitivity. In two batches of exome

sequencing samples, we noticed a lower number of variant calls only

because we performed a trend analysis across several batches of

samples. Initially, we expected this to be due to lower sequence

coverage of the samples (Figure S2). However, the sequence

coverage for these samples was not different from that of other

samples. Eventually we discovered that this problem was due to a
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10%–20% increase of the fraction of duplicate reads. Because

duplicate reads could be due to PCR amplification, and potentially

introduce false‐positive variant calls, most variant callers will not

consider them for variant calling. Therefore, the effective coverage

for many regions was 10%–20% lower than what it appeared in

these two batches (Figure S2).

Many quality issues can be readily identified by using tools such

as Qualimap that compute quality statistics for sequencing experi-

ments, such as coverage statistics, sequencing error rate, and the

percentage of duplicate reads (García‐Alcalde et al., 2012). Therefore,

we strongly recommend to embed extensive quality control at all

steps of the bioinformatic pipeline and follow trends of quality

parameters such as percentage of duplicate reads, coverage

distribution, overall number of variants called and percentage of rare

variants not found in gnomAD. Deviations from expected values

should be investigated closely. Establishing quality thresholds during

development and testing will help to identify quality issues later on

(Roy et al., 2018; Santani et al., 2019). These thresholds may need to

be updated when laboratory protocols are changed, for example with

the introduction of new sequencing instruments. A comprehensive

quality control analysis on sequencing data can prevent many

downstream issues with data interpretation.

2.2 | Sequence alignment: Alternate contigs

The most primary processing step in NGS data is the alignment of reads

to a reference genome. The genome structure of particular regions

may, however, vary considerably between different individuals and

populations. To properly represent these loci the reference genome

makes use of alternate contigs, that is, different reference sequences

for particular regions in the genome. These alternate contigs contain

regions in the genome that vary in such complex ways that they cannot

be represented as a single reference sequence. In our initial analysis

workflow we attempted to be as comprehensive as possible and

included the largest possible reference genome, that included alterna-

tive contigs. However, most read mapping algorithms will, by default,

assign a poor mapping quality score to reads that align equally well to

multiple regions in the reference genome. These reads with mapping

quality (MAPQ) equal to zero are typically indicated in the Integrated

Genomics Viewer (IGV; Robinson et al., 2011) with blank reads

(Figure 1a). Variant calling algorithms, in turn, will ignore such reads

and will not identify variants in regions where reads have low MAPQ

scores. Variants in such regions, although visible by manual inspection,

will not be called. This mistake was identified with the help of

laboratory specialists that looked into the aligned sequencing data to

identify whether there was a potential second mutation in a recessive

gene (see Section 3.3). We found that by including alternative contigs

the number of coding bases where reads cannot be unambiguously

aligned will triple. The same issue was recently reported for data from

the UK Biobank where the introduction of an important number of

alternate contigs in GRCh38 reference genome caused the absence of

thousands of variants (Jia et al., 2020). There are two ways in which this

problem can be circumvented. The straightforward solution is to simply

exclude alternative‐contigs in the analysis, which is currently what is

done in our own analysis for exomes on GRCh37. Analyzing the data

without alternate contigs will properly align reads in the primary

assembly of the human reference genome (Figure 1b). A more

sophisticated solution is to apply alignment algorithms that can handle

alternate contigs using the corresponding index file which we now do

for genomes analyzed using the GRCh38 build of the reference genome

(Jia et al., 2020). Considering that GRCh38 greatly expands the

repertoire of alternative contigs (among other improvements), it would

be advantageous for the clinical community to start transitioning

towards GRCh38 to be able to properly detect and analyze genomic

variation in population‐specific haplotypes.

2.3 | Variant calling: Capture target file

There are many different exome kits available that all use their own

definition of “regions of interest” (Lelieveld et al., 2015; Pengelly

et al., 2020). The naive approach for calling variants from an exome

would be to call genome‐wide, without considering capture targets or

coding regions. However, this is computationally burdensome, and the

resulting data will contain many low‐quality variant calls from off‐

target reads in regions that are not of interest. Therefore, it seems

reasonable to restrict the analysis to regions where sufficient coverage

for reliable variant calling can reasonably be expected. Although the

original exome kits tried to exactly target the coding regions, many

manufacturers started to move capture probes such that they would

be partly overlapping or close to the exon of interest, to optimize the

enrichment efficiency. The idea behind this is that a combination of

the length of the sequence reads (typically 100–150 bp) and the

enrichment of genomic DNA fragments extending beyond but over-

lapping the targets, will result in sufficient coverage not just for the

capture target itself but also for the 100–150 adjacent bases. This

indeed improves the capture efficiency for many “difficult” exons but

makes it more difficult to decide in which regions variants should be

called.

With our initial implementation of a new exome capture design

we made the mistake of calling variants only in the exome capture

targets, not realizing that a proportion of exons was not directly

covered by any capture target, and thereby missing relevant coding

variants (Figure 1c). Although we performed several quality checks

when testing the exome kit, we did not immediately realize that we

were missing as much as 5.4% (1897 kb) of all coding bases (Agilent

SureSelect version 4). Again, this mistake was observed when

variants that were visible in the sequence alignment through

IGV were not present in the variant call files. In more recent exome

kits the number of coding bases adjacent to a capture target is less

but still considerable (Figure 1d).

