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ABSTRACT
Previous studies indicate that obesity is an important contributor to the proceeding
of thyroid cancer (TC) with limited knowledge of the underlying mechanism. Here,
we hypothesize that molecules affected by obesity may play roles in the development
of TC. To test the hypothesis above, we first conducted a large-scale literature-based
data mining to identify genes influenced by obesity and genes related to TC. Then, a
mega-analysis was conducted to study the expression changes of the obesity-specific
genes in the case of TC, using 16 independent TC array-expression datasets (783
TC cases and 439 healthy controls). After that, pathway analysis was performed to
explore the functional profile of the selected target genes and their potential connections
with TC. We identified 1,036 genes associated with TC and 534 regulated by obesity,
demonstrating a significant overlap (N = 176, p-value = 4.07e−112). Five out of
the 358 obesity-specific genes, FABP4, CFD, GHR, TNFRSF11B, and LTF, presented
significantly decreased expression in TC patients (LFC<−1.44; and p-value < 1e−7).
Multiple literature-based pathways were identified where obesity could promote the
pathologic development of TC through the regulation of these five genes and INS levels.
The five obesity genes uncovered could be novel genes that play roles in the etiology of
TC through the modulation of INS levels.

Subjects Bioinformatics, Computational Biology, Genomics, Data Mining and Machine Learning,
Data Science
Keywords Thyroid cancer, Obesity, Data mining, Mega-analysis, Pathway analysis

INTRODUCTION
Thyroid cancer (TC) develops from the tissues of the thyroid gland and becomes the
fastest-growing cancer of all malignancies (Wolin, Carson & Colditz, 2010). Approximately
20% of all types of cancers might be caused by excessive weight (overweight or obesity)
(Wolin, Carson & Colditz, 2010). Epidemiologic research suggested that there could be
a positive correlation between the increased incidence of both obesity and TC in the
past decades (Ogden et al., 2007). The hypothesis has been supported by multiple studies
with different methodologies, including cohort study, pooled analysis, and meta-analysis
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(Engeland et al., 2006;Kitahara et al., 2011;Zhao et al., 2012). However, inconsistent results
were represented, which could be due to the unbalanced sex in the TC sample (Meinhold
et al., 2010), different sample population regions (Oh, Yoon & Shin, 2005), and the lack of
adjustment of other influential factors (Meinhold et al., 2010; Engeland et al., 2006).

Nevertheless, many studies have been made to explore the mechanisms underlying the
obesity-TC relationship, taking the advances made by molecular biologists (Nannipieri
et al., 2009; Hard, 1998; Liu et al., 2012; Ozgen et al., 2009; Stassi et al., 2003; Iyengar et al.,
2017; Park et al., 2016). Some studies showed evidence that regional obesity and a tendency
to weight gain were associated with the variations in thyroid function. For example,
an increase of triiodothyronine (T3) levels was observed in obese subjects (Nannipieri
et al., 2009). TSH is the major stimulator of thyrocyte proliferation; the high level of
this hormone could be directly involved in thyroid carcinogenesis in obese subjects (Hard,
1998). In addition, multiple genetic and epigenetic alterations of obesity have been reported
as pathophysiological important, with many of them also identified as genetic targets for
early diagnosis, prognosis or the therapeutic response to the treatment of TC (Liu et
al., 2012; Ozgen et al., 2009; Stassi et al., 2003; Iyengar et al., 2017; Park et al., 2016). For
instance, separate sets of studies analyzing the pro- and anti-inflammatory cytokines,
TNF-α, IL-6, and IL-10, which are part of the obesity-associated secretory phenotype,
showed their roles in the deterioration or treatment of TC (Liu et al., 2012; Ozgen et
al., 2009; Stassi et al., 2003; Iyengar et al., 2017). However, the mechanism regarding this
obesity-promoting-TC relationship remains mostly unclear.

Taken together, these observations indicated the presence of some not-yet discovered
connections between obesity and TC. In this study, we attempted to use a system biology
approach to identify the not-yet discovered connections between both diseases, including
the data mining of disease-gene relation data, the analysis of molecular pathways, and a
mega-analysis of existing expression datasets. The integrated analysis of multiple modalities
of data has been proven to be an effective way for disease mechanism study (Liu et al.,
2019; Zhang et al., 2019; Lian et al., 2019).

METHODS AND MATERIALS
This study was organized as follows. First, the large-scale literature-based TC-gene and
obesity-gene relations data were mined, through which obesity- and TC-genes were
identified and compared. Then, a mega-analysis was conducted to test genes that were
regulated by obesity but not implicated with TC. After that, a literature-based pathway
analysis and a gene set enrichment analysis (GSEA) were performed to identify the potential
functional network connecting the selected molecules and TC and the biological profile of
these molecules.

Literature-based relation data
Literature-based genetic relation data was conducted by using Pathway Studio (http:
//www.pathwaystudio.com), and results were organized into Supplemental Information 1.
Besides the full lists of genes, we also presented the information of supporting references for
each disease-gene relation, including titles of the references and the related sentences where
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the disease-gene relationships were identified (Obesity_TC→TC genes and Obesity_TC
→Obesity_genes). The information could be used to locate a detailed description of how a
candidate gene is associated with obesity and/or TC. To increase the reliability of the obesity
affected genes, we selected the obesity-gene relationships with at least three supporting
references and with a specific polarity (positive or negative regulation).

Selection of TC-RNA expression datasets
We search all TC array-expression datasets available at GEO. After the initial search with
keyword ‘thyroid cancer’, we identified 91 expression datasets for TC. Then the following
criteria were applied to fulfill the purpose of this study, including (1) The data organism is
Homo sapiens; (2) The data type is RNA expression; (3) The sample size is no less than 10,
and (4) the studies are limited to TC cases vs. healthy controls design.

Mega-analysis and target selection
A mega-analysis was conducted for each of these genes that were regulated by obesity
but not associated with TC, using 16 out of 91 TC array-expression datasets from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). During this step, both
the fixed-effect model and random-effects model were employed to study the effect size
of the selected genes in a case vs. control expression comparison. The expression log fold
change (LFC) was used as the effect size. Results from both models were reported and
compared. The heterogeneity of the mega-analysis was analyzed to study the variance
within and between different studies. In the case that the total variance Q is equal to or
smaller than the expected between-study variance df, the statistic ISq= 100%× (Q−df)/Q
will be set as 0, and a fixed-effect model was selected for the mega-analysis. Otherwise,
a random-effects model was selected. The Q-p represents the probability that the total
variance is coming from within-study only. Significant genes from the mega-analysis
were reported, which were identified with the criteria as follows: p-value < 10−7 and abs
(effect size (log fold change)) >1. All analysis was conducted by an individually-developed
MATLAB (R2017a) mega-analysis package. We used the term ’mega-analysis’ rather than
’meta-analysis’ due to the fact that the log-fold changes of each gene were calculated from
the original datasets.

Literature-based pathway analysis and GSEA
For the possible risk genes identified through the expression mega-analysis described
above, a literature-based pathway was constructed to identify the connection between the
target genes and the TC. The analysis was performed using the ‘Shortest Path’ module
of Pathway Studio (http://www.pathwaystudio.com). Then all the molecules within the
identified networks were tested using a GSEA analysis against the Gene Ontology (GO)
terms and Pathway Studio pathways. Significantly enriched pathways and corresponding
statistics were reported.

Multiple linear regression analysis
The MLR model was employed to study the possible influence of three factors on the gene
expression change in TC: sample size, population region, and study date. P-values and 95%
confidence interval (CI) were reported for each of the factors.

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.9302 3/12

https://peerj.com
https://www.ncbi.nlm.nih.gov/geo/
http://www.pathwaystudio.com
http://dx.doi.org/10.7717/peerj.9302


Table 1 The datasets used for gene-TC relation mega-analysis.

Dataset
GEOID

nControl nCase Study region Study age

GSE35570 51 65 Poland 4
GSE58545 18 27 Poland 4
GSE58689 18 27 Poland 4
GSE60542 34 33 Belgium 4
GSE65144 13 12 USA 4
GSE39156 16 48 Belgium 6
GSE53157 3 24 Portugal 6
GSE29265 20 29 Belgium 7
GSE33630 45 60 Belgium 7
GSE27155 4 95 USA 8
GSE5364 58 270 Singapore 11
GSE6339 135 48 France 12
GSE9115 4 15 USA 12
GSE3678 7 7 USA 13
GSE6004 4 14 USA 13
GSE3467 9 9 USA 14

RESULTS
Common genes for obesity and TC
As presented in the Obesity_TC database, there were 1,036 genes associated with TC
and 534 influenced by obesity. A significant overlap of 176 genes was identified for both
obesity and TC (Right tail Fisher’s Exact test p-value= 4.07e−112), which counts for about
one-third of the obesity-regulated genes (32.96%). For detailed information on these genes,
please refer to Obesity_TC.