Most manufacturers and studies guarantee sufficient coverage

100 bp adjacent to a capture target (Pengelly et al., 2020), but we

currently extend our targets with 200 bp, balancing the additional

compute time and additional variants called in coding regions.
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Obviously calling variants genome‐wide will circumvent these issues,

but we have judged that the additional compute time and increase in

low‐quality variant calls does not make this sufficiently worthwhile.

We estimated that calling variants genome‐wide would double

analysis time and would yield many more variants called, of which

an important number would be artifacts.

When implementing a new exome capture design it is highly

recommended to define the clinical targets or regions of interest

beforehand and then determine completeness of coverage for these

intervals (Matthijs et al., 2016).

2.4 | Exome CNV calling: Reference pools

Early onwards it became clear that WES can also be used to infer

CNVs, based on deviations in sequence coverage between samples

(Marchuk et al., 2018). Comparison of coverage between exomes is

hampered by coverage biases of individual targets due to sequence

capture and GC content (Fromer et al., 2012). Most tools for the

detection of CNVs from exome data rely on the creation of a

reference pool to standardize the depth of coverage per region and

overcome coverage biases in the data (Krumm et al., 2012; Plagnol

et al., 2012; Sathirapongsasuti et al., 2011). We discovered that the

size and quality of the reference pool has a large impact on the

quality of CNV calls. Reference pools with small numbers of samples

or a mix of samples with different sequencing characteristics, will lead

to increased variability on expected coverage for sequencing targets

(Figure 1e). This will result in many spurious calls, making the

interpretation much more laborious. In 2016 we accidentally

combined samples of which reads were aligned using two different

methods in the same reference pool. Unexpectedly this resulted not

only in spurious CNV calls but also in large CNVs that were missed

but that had already been detected in a previous CNV analysis.

Currently, our CNV reference pools are continuously updated using

the latest samples, to have minimal technical variability due to

changes in sequencing chemistry and protocols (Figure 1f). Besides

this continuous updating several separate reference pools are used

that match samples based on sequencing platform, enrichment

F IGURE 1 Issues that were encountered in data analysis. (a) IGV screenshot of sequence alignment for a pathogenic coding variant in the
gene TCF20 that was initially not detected because the sequencing reads align to multiple locations in the reference genome due to the inclusion
of alternate contigs. (b) Reanalysis of the same sample while excluding alternate contigs led to unique alignments of the sequence reads and
detection of this variant. (c) Example of a coding exon where a variant may be missed because the capture target (Agilent SureSelect v5) does not
fully overlap with the exonic region. (d) Overview of the percentage of coding bases (Gencode Basic v.34lift37) that is not exactly within the
capture targets, and within 200 bp vicinity of the capture targets, for different enrichment methods. (e) Normalized coverage of capture targets
(Agilent v5) for an exome sample when using a heterogeneous reference cohort for CNV calling (CoNIFER). Information related to the number of
CNVs and autosomal standard deviation (SD) is added to capture the effects of using a heterogeneous reference cohort. (f) The same sample
analyzed with a more homogenous reference cohort showing a reduced variation and less CNV calls. (g) UCSC genome browser gene view
showing gene structure and transcripts for the gene CCDC141 for two different GENCODE versions highlighting how additional coding exons
may be added that can change variant interpretation. An exome variant is indicated in exon five of the transcript present only in GENCODE
version 37. CNV, copy number variants; IGV, Integrated Genomics Viewer
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platform, and sex for calling CNVs on chromosome X. To pick‐up on

potential quality issues we monitor the number of CNV calls per

sample and sequencing batch as well as the average variability of the

normalized target coverage per sample in our trend analysis. Based

on our experience we would recommend to use a reference cohort

for CNV calling that is matched for the capture kit, sequencing

instrument and chemistry, and sex.

2.5 | Annotation: Gene definitions

Whereas we perform regular updates of reference datasets such as

population frequencies, OMIM information and HGMD/ClinVar

classification, we initially did not regularly update our gene defini-

tions, naively expecting that all genes and transcripts in the human

genome have been thoroughly charted. Gene definitions are the most

basic resource for the interpretation of genetic variants. Several

publicly available resources for gene definition exist, such as RefSeq

(developed by the National Center for Biotechnology Information

(NCBI)) (Pruitt et al., 2014) and GENCODE that combines a manual

annotation by the HAVANA group with computational annotation by

Ensembl (Harrow et al., 2012).

When we updated our 2017 GENCODE BASIC gene definitions

to a more recent version, somewhat to our surprise we encountered

several variants that were initially annotated as noncoding, but that

turned out to be in a newly annotated exon, thereby potentially

completely changing the interpretation, for example as with the gene

CCDC141 (Figure 1g). There are still regular updates from RefSeq and

GENCODE that change known gene definitions and that can have a

profound impact on the interpretation of variants for WES. Especially

for WGS using more extensive gene definitions can be worthwhile

since variants are detected genome‐wide and are not limited to

predefined regions as with WES. These ongoing improvements are

nicely illustrated by the regular GENCODE updates. GENCODE was

updated four times in the last 12 months, and the latest Gencode

V38, May 2021 update includes more than 2500 new protein‐coding

transcripts, together with several modifications in the list of protein‐

coding genes compared to version V33 from January 2020 (Table S2).