The selected gene expression datasets
There were 16 datasets satisfied the selection criteria and were included for the mega-
analysis, as shown in Table 1. According to the approach that we acquired the disease-gene
relation data (by using Pathway Studio; http://www.pathwaystudio.com), about 67.04%
of the obesity-genes (358 out of 534 genes) have not been reported to have an association
with TC. Thus, we tested the expression changes of these 358 genes in the case of TC.

Mega-analysis results
There were five genes (i.g., FABP4, CFD, GHR, TNFRSF11B, and LTF) passed the
significance criteria (p-value < 10−7 and abs (LFC)>1), which were provided in Table 2.
We presented the mega-analysis results of all obesity-regulated genes in Obesity_TC
→Mega_Analysis. There were four other genes (TMEM173, PLA2G7, SOD3, and AGTR1)
that showed less significance (p-value < 7.08e−6) but also with a big change in terms of
LFC (abs (LFC)>1).However, the discussion and analysis here were focused on the five
genes that passed the significance criteria. The LFCs of the genes were estimated from
the majority of the studies: 15 out of 16 studies. Notably, the Random-effects model was
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Table 2 Significant Obesity-genes frommega-analysis for TC.

Gene name FABP4 CFD GHR TNFRSF11B LTF

Using random effects model 0 1 1 0 0
#Study 15 15 15 15 15
Effect size (LFC) −1.83 −1.79 −1.70 −1.50 −1.44

Mega-analysis
Results

p-value 6.4E−09 2.03E−08 3.61E−09 3.24E−09 4.17E−09
nSample 0.22 0.078 0.53 0.11 0.0012
Country 0.0019 1.01E−05 2.24E−05 0.033 0.029MLR Results
StudyAge 0.46 0.94 0.98 0.37 0.14

used for CFD and GHR, and the fixed-effect model was selected for FABP4, TNFRSF11B,
and LTF. MLR results showed that the age of studies and the sample sizes presented no
significant influence on the effect size (LFC) of all five genes except LTF (p-value > 0.05),
but the sample’s population region (country) was a significant factor for all of them (p-value
< 0.033, Table 2).

Literature-based pathway analysis
To explore the functional association between the five obesity-regulated molecules and
TC, we conducted a literature-based functional network analysis and presented in Fig. 1
the identified pathways. Results showed that genes GHP, TNFRSF11B, and LTF could be
inhibitors of TC, through the stimulation of TC inhibitors or deactivation of TC promoters.
In the case of obesity, the activity of these molecules was suppressed. On the contrary,
CFD and FABP4 were suggested as two facilitators of the pathological development of TC.
CFD stimulates INS, which is a promoter of TC. FABP4 inhibits three TC suppressors,
including BCL2, PTEN, and PPARG. Notably, obesity activates these two molecules. The
pathways revealed in Fig. 1 suggested possible mechanisms of the TC-promoting effect of
obesity. For the supporting references of the relationships presented in Fig. 1, please refer
to TC_Obsesity→ShortestPath.

GSEA results
To understand the functional profile of the 14 genes involved in the pathways presented
in Fig. 1, we conducted a GSEA against GO terms and Pathway Studio Pathways
(http://www.pathwaystudio.com) and presented the top 10 results in Table 3. The full list
of 31 pathways/GO terms enriched with p-value < 0.005 (q= 0.005 for FDR correction)
has been listed in TC_Obsesity→GSEA. Notably, all the 14 genes were involved in the 31
pathways, and 12 out of 14 were included in the top 10 pathways.

Based on the GSEA results, we analyzed the connection of the five potential TC-genes
and nine of their targets presented in Fig. 1, in terms of their shared pathways, as shown
in Fig. 2. The number in a cell represents the number of shared pathways/GO terms by
the two corresponding genes, and a number on the diagonal represents the number of
pathways enriched by the specific gene. As shown in Fig. 2, most of these molecules play
roles together with other molecules in multiple pathways, indicating they were functionally
connected.
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Figure 1 The potential pathways connecting the five obesity-regulated genes and thyroid cancer.
Full-size DOI: 10.7717/peerj.9302/fig-1

Table 3 The top 10 enriched pathways/GO terms by the 14 genes in regulating pathway identified in Fig. 1.

Name GO ID # of
Entities

Overlap Overlapping entities FDR
corrected
p-value

Regulation of growth 0040008 887 8 PPARG;BCL2;PTEN;GHR;
INS;CXCL12;TGFBR2; EP300

0.00028

Response to estrogen 0043627 155 5 PPARG;TGFBR2;EP300;
TNFRSF11B;BCL2

0.00028

Leukocyte activation 0045321 991 8 BCL2;INS;CHI3L1;CFD;
CXCL12;LTF;TGFBR2; EP300

0.00028

Positive regulation of growth 0045927 354 6 INS;BCL2;CXCL12;
TGFBR2;EP300;GHR

0.00028

Response to nutrient levels 0031667 730 7 PPARG;BCL2;PTEN;GHR;
TNFRSF11B;INS;TGFBR2

0.00052

Response to extracellular stimulus 0009991 761 7 PPARG;BCL2;PTEN;GHR;
TNFRSF11B;INS;TGFBR2

0.00052

Regulation of developmental growth 0048638 445 6 BCL2;PTEN;CXCL12;GHR;
TGFBR2;EP300

0.00052

Response to glucose 0009749 219 5 INS;BCL2;PTEN;TGFBR2; EP300 0.00052
Response to alcohol 0097305 460 6 PPARG;BCL2;PTEN;GHR;

TGFBR2;EP300
0.00052

Response to hexose 0009746 227 5 INS;BCL2;PTEN;TGFBR2; EP300 0.00052
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Figure 2 Heat map of the shared pathways by the five potential TC-genes and nine of their targets. The
number in a cell represents the number of shared pathways/GO terms by the two corresponding genes.

Full-size DOI: 10.7717/peerj.9302/fig-2

DISCUSSION
In this study, we attempted to explore the mechanism underlying the TC-promoting effect
of obesity at the genetic level. Towards this purpose, we first used the knowledge-based
algorithms to analyze disease-gene relation data and reveal 176 obesity-regulated genes.
Identified genes were also related to TC and utilized to build a common background at
the genetic level for the etiology of both obesity and TC. We also uncovered 358 obesity-
regulated genes that have not been implicated with TC. To test the potential connection
between each of the 358 obesity-regulated genes and TC, we queried and selected the
qualified TC-RNA expression datasets from GEO (https://www.ncbi.nlm.nih.gov/geo/),
then we conducted a mega-analysis. Five genes were suggested as novel targets for the
development of TC, including FABP4, CFD, GHR, TNFRSF11B, and LTF (see Table 2;
p-value < 10−7 and LFC <−1.44).

Notably, we used log fold change (LFC) instead of original expression levels for the
mega-analysis, which was calculated as the expression levels of the expression level of
TC patients over the mean of the expression level of healthy controls, followed by log2
transformation. We assume that, within the same dataset, patients and controls shared
a similar background. Thus, by using the LFC, the influence of the background noise
was minimized. In addition, we conducted a heterogeneity test for each gene, and a
random-effects model was used in the case there was a significant between-study variance
such that the study-specific expression variances were taken into account.
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FABP4 encodes the fatty acid binding proteins that bind long-chain fatty acids and
other hydrophobic ligands. The roles of FABPs include fatty acid uptake, transport,
and metabolism (Furuhashi et al., 2015). FABP4 has been showed to induce proteasome
degradation of PPAR γ (Nishina et al., 2017), and decrease the expression of PTEN (Jin et
al., 2018) and BCL2 (Yao et al., 2015). Reduced expression of PPAR γ , PTEN, and BCL2
family proteins have been shown to play critical roles in the pathologic development TC
(Copland et al., 2006; Leonardi et al., 2012; Gunda et al., 2017). These pathways in Fig. 1
suggested FABP4 as a facilitator of the development of TC through the down-regulation
of its inhibitors.

CFD encoded protein adipsin that stimulates the secretion of insulin (Lo et al., 2014),
which has been suggested to play roles in the proliferation of TC cells by promoting insulin-
like growth factor (Oberman et al., 2015). Therefore, CFD could be a direct promoter of
TC. Add together the fact of increased protein levels of FABP4 and CFD in obese patients
(Cabré et al., 2012; Kwon et al., 2012) could partially explain the contribution of obesity to
TC.