Regular updates (e.g., every 6 months) for all annotations including

gene definitions and periodic re‐annotation of existing samples will

likely result in additional diagnoses.

3 | VARIANT INTERPRETATION

Next to data analysis, variant interpretation for NGS differs greatly

from traditional practices and has come with its own challenges for

molecular and clinical geneticists. Here we describe issues that we

have encountered and the lessons that we have learned for clinical

exome variant interpretation and illustrate these using real‐life

examples. These lessons are tentatively in order of importance,

starting with what in our experience are the most valuable lessons

that we have learned. In all the provided examples, variants were

initially interpreted according to our standard protocol which is

depicted in Figure 2. We note that in practice these lessons are

usually applied in combination, and some examples that we provide

could have been used for multiple lessons.

3.1 | Visually inspect the data

Variant calling algorithms need to balance sensitivity, specificity and

performance and will therefore not always provide perfect results

(Kumaran et al., 2019). Hence it is good practice to visually inspect

sequence alignment data (BAM/CRAM files) to manually filter‐out

false positive calls. False‐positive calls often occur in repeat‐rich

regions and are readily visible upon inspection of the sequence

alignment data. On the other hand, variants and especially insertion/

deletion variants may be missed or inaccurately called.

In a patient with a neurodevelopmental disorder we identified two

separately called de novo variants (NM_001271.4:c.4592+37del and

NM_001271.4:c.4592+38C>G) in the gene CHD2 (Figure S3). Individu-

ally each of these variants is predicted to have a benign or modest effect

on splicing, and both variants were initially disregarded. However, after

inspection of the alignment data it was clear that this represents a single

variant, Chr15(GRCh37):g.93552590_93552591delinsG NM_001271.4:

c.4592+37_4592+38delinsG that introduces a new donor splice site

predicted to lead to partial intron retention and a premature nonsense

variant. Similarly, through visual inspection of the alignment data we

found that a 13 base pair heterozygous deletion in GPSM2 was actually

F IGURE 2 Schematic representation of our interpretation
workflow. Gray boxes on the left indicate the analysis of single
nucleotide variants (SNVs; GATK calling), copy number variants
(CNVs; CoNIFER; Krumm et al., 2012), and ExomeDepth (Plagnol
et al., 2012) and “Other,” which includes interpretation of
regions of homozygosity (Magi et al., 2014), Uniparental disomy
(Yauy et al., 2020), and repeat expansions in coding regions
(Dolzhenko et al., 2017)
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present in a homozygous state (Figure 3a), and was inherited from both

parents who were heterozygous for the variant.

Especially in the case of CNVs detected in WES data, visual

inspection (of normalized coverage profiles and BAM files) is crucial.

For example, a duplication event in the MTMR2 gene can be

recognized as a retrotransposon, that is, the insertion of copy‐DNA

in the genome (Huang et al., 2010), by the fact that multiple reads end

exactly at the exon–intron boundaries (Figure S4). Similarly, visual

inspection is especially important in the case of mosaic deletions,

duplications and uniparental disomy, which otherwise could be missed.

In a patient with multiple congenital anomalies (left palate, ectopic

anus, micropenis, and short proximal limbs) no genetic cause could be

discovered with exome sequencing in 2015. However, upon CNV

reanalysis of the same data in 2016, we discovered several small copy

number gains of which only a few were visible within the restrictions

of the requested gene panel. Visual inspection of the normalized

coverage profile instantly revealed a gain of the whole short arm of

chromosome 12 (Figure S5). The patient was eventually diagnosed

with a mosaic quadruplication of the short arm of chromosome 12,

causative of Pallister Killian syndrome (OMIM #601803).

F IGURE 3 Issues that were encountered in data interpretation. (a) An obvious homozygous deletion in GPSM2 was incorrectly called by
GATK as being heterozygous, indicating that visual inspection of the data is crucial for the correct interpretation of variants. (b) A pathogenic
variant in the AR MICU1 gene was detected together with a two exon deletion in the same gene. (c) A nonsense variant in TCF4 was not
detected when filtering on de novo variants because the mother was a mosaic carrier (30%) of this variant (alignments sorted by base in IGV).
(d) An isodicentric marker chromosome (q13.1) was detected in WES data as an ~8.4Mb terminal gain on 15q11.1q13.1, indicating that it is
important to keep the chromosome structure in mind when analyzing WES CNV data. (e) Pathogenic variants in control databases, like the
p.(Tyr735Cys) variant in DNTM3A, can be recognized by their overrepresentation in older individuals. (f) An 18bp duplication in PHOX2B was not
called by GATK, but was detected after reanalysis prompted by the distinctive phenotype, emphasizing the power of hypothesis‐driven
diagnostics. IGV, Integrated Genomics Viewer
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Visual inspection of the data is an essential aspect of variant

interpretation. There are several tools to do this, including the

Integrative Genomics Viewer (IGV) (Robinson et al., 2011). However,

visual inspection of data is time‐consuming and should be limited to

variants with a higher likelihood of being called incorrectly.

Such variants include CNVs, frameshift variants, variants with allele

ratios that deviate from the ideal Mendelian ratios (i.e., not clearly

heterozygous or homozygous) and multiple adjacent variants in a

single gene. In addition, visual inspection should be performed for all

variants that the laboratory intends to report.

3.2 | Variants other than nonsynonymous single
nucleotide variants are easily missed

Exome sequencing was originally intended to detect single or

multiple nucleotide replacements, or small deletions and duplica-

tions (~1–25 bp) within the coding regions and splice sites.

In recent years, multiple studies have shown that other types of

variants can also, to some degree, be detected in exome sequencing

data. This includes among others CNVs (Pfundt et al., 2017),

intronic variants (Y. Guo, Long, et al., 2012), uniparental disomies

(UPDs) (Yauy et al., 2020), mitochondrial variants (Schlegel

et al., 1992), repeat expansions (van der Sanden et al., 2021), and

mobile element insertions (Torene et al., 2020). Whereas all of

these resolve the cause of disease in only a relatively small number

of patients compared to coding single nucleotide variants, together

this bycatch can contribute substantially to the diagnostic yield.

For example, routine WES analysis of the coding regions and

±20bp splice site regions did not provide a diagnosis for a

leukodystrophy patient with spastic hemiplegia and anarthria. As

part of a comprehensive reanalysis by the Solve‐RD consortium

(Zurek et al., 2021) a homozygous known pathogenic deep intronic

c.1969+115_1969+116del variant in the CSF1R gene (Figure S6) was

identified that leads to the inclusion of a pseudo‐exon in the CSF1R

transcripts (L. Guo et al., 2019). Although there was no specific

capture target for this region, sequence coverage turned out to be

sufficient at this position to call this particular variant.

For a patient with a clinical diagnosis of Stargardt disease, WES

analysis of the vision‐disorders panel genes and special focus on the

Stargardt genes (ABCA4 and ELOVL4) did not result in a molecular

diagnosis. A reanalysis aimed at uniparental disomies detected a paternal

isodisomy of chromosome 1 in this patient (Figure S7) (Magi et al., 2014;

Yauy et al., 2020). Subsequent Sanger sequencing of the ABCA4 Stargardt

disease gene, located on chromosome 1, uncovered a homozygous

pathogenic deep intronic variant (Chr1(GRCh37):g.94546780C>G

NM_000350.2(ABCA4):c.859‐506G>C) leading to a pseudo‐exon in a

substantial proportion of the ABCA4 transcripts (Khan et al., 2020).

In a deceased child that suffered from frontal pachygyria,

breathing pattern disorders and brachycardia, whole exome analysis

was performed. Two rare homozygous variants were detected in the

PLAA gene, a missense and a synonymous variant. Although initially

we focused on the missense mutation it remained a VUS after

interpretation. For the synonymous variant, splice prediction tools

suggested that it might create an alternative splice donor site in exon

6 of this gene. Since the clinical phenotype of the patient fit with

mutations in the PLAA gene, subsequent analysis of this predicted

splice site effect was requested. Sequencing analysis of complemen-

tary DNA that was generated from lymphoblastoid cells from the

carrier's parents indeed confirmed the usage of an alternative splice

donor site that lead to an out‐of‐frame deletion of 11 nucleotides in

the transcript that is encoded by the mutated allele (Figure S8).

Instead of “just” being a silent variant, this variant leads to a loss‐of‐

function of this allele.

Therefore we would recommend to consider all types of variants

within genes that are clinically relevant to the patient's phenotype,

and to highlight known pathogenic variants of all types

(i.e., independent of their location or frequencies) from databases

such as HGMD and ClinVar, during interpretation.

3.3 | Compound heterozygous variants are easily
missed when one of the two is “hiding”

We found that in many cases where recessive inheritance was

expected we could initially only identify a single heterozygous

(pathogenic) variant in a recessive disease gene, which would be a

very good matching gene for the patient's disorder if a second

pathogenic variant were to be present. In these cases, the second

variant may be a different type of mutation (see Section 3.2), may not

meet the quality standards, or may seem less likely to be pathogenic.

For example, a heterozygous loss‐of‐function variant, p.(Lys440*), in

theMICU1 gene was detected using standard filtering in a child with a

suspicion of a myopathy, based on increased creatine kinase (CK)

levels and motor retardation. Only after visual inspection of the CNV

data, the second variant, a heterozygous two exon deletion inMICU1,

was detected (Figure 3b). This CNV was not called by the CNV

algorithm (CoNIFER) that was used at the time, since the cut‐off

values for calling variants is three or more exons (Krumm et al., 2012).

Another example is the identification of heterozygous loss‐of‐

function mutations in the POLR3A gene in four unrelated individuals

with a movement disorder. Whereas initially these patients received

no diagnosis, upon examination we identified an additional intronic

variant (NM_007055.4:c.1909+22G>A) in all four patients. The effect

of this variant was uncertain, since it is predicted to enhance a cryptic

donor splice site, while leaving the original donor splice site intact.

This mutation was later shown to be a common hypomorphic variant

(i.e., resulting in a milder POLR3A phenotype) that results in retention

of 19 base pairs in a tissue‐ and stage of development‐specific

manner (Minnerop et al., 2017).

These examples demonstrate that when a single heterozygous

variant is detected in a recessive disease gene, which could be a good

explanation of the patient's phenotype, one should be triggered to

take extra efforts to identify a second variant (Kamphans et al., 2013).
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3.4 | Remember mosaicism

Another challenge in the analysis of NGS data that was already

alluded to (see Section 3.1) is the occurrence of mosaic SNVs and

CNVs. Mosaic SNVs have been shown to be relevant for many

disorders. In fact, ~3.5% of variants detected in patients with

epilepsy‐related neurodevelopmental disorder were present in a

mosaic form (Stosser et al., 2018).