On the contrary, pathways analysis suggested GHP, TNFRSF11B, and LTF as potential
TC inhibitors (Fig. 1). It has been shown that GHP inhibits the expression of PD-1 (Zhou
et al., 2017), which is a TC treatment target (Bi et al., 2019). TNFRSF11B stimulates the
secretion of CXCL12 (Benslimane-Ahmim et al., 2011), which was suggested to contribute
to TC development by regulating cancer cell migration and invasion (Zhang et al., 2017).
Finally, the reduced TGF-beta Type-II receptor (TGFBR2) mRNA was shown to play a
role in the pathogenesis of papillary TC (Matoba et al., 1998), while LTF interacts with
TGFBR2 to activate TGF-β signaling and initiates the formation of TbRIII:TbRII:TbRI
complex (Jang et al., 2015). Thereby, decreased levels of GHP, TNFRSF11B, and LTF in
obesity could facilitate the pathologic development of TC.

GSEA analysis showed that the five genes (FABP4, CFD, GHR, TNFRSF11B, and LTF)
and nine of the downstream target genes mainly played roles in the cell growth related
signaling pathways (Table 3). Notably, all these five genes regulate the insulin (INS) levels
positively or negatively, while INS level was related to proliferation and carcinogenesis
of TC cells (Oberman et al., 2015; Malaguarnera et al., 2017). Our results suggested that
obesity may partially affect the pathologic development of TC through its influence on the
INS levels.

Moreover, these genes demonstrated a robust functional connection in terms of shared
common pathways (Fig. 2). The relationship between TC and the nine target genes (INS,
BCL2, PTEN, PPARG, PDCD1, CXCL12, EP300, TGFBR2, andCHI3L1) were supported by
previous studies (see TC_Obesity→ShortestPath), which supports the potential association
between the five obesity-regulated genes (FABP4, CFD, GHR, TNFRSF11B, and LTF) and
TC.

Nevertheless, this study has several limitations that can be addressed in the future
work. First, the connections between the TC and the five obesity genes were suggested by
mega-analysis and explored by literature-based pathways analysis. Biologic experiments
are needed to test these relationships. Second, due to the lack of space, the discussion was
focused on the five genes that passed the significance criteria in themega-analysis. However,
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more genes with less significance may also be worthy of inspection (e.g., TMEM173,
PLA2G7, SOD3, and AGTR1). Third, further validation of the relationships between the
five target genes, insulin, TC, and obesity, can be done using other tools and data sources
(e.g., Hetionet v1.0; https://neo4j.het.io/browser/).

CONCLUSIONS
Using the system biology approach, we mined a set of genes influenced by obesity to
uncover five genes (FABP4, CFD, GHR, TNFRSF11B, and LTF) as previously unrecognized
contributors to the development of TC. An analysis of functional network built upon these
genes points towards INS as a remarkable bridging factor connecting obesity and TC.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Jiaming Chen performed the experiments, analyzed the data, prepared figures and/or
tables, and approved the final draft.
• Hongbao Cao and Meng Lian conceived and designed the experiments, authored or
reviewed drafts of the paper, and approved the final draft.
• Jugao Fang conceived and designed the experiments, prepared figures and/or tables, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw data is available as Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.9302#supplemental-information.

REFERENCES
Benslimane-Ahmim Z, Heymann D, Dizier B, Lokajczyk A, Brion R, Laurendeau I,

Bièche I, Smadja DM, Galy-Fauroux I, Colliec-Jouault S, Fischer AM, Boisson-
Vidal C. 2011. Osteoprotegerin, a new actor in vasculogenesis, stimulates en-
dothelial colony-forming cells properties. Journal of Thrombosis and Haemostasis
9(4):834–843 DOI 10.1111/j.1538-7836.2011.04207.x.

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.9302 9/12

https://peerj.com
https://neo4j.het.io/browser/
http://dx.doi.org/10.7717/peerj.9302#supplemental-information
http://dx.doi.org/10.7717/peerj.9302#supplemental-information
http://dx.doi.org/10.7717/peerj.9302#supplemental-information
http://dx.doi.org/10.1111/j.1538-7836.2011.04207.x
http://dx.doi.org/10.7717/peerj.9302


Bi Y, Ren X, Bai X, Meng Y, Luo Y, Cao J, Zhang Y, Liang Z. 2019. PD-1/PD-L1 expres-
sions in medullary thyroid carcinoma: clinicopathologic and prognostic analysis
of Chinese population. European Journal of Surgical Oncology 45(3):353–358
DOI 10.1016/j.ejso.2018.10.060.