A common practice to remove sequencing and analysis

artifacts is to exclude variants with a lower than expected variant

allele frequency (VAF). However, such filtering will also

remove mosaic SNVs. For example, initial filtering discarded a

mosaic (~16%) variant in PIK3CA as an artifact in a fetus at

33 weeks of gestation. This pathogenic variant (Chr3(GRCh37):

g.178916854G>A NM_006218.4:c.241G>A p.(Glu81Lys)) causes

abnormality of the cardiovascular system morphology, which

could very well explain the ultrasound abnormalities seen in this

fetus. Mosaicism for this variant was confirmed using targeted

deep sequencing, revealing ~30% mosaicism allele fraction in the

fetus and absence in both parents.

Another challenge arises when a pathogenic variant is also present

in a mosaic state in an unaffected parent (Palomares‐Bralo et al., 2017).

When performing a trio analysis, the main focus is on the detection of

de novo variants in dominant genes. As such, variants that occur in an

unaffected (mosaic) parent are not labeled as de novo in the child.

Therefore, variants inherited from a mosaic parent, will not be detected

when solely looking for de novo variants. For instance, we initially

missed a nonsense variant in TCF4, Chr18(GRCh37):g.53017619G>A

NM_001083962.1:c.520C>T p.(Arg174*), when filtering for de novo

variants, because 9% of the reads of the mother also contained this

variant (Figure 3c). Ideally, such variants would be detected as a

separate category when performing a de novo analysis. Alternatively, an

inherited variant may be misinterpreted as sporadic due to the low level

of mosaicism in a carrier parent, resulting in wrongly estimating the

recurrence risk for the parents.

Overall, mosaic variants are not extremely rare. Mosaic variants

in genes linked to autosomal dominant‐, autosomal recessive‐, and

X‐linked disorders are estimated to occur in 3.3% of individuals

whereas parental mosaicism is estimated to be as high as 17.5% of

apparently de novo mutations Qin et al. (2016). Whenever consider-

ing a potential pathogenic variant relevant to the patient's pheno-

type, it is worthwhile to also consider the possibility of mosaicism in

either the patient or the parents.

3.5 | Think chromosomes

WES was initially aimed at detecting SNVs and although CNVs can be

called fromWES data it is important to keep in mind the limitations of

WES when interpreting variants. For example, the CoNIFER

algorithm does not detect aneuploidies because it normalizes the

target coverage per chromosome (Krumm et al., 2012). We initially

missed a case of isodisomy X Klinefelter syndrome (XXY) because

there were no CNV calls with CoNIFER (the only CNV calling tool

used in our lab at that time). Since these were two identical

X‐chromosomes, there were Regions of Homozygosity (ROH) calls all

over the X‐chromosome, as you would expect in unaffected males.

This isodisomy X Klinefelter was discovered using QF‐PCR analysis,

but could have been detected sooner by looking at the Y/X coverage

ratio in the WES data.

A relatively common copy number finding from WES is the

detection of a terminal duplication on one chromosome coinciding

with a terminal deletion on another chromosome. This combination is

a clear indication of an unbalanced translocation and should be

followed up by regular karyotyping. A similar event, a ~265 kb

terminal deletion on chromosome 22q13.3, was identified in a patient

with severe intellectual disability, developmental delay, absent

speech and language, hypotonia and reflux. Since chromosome

22 is an acrocentric chromosome, there were no calls on the short

arm of this chromosome. Such a terminal deletion on the long and

short arm of the same chromosome is indicative of a ring

chromosome. Follow‐up karyotyping revealed that this was indeed

a de novo ring chromosome 22 (Figure S9). It is essential to

differentiate a ring chromosome from a “regular” terminal aberration

since instability during mitosis is a well‐known characteristic of ring

chromosomes (Nikitina et al., 2021). Subsequent secondary aberra-

tions, like expansion of the deleted region or even monosomy of the

affected chromosome, can have relevant clinical consequences for

the affected individual. For chromosome 22 this risk has been

described with respect to neurofibromatosis type 2 (NF2; OMIM

#607379) where subsequent lifelong routine screening for features

of NF2 in these patients is strongly advised (Zirn et al., 2012).

Another example was the identification of a ~8.4Mb terminal gain

on 15q11.1q13.1 inWES data from a patient with intellectual disability

and epilepsy. Based on the WES data alone it was not clear whether

this gain was caused by an interstitial duplication or by an extra

numerical marker chromosome. Upon follow‐up karyotyping this event

turned out to be an isodicentric marker chromosome (q13.1)

(Figure 3d) and thus in fact was a quadruplication of the q11q13.1

region. This is a clinically relevant finding because tetrasomy 15q gives

rise to many nonspecific characteristics including intellectual disability,

behavioral disorders, ataxia and epilepsy Finucane et al. (1993).

These examples demonstrate that it is necessary to also have

cytogenetics expertize for WES interpretation. Existing guidelines on

the interpretation of copy number variants from microarray data can

provide guidance for the interpretation and follow‐up of CNVs from

exome sequencing data (Shao et al., 2021; Silva et al., 2019).

3.6 | Genuine disease‐causing variants may be
prevalent in population databases

Eliminating common variants is an essential step in exome data

filtering (Gilissen et al., 2012). Publicly available databases such as

gnomAD that provide aggregated variant information from large

populations cohorts are of great help (Karczewski et al., 2020).
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Commonly used thresholds for such filtering eliminate all data with

an allele frequency >1% or based on the frequency and inheritance

patterns of the disease (Whiffin et al., 2017). When applying such

allele frequency filtering there are a number of reasons why clinically

relevant variants may be wrongly discarded.

In a patient with intellectual disability we detected a missense

variant in DNMT3A (c.2204A>G, p.(Tyr735Cys); NM_022552.5).

However, this variant also occurs in 11 individuals in the GnomAD

database and therefore was initially considered likely benign. Several

studies have now pointed out that particular variants may occur

somatically in healthy individuals as a result of clonal hematopoiesis

(Acuna‐Hidalgo et al., 2017; Shlush, 2018). Therefore these (somatic)

variants occur relatively frequently in control databases where they

can be recognized by the fact that they are overrepresented in older

individuals (Figure 3e) and have low variant allele fractions Carlston

et al. (2017). It is useful to flag such genes that are involved in clonal

hematopoiesis. When in doubt, targeted mutation analysis of

alternative tissues can help to distinguish between constitutional

and somatic variants.

Seemingly frequent pathogenic variants may also be due to

homopolymeric stretches. Homopolymeric stretches in genes are

regions that are prone to polymerase slippage that can result in the

insertion or deletion of a number of nucleotides. These variants may

be present in control databases as artifacts, but also may be genuine

causative variants in the sequencing data being analyzed.

An intriguing example is a deletion or duplication of a single cytosine

from a homopolymer stretch of nine nucleotides in the PRRT2 gene

(NM_145239.3:c.641_649) (Figure S10). The subsequent c.649del

and c.649dup (rs587778771) variants are present in the gnomAD

database with an allele frequency of 0.96% and 0.47%, respectively.

These high frequencies initially led us to not consider these variants

as a likely cause. However, both events are considered pathogenic,

since they lead to frameshifts in the PRRT2 gene, where haploinsuf-

ficiency causes epilepsy, episodic kinesigenic dyskinesia or both.

The penetrance of the PRRT2 related disorders is estimated to be

60% or higher (van Vliet et al., 2012), suggesting that the high allele

frequencies of the homopolymer changes in public databases may be

due to sequencing artefacts. Indeed, limited alignment data present in

gnomAD shows an unequal distribution of the mutant allele in some.

It is therefore important to confirm such variants with another test if

relevant to the case before reporting.

Although filtering variants using frequency databases is a useful

approach, it is not perfect. Again, we would recommend to

incorporate safeguards that highlight known pathogenic variants

during the data interpretation process to not miss variants with

higher populations frequencies (see Section 3.2).

3.7 | Distinctive clinical features may drive a
correct diagnosis

Data analysis may sometimes discard potential variants based on

quality criteria. In particular cases, the clinical phenotype can help

prioritize variants without the need of additional filtering steps, or

can even suggest detailed analysis of specific genes. A de novo 18 bp

duplication event in the PHOX2B gene was only identified after visual

inspection of the sequencing data, which was prompted by the

distinctive phenotype of congenital central hypoventilation syndrome

in a newborn. This variant was not called, possibly due to poor

alignment of sequencing reads in the GC‐rich repetitive sequence of

this region (Figure 3f). Interpretation was also a challenge, because

the region is not conserved among vertebrates (many lack the

repetitive stretch coding for an Alanine repeat) and since many

overlapping deletion and duplication events are present in gnomAD.

Nevertheless, a duplication event at this position is a recurrent cause

of central hypoventilation syndrome.

Another example where a distinct clinical phenotype may help is

with identifying highly frequent hypomorphic alleles (see also

Section 3.6). We performed a prenatal exome analysis of a fetus

with ultrasound anomalies (phocomelia, small chin, prenasal thick-

ness, lower extremities in adducted position) where we at first only

detected a paternal 1q21.1 deletion. The fetal phenotype matched

with the possible clinical diagnosis of thrombocytopenia‐absent‐

radius (TAR) syndrome (Albers et al., 2012). This syndrome is

generally caused by a recurrent microdeletion in 1q21.1 in combina-

tion with, for example, a hypomorphic variant in the 5′‐untranslated

region at position −21 that has an allele frequency of >2% in the

gnomAD database. Upon loosening the frequency filtering indeed the

variant at position −21 emerged and was of maternal origin.

These examples show how a patient's phenotype may very

specifically point to a single gene or a small number of genes. The

attention should not only be directed to variants in those genes that

may not have been called, but also to other less likely variants, such

as silent or deep‐intronic variants that may affect splicing (also see

Section 3.2). It is thus beneficial to have dedicated specialists

interpreting clinical exome sequencing data of specific groups of

disorders, as this allows for deeper knowledge of gene etiologies,

atypical variant types, or genotype–phenotype correlations within

their area of expertize. The ability to reach a correct diagnosis will

however always depend on the availability of complete clinical

phenotype information, preferably in a standardized format.

3.8 | Phenotypic information may be misleading

Whereas phenotypic information is essential for proper genetic

testing, it might also hinder the genetic diagnosis by the selection of

gene‐targeted tests. With the introduction of NGS techniques such

as WES and WGS in genetic labs, the diagnostic strategy of referring

clinicians changed from a phenotype‐first to a genotype‐first

approach. By more‐or‐less unbiased sequencing analysis it became

clear that pathogenic variants in well‐known disease genes can also

lead to a very different clinical phenotype depending on the position

or type of genetic variation.