Cabré A, Babio N, Lázaro I, Bulló M, Garcia-Arellano A, Masana L, Salas-Salvadó J.
2012. FABP4 predicts atherogenic dyslipidemia development. The PREDIMED
study. Atherosclerosis 222(1):229–234 DOI 10.1016/j.atherosclerosis.2012.02.003.

Copland JA, Marlow LA, Kurakata S, Fujiwara K,Wong AK, Kreinest PA,Williams SF,
Haugen BR, Klopper JP, Smallridge RC. 2006. Novel high-affinity PPARgamma
agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid
carcinoma tumor growth via p21WAF1/CIP1. Oncogene 25(16):2304–2317
DOI 10.1038/sj.onc.1209267.

Engeland A, Tretli S, Akslen LA, Bjørge T. 2006. Body size and thyroid cancer in two
million Norwegian men and women. British Journal of Cancer 95(3):366–370
DOI 10.1038/sj.bjc.6603249.

Furuhashi M, Saitoh S, Shimamoto K, Miura T. 2015. Fatty Acid-Binding Protein 4
(FABP4): pathophysiological insights and potent clinical biomarker of metabolic and
cardiovascular diseases. Clinical Medicine Insights: Cardiology 8(Suppl 3):23–33.

Gunda V, Sarosiek KA, Brauner E, Kim YS, Amin S, Zhou Z, Letai A, Parangi S. 2017.
Inhibition of MAPKinase pathway sensitizes thyroid cancer cells to ABT-737 induced
apoptosis. Cancer Letters 395:1–10 DOI 10.1016/j.canlet.2017.02.028.

Hard GC. 1998. Recent developments in the investigation of thyroid regulation and
thyroid carcinogenesis. Environmental Health Perspectives 106(8):427–436.

Iyengar NM, Brown KA, Zhou XK, Gucalp A, Subbaramaiah K, Giri DD, Zahid H,
Bhardwaj P, Wendel NK, Falcone DJ, Wang H,Williams S, PollakM,Morrow
M, Hudis CA, Dannenberg AJ. 2017.Metabolic obesity, adipose inflammation
and elevated breast aromatase in women with normal body mass index. Cancer
Prevention Research 10(4):235–243 DOI 10.1158/1940-6207.CAPR-16-0314.

Jang YS, Seo GY, Lee JM, Seo HY, Han HJ, Kim SJ, Jin BR, KimHJ, Park SR, Rhee
KJ, KimWS, Kim PH. 2015. Lactoferrin causes IgA and IgG2b isotype switching
through betaglycan binding and activation of canonical TGF-β signaling.Mucosal
Immunology 8(4):906–917 DOI 10.1038/mi.2014.121.

Jin J, Zhang Z, Zhang S, Chen X, Chen Z, Hu P,Wang J, Xie C. 2018. Fatty acid binding
protein 4 promotes epithelial-mesenchymal transition in cervical squamous cell
carcinoma through AKT/GSK3β/snail signaling pathway.Molecular and Cellular
Endocrinology 461:155–164 DOI 10.1016/j.mce.2017.09.005.

Kitahara CM, Platz EA, Freeman LE, Hsing AW, Linet MS, Park Y, Schairer C,
Schatzkin A, Shikany JM, Berrington de González A. 2011. Obesity and thyroid
cancer risk among U.S men and women: a pooled analysis of five prospective studies.
Cancer Epidemiology, Biomarkers & Prevention 20(3):464–472
DOI 10.1158/1055-9965.EPI-10-1220.

Kwon EY, Shin SK, Cho YY, Jung UJ, Kim E, Park T, Park JH, Yun JW,McGregor
RA, Park YB, Choi MS. 2012. Time-course microarrays reveal early activation

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.9302 10/12

https://peerj.com
http://dx.doi.org/10.1016/j.ejso.2018.10.060
http://dx.doi.org/10.1016/j.atherosclerosis.2012.02.003
http://dx.doi.org/10.1038/sj.onc.1209267
http://dx.doi.org/10.1038/sj.bjc.6603249
http://dx.doi.org/10.1016/j.canlet.2017.02.028
http://dx.doi.org/10.1158/1940-6207.CAPR-16-0314
http://dx.doi.org/10.1038/mi.2014.121
http://dx.doi.org/10.1016/j.mce.2017.09.005
http://dx.doi.org/10.1158/1055-9965.EPI-10-1220
http://dx.doi.org/10.7717/peerj.9302


of the immune transcriptome and adipokine dysregulation leads to fibrosis in
visceral adipose depots during diet-induced obesity. BMC Genomics 13:450
DOI 10.1186/1471-2164-13-450.