Compound heterozygous pathogenic variants in the IL11RA gene

were detected in a 2‐year‐old child with neonatal hypotonia, feeding
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problems, myoclonic movements, opsoclonus, frontal bossing, and

club feet, and a mitochondrial disorder was suspected. The IL11RA

gene is, however, involved in “craniosynostosis with dental anoma-

lies” (OMIM #614188). In this rare disorder, no hypotonia or

movement disorders were described. Prompted by the finding, a

computed tomography scan revealed early closure of the sutures in

the child and in a 3‐year‐old sibling. This sibling was then also shown

to be compound heterozygous for the IL11RA variants. Thus, the

frontal bossing, and perhaps the clubfeet, were early indicators of

craniosynostosis, while the neurological features may or may not be

explained by the IL11RA variants.

This kind of phenotypic heterogeneity is of course not new, but

NGS implementation has generated many recent examples such as

pathogenic SRCAP and CREBBP variants being causative for Floating

Harbor (OMIM #136140) and Rubinstein‐Taybi (OMIM #613684)

syndrome, respectively. Variants in these genes have also been

described causing a separate syndromic entity depending on the

location of the (de novo) loss‐of‐function variant (Menke et al., 2018;

Rots et al., 2021). Disease progression, incomplete clinical assess-

ments, or phenotypic heterogeneity may initially be misleading.

When detecting obvious pathogenic variants, they should not be set

aside as “not compatible with the phenotype” too easily.

3.9 | Non‐Mendelian inheritance

Most standard filtering strategies for WES data analysis and

interpretation are based on classic Mendelian inheritance patterns.

Whereas incomplete penetrance is obviously not a new phenomenon

in genetic diseases, it does pose a challenge in efficiently filtering

large sets of variants from NGS data (Cooper et al., 2013). Especially

when handling patient‐(healthy) parent trio data, variant filtering can

lead to rejecting inherited heterozygous variants in dominant genes,

or rejecting heterozygous X‐linked variants in females of paternal

origin or in X‐linked recessive genes.

A trio‐based WES analysis for a young woman with severe

intellectual disability, autism and epilepsy initially did not result in a

diagnosis. When discussing this result with the referring clinician, the

possibility of a variant in the PCDH19 gene was mentioned. PCDH19

causes a female‐restricted X‐linked disorder of developmental and

epileptic encephalopathy‐9 (OMIM #300088). Targeted inspection of

the data indeed revealed a paternally inherited pathogenic variant (ChrX

(GRCh37):g.99662889G>A NM_001184880.1:c.707C>T p.Pro236Leu)

in the PCDH19 gene. This missense variant was initially missed because

of the inheritance from the healthy hemizygous father. One should thus

be aware of heterozygous PCDH19 variants that may very well be

inherited from unaffected hemizygous fathers.

Another challenging group of genes are those that are parentally

imprinted, and thus expressed depending on the gender of the parent

that passes on the allele. There are approximately 15 well‐described

disorders already known to be caused by imprinted loci (Monk

et al., 2019), but in addition several hundred genes are known or

predicted to be subjected to genomic imprinting (https://www.

geneimprint.com/site/home; Monk et al., 2019). In a patient with

multiple congenital anomalies we detected a de novo frameshift

variant in the IGF2 gene, that is, known to be subjected to imprinting

and to be exclusively expressed on the paternal allele. Since genomic

phasing information could not be extracted from theWES data of this

patient, we were not able to determine on which allele the IGF2

variant was present. Using an informative SNP (rs368743181)

located 3.5 kb upstream of the frameshift variant in combination

with genomic phased long‐read sequencing could confirm that this

mutation indeed arose on the paternal allele and could therefore be

considered as causative. Had this variant not been de novo, but

inherited from a healthy parent it would have been much more

challenging to identify.

Also relevant here is the detection of uniparental disomy events

that occur in one in 500–2000 individuals (Nakka et al., 2019; Yauy

et al., 2020). In the case of a UPD, both chromosomes are inherited

from the same parent and variants in imprinted genes can be a likely

cause of disease. Annotation of genes with information about known

disease mechanisms can be very useful for interpretation of

WES data.

3.10 | Be aware of isoforms, pseudogenes and
gene copies

Our concept of a gene's regulation has long been simplified as a

single promoter driving the transcription of a gene, followed by the

splicing of the pre‐messenger RNA deleting all introns. Nowadays,

we know that gene expression is controlled in a time‐, tissue‐, or

developmental stage‐dependent manner. For example, splicing

isoforms may lack one or more exons (natural exon skipping), have

additional relevant exons (Bodian et al., 2021), have different

translation initiation sites, or genes may have multiple promoters

causing the occurrence of different isoforms. The difficulty is to

consider which isoform is relevant to disease, how to value a

variant that is present in just a subset of isoforms, or, in case the

reading frame is different between isoforms, how to ensure not

missing the relevant “annotation” (Frankish et al., 2015; Schoch

et al., 2020).