Leonardi GC, Candido S, CarboneM, Colaianni V, Garozzo SF, Cinà D, Libra M. 2012.
microRNAs and thyroid cancer: biological and clinical significance (review). Interna-
tional Journal of Molecular Medicine 30(5):991–999 DOI 10.3892/ijmm.2012.1089.

Lian X, Baranova A, Ngo J, Yu G, Cao H. 2019. UGT2B17 and miR-224 contribute to
hormone dependency trends in adenocarcinoma and squamous cell carcinoma of
esophagus. Bioscience Reports 39(7):BSR20190472 DOI 10.1042/BSR20190472.

Liu Z, Brooks RS, Ciappio ED, Kim SJ, Crott JW, Bennett G, Greenberg AS, Ma-
son JB. 2012. Diet-induced obesity elevates colonic TNF-α in mice and is
accompanied by an activation of Wnt signaling: a mechanism for obesity-
associated colorectal cancer. Journal of Nutritional Biochemistry 23(10):1207–1213
DOI 10.1016/j.jnutbio.2011.07.002.

Liu D, Cao H, Kural KC, Fang Q, Zhang F. 2019. Integrative analysis of shared genetic
pathogenesis by autism spectrum disorder and obsessive-compulsive disorder.
Bioscience Reports 39(12):BSR20191942 DOI 10.1042/BSR20191942.

Lo JC, Ljubicic S, Leibiger B, KernM, Leibiger IB, Moede T, Kelly ME, Chatterjee
Bhowmick D, Murano I, Cohen P, Banks AS, Khandekar MJ, Dietrich A, Flier
JS, Cinti S, Blüher M, Danial NN, Berggren PO, Spiegelman BM. 2014. Adipsin
is an adipokine that improves β cell function in diabetes. Cell 158(1):41–53
DOI 10.1016/j.cell.2014.06.005.

Malaguarnera R, Vella V, Nicolosi ML, Belfiore A. 2017. Insulin resistance: any role
in the changing epidemiology of thyroid cancer? Frontiers in Endocrinology 8:314
DOI 10.3389/fendo.2017.00314.

Matoba H, Sugano S, Yamaguchi N, Miyachi Y. 1998. Expression of transforming
growth factor-beta1 and transforming growth factor-beta Type-II receptor mRNA
in papillary thyroid carcinoma. Hormone and Metabolic Research 30(10):624–628
DOI 10.1055/s-2007-978946.

Meinhold CL, Ron E, Schonfeld SJ, Alexander BH, Freedman DM, Linet MS, Berring-
ton de González A. 2010. Nonradiation risk factors for thyroid cancer in the U.S.
Radiologic Technologists Study. American Journal of Epidemiology 171(2):242–252
DOI 10.1093/aje/kwp354.

Nannipieri M, Cecchetti F, AnselminoM, Camastra S, Niccolini P, Lamacchia M,
Rossi M, Iervasi G, Ferrannini E. 2009. Expression of thyrotropin and thyroid
hormone receptors in adipose tissue of patients with morbid obesity and/or type
2 diabetes: effects of weight loss. International Journal of Obesity 33(9):1001–1006
DOI 10.1038/ijo.2009.140.

Nishina A, Itagaki M, Sato D, Kimura H, Hirai Y, Phay N, MakishimaM. 2017. The
rosiglitazone-like effects of vitexilactone, a constituent from Vitex trifolia L. in 3T3-
L1 preadipocytes.Molecules 22(11):E2030 DOI 10.3390/molecules22112030.

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.9302 11/12

https://peerj.com
http://dx.doi.org/10.1186/1471-2164-13-450
http://dx.doi.org/10.3892/ijmm.2012.1089
http://dx.doi.org/10.1042/BSR20190472
http://dx.doi.org/10.1016/j.jnutbio.2011.07.002
http://dx.doi.org/10.1042/BSR20191942
http://dx.doi.org/10.1016/j.cell.2014.06.005
http://dx.doi.org/10.3389/fendo.2017.00314
http://dx.doi.org/10.1055/s-2007-978946
http://dx.doi.org/10.1093/aje/kwp354
http://dx.doi.org/10.1038/ijo.2009.140
http://dx.doi.org/10.3390/molecules22112030
http://dx.doi.org/10.7717/peerj.9302


Oberman B, Khaku A, Camacho F, Goldenberg D. 2015. Relationship between obe-
sity, diabetes and the risk of thyroid cancer. American Journal of Otolaryngology
36(4):535–541 DOI 10.1016/j.amjoto.2015.02.015.

Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. 2007. The epidemiology of obesity.
Gastroenterology 132(6):2087–2102 DOI 10.1053/j.gastro.2007.03.052.

Oh SW, Yoon YS, Shin SA. 2005. Effects of excess weight on cancer incidences depend-
ing on cancer sites and histologic findings among men: Korea National Health
Insurance Corporation Study. Journal of Clinical Oncology 23(21):4742–4754
DOI 10.1200/JCO.2005.11.726.

Ozgen AG, Karadeniz M, ErdoganM, Berdeli A, Saygili F, Yilmaz C. 2009. The (-174)
G/C polymorphism in the interleukin-6 gene is associated with risk of papillary
thyroid carcinoma in Turkish patients. Journal of Endocrinological Investigation
32(6):491–494 DOI 10.1007/BF03346494.

Park JW, Han CR, Zhao L,WillinghamMC, Cheng SY. 2016. Inhibition of STAT3
activity delays obesity-induced thyroid carcinogenesis in a mouse model. Endocrine-
related Cancer 23(1):53–63.

Stassi G, TodaroM, Zerilli M, Ricci-Vitiani L, Di Liberto D, Patti M, Florena A, Di Gau-
dio F, Di Gesù G, DeMaria R. 2003. Thyroid cancer resistance to chemotherapeutic
drugs via autocrine production of interleukin-4 and interleukin-10. Cancer Research
63(20):6784–6790.

Wolin KY, Carson K, Colditz GA. 2010. Obesity and cancer. Oncologist 15(6):556–565
DOI 10.1634/theoncologist.2009-0285.

Yao F, Li Z, Ehara T, Yang L,Wang D, Feng L, Zhang Y,Wang K, Shi Y, Duan H,
Zhang L. 2015. Fatty Acid-Binding Protein 4 mediates apoptosis via endoplasmic
reticulum stress in mesangial cells of diabetic nephropathy.Molecular and Cellular
Endocrinology 411:232–242 DOI 10.1016/j.mce.2015.05.003.

Zhang S,Wang Y, ChenM, Sun L, Han J, Elena VK, Qiao H. 2017. CXCL12
methylation-mediated epigenetic regulation of gene expression in papillary thyroid
carcinoma. Scientific Reports 7:44033 DOI 10.1038/srep44033.

Zhang G,WangW, HuangW, Xie X, Liang Z, Cao H. 2019. Cross-disease analysis
identified novel common genes for both lung adenocarcinoma and lung squamous
cell carcinoma. Oncology Letters 18(4):3463–3470.

Zhao ZG, Guo XG, Ba CX,WangW, Yang YY,Wang J, Cao HY. 2012. Overweight, obe-
sity and thyroid cancer risk: a meta-analysis of cohort studies. Journal of International
Medical Research 40(6):2041–2050 DOI 10.1177/030006051204000601.

ZhouM, YangWL, Aziz M, Ma G,Wang P. 2017. Therapeutic effect of human ghrelin
and growth hormone: attenuation of immunosuppression in septic aged rats.
Biochimica et Biophysica Acta—Molecular Basis of Disease 1863(10 Pt B):2584–2593
DOI 10.1016/j.bbadis.2017.01.014.

Chen et al. (2020), PeerJ, DOI 10.7717/peerj.9302 12/12

https://peerj.com
http://dx.doi.org/10.1016/j.amjoto.2015.02.015
http://dx.doi.org/10.1053/j.gastro.2007.03.052
http://dx.doi.org/10.1200/JCO.2005.11.726
http://dx.doi.org/10.1007/BF03346494
http://dx.doi.org/10.1634/theoncologist.2009-0285
http://dx.doi.org/10.1016/j.mce.2015.05.003
http://dx.doi.org/10.1038/srep44033
http://dx.doi.org/10.1177/030006051204000601
http://dx.doi.org/10.1016/j.bbadis.2017.01.014
http://dx.doi.org/10.7717/peerj.9302