For example, we identified the Chr19(GRCh37):g.13339572G>A

variant in the CACNA1A gene in a patient with episodic ataxia. In only

one out of five isoforms of CACNA1A, this variant is a nonsense

variant, NM_001127221.1:c.5569C>T p.(Arg1857*), while it is

intronic in the other four (Figure S11). The polyQ expansion track

involved in spinocerebellar ataxia type 6 (OMIM #183086) is

encoded by two other CACNA1A isoforms (NM_001127222.2 and

NM_023035.3), suggesting these two isoforms to be essential for

proper cerebellar function. Thus, the fact that the nonsense variant is

only present in the isoform that does not encode the polyQ track,

initially led us to consider this variant as likely benign. However,

Graves et al. (2008) showed that this isoform uses an alternative exon

37A instead of the original exon 37B and that nonsense variants in

this isoform cause episodic ataxia (OMIM #108500).
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Alternatively, isoform‐specific variants may appear pathogenic,

but may be benign since the entire isoform is redundant. Finally,

some isoforms have partially different reading frames due to exon

skipping, making it particularly difficult to annotate variants in them

correctly. For variants with different effects in different isoforms all

consequences are usually available, but for convenience the most

severe consequence is prioritized (e.g., stop‐loss over missense).

Nevertheless, this may have consequences for diseases, like Noonan

syndrome, with gain‐of‐function or dominant‐negative mechanisms,

where missense variants are pathogenic and nonsense variants are

not. It is, overall, important to ensure variant calling and annotation in

multiple isoforms followed by correct interpretation to not miss the

relevant variants.

Also, gene copies and pseudogenes pose a serious problem in

WES because of ambiguous sequence alignment of short sequence

reads and the subsequent lack of variant calls in such regions.

Notorious are copies of complete disease genes, such as SMN1,

CYP21A2, PKD1, STRC, or parts of genes, such as the invariant

triplicate of eight exons within the NEB gene (Donner et al., 2004;

Mandelker et al., 2016). However, other variants may be called and

display aberrant variant allele fractions, that is, heterozygous when

homozygous or very low percentages in heterozygotes, or represent

false‐positive calls from the pseudogene(s) as we found for a

nonsense variant in the STRC gene (Figure S12). One should be

made aware of these genes during interpretation based on existing

resources and perform validations of the presence and zygosity of

such variants if identified, using independent techniques. Different

laboratory approaches, such as NGS‐based copy number assessment

supplemented with a long‐range PCR‐base Sanger or MiSeq assay

(Mandelker et al., 2014), have been suggested for this. In addition, it

is possible to simply exclude segmental duplications from the analysis

(Santani et al., 2017).

When based on the patient phenotype the detection of known

pathogenic mutations could be difficult because of pseudogenes,

patients should also be tested in a targeted fashion.

4 | DISCUSSION

Here we provide some of the most important lessons that we have

learned from performing clinical exome sequencing for over 10 years.

As a diagnostic laboratory the focus on quality and robustness does

not encourage continuous change, but keeping up with updates and

innovations has become an essential process in this fast‐evolving

field. By providing examples of mistakes that we have made in the

development of our diagnostic workflows we hope we can not only

create awareness of these specific issues but also of the fact that

mistakes do occur in diagnostic laboratories. It is essential to be

transparent to patients and referring clinicians about the limitations

of clinical exome sequencing. These limitations should ideally be

mentioned in diagnostic reports Claustres et al. (2014). Although

some of the mistakes that were made have required us to recontact

patients with a correct diagnosis, we feel that this is partly

unavoidable and that a fear of making mistakes should not hamper

innovation and improvements as this would do more harm to patient

care in the long term.

For this reason, it is however important to have a comprehensive

framework for the timely detection of mistakes and problems at the

level of the sequencing, data analysis as well as interpretation.

Several initiatives can aid laboratories in this by providing benchmark

datasets (Zook et al., 2019), and facilitating comparisons between

laboratories Muller and European Molecular Genetics Quality Net-

work (2001). An interesting observation from these examples is that

issues that occurred during sequencing were sometimes not

identified by the sequencing laboratory itself, but rather by the

bioinformaticians who analyzed the data. Similarly, mistakes made in

data processing were often picked‐up by molecular geneticists during

data interpretation. It is therefore essential to have routine

procedures for feedback between the members involved in the

different parts of the clinical exome sequencing process

(i.e., sequencing facility, bioinformatics and data interpretation).

Although it may seem that the examples are very rare exceptions

that are unlikely to have much relevance for everyday cases, we

would argue that these “exceptions” are alike to rare genetic

disorders that may be individually rare, but altogether quite common.

It is of course not always feasible to dedicate the amount of time

needed to consider all rare possibilities when performing routine

exome interpretation. Therefore, data analysis, annotation and

procedures should be gradually optimized to increase the automated

pickup of such clinically relevant genetic variants. Similarly, it may be

a relatively high investment to validate, setup and perform the

multitude of possible analyses for WES, such as detection UPDs,

mitochondrial variants, repeat expansions, mobile element insertions,

and so forth. Data‐sharing and reanalysis efforts such as the Solve‐

RD consortium (Zurek et al., 2021) may then prove beneficial and can

leverage the large number of samples to perform analyses that are

unlikely to diagnose any individual sample but within a large cohort

will identify a handful of cases.

The mistakes that we presented here will probably not be our

last ones. We strive to learn from our mistakes to improve diagnostics

in the long run, and we hope that others can learn from our mistakes

as well.
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