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C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning
on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum
transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on
preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical
instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image
registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation,
and Mutual Information combined with three optimization methods including Powell’s method, Downhill simplex algorithm,
and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results
show that the combination of Normalized Cross-Correlationmeasuremethod with Downhill simplex algorithm obtains maximum
correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the
experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22mm. The success rate is
approximately 90% and average registration time takes 16 seconds.

1. Introduction

Conventionally, spinal surgery, especially minimally invasive
spinal surgery, usually requires taking numerous C-Arm
images to confirm that the positioning of surgical instru-
ments is correct and safe, which leads to medical persons’
high risk of radiation exposure [1]. C-Arm image-assisted
surgical navigation system has been broadly applied to ortho-
pedic surgery becauseC-Armmachine is commonly available
for orthopedic surgery and registration between C-Arm
images and the patient is automatic.Moreover, C-Arm image-
assisted surgical navigation system needs only two C-Arm
images taken in different angles to determine spatial target
positions, which significantly reduces X-ray exposure dosage
[2–5]. In recent years, using an image-assisted navigation
system for spinal surgery has become a trend [3, 6, 7].

However, 2D C-Arm images lack 3D spatial information.
Accurate path planning on the C-Arm AP-view image is
difficult [6]. On the contrary, 3D CT images provide 3D
anatomic information, which enables easy and safe path
planning for spinal surgery. Therefore, path planning on CT
images and guidance of surgical tools by C-Arm images are
a good idea to integrate their advantages if C-Arm and CT
images are registered accurately. This research evaluates the
performance of several 2D-3D image registrationmethods to
obtain the optimum transformation matrix between C-Arm
and CT image frames and thus surgical paths planned on the
CT images can be mapped onto the C-Arm images.

Among the known 2D-3D image registration methods,
Markelj et al. [6] divided the existing rigid registration meth-
ods for 2D and 3Dmedical images into three types according
to the data volume of image features, which are feature-based
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Figure 1: The self-developed C-Arm image-assisted surgical navi-
gation system.

[8–10], gradient-based [2, 11], and intensity-based [1, 12–14].
Also, based on the image dimension and spatial connection,
there are three registration methods for 2D C-Arm and 3D
CT images: (1) the projection algorithm, which transforms a
3D image into 2D space for 2D-2D registration; (2) the back-
projection algorithm; and (3) the 3D reconstruction algo-
rithm, which transforms a 2D image into 3D space for 3D-
3D registration [6]. Bymaximizing the similarity of the image
contour, image gradient, or image gray scale, the registration
result can coordinate the spatial locations of corresponding
points on the two images.

2D-3D image registration aims to complete an accurate
registration process within a short time, in order to improve
the practicability in clinical operations. The accuracy of
feature-based registration directly depends on the accuracy
of segmentation, and it is therefore difficult to perform fully
automatically. Gradient-based registration usually calculates
complex and difficult convergences, while intensity-based
registration operates the pixel intensity directly, without
segmenting the target image to seek a corresponding feature
point. This study evaluated the accuracy and time consump-
tion of various methods and proposed the optimum 2D-3D
image registrationmethod for rapid and accurate registration
of CT andC-Arm images.The aim of this research is to enable
the self-developed C-Arm image-assisted navigation system
to be practicable to minimally invasive spinal surgery.

2. Material and Methods

2.1. The C-Arm Image-Assisted Surgical Navigation System.
Figure 1 shows the self-developed C-Arm image-assisted
surgical navigation system, which integrates Polaris Spectra
passive optic tracker (Northern Digital Inc.) and a notebook
with Intel CPU and an extra monitor to provide real-time
display of navigation status. The optic tracker detects the
positions and orientations of surgical tools, the spine, and
the image calibrator attached on the C-Arm through the
Dynamic Reference Frames (DRF). The double-deck image
calibrator with feature markers (steel balls of different sizes)
on up-deck and down-deck is designed for correction of X-
ray image distortion and determination of the spatial position
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Figure 2: The X-ray projection model.

of X-ray emission source at the time of image taken. Figure 2
illustrates the X-ray projectionmodel defined by the position
of the X-ray emission source and C-Arm image plane. The
position of the X-ray emission source can be determined by
finding the intersection of the projection lines passing though
the up-deck steel makers of the image calibrator and their
corresponding projection images.

Figure 3 shows an example of the C-Arm AP- and LA-
view images. Ideally, C-Arm image-assisted surgical naviga-
tion system uses AP- and LA-view images to calculate the
spatial location of the target point.The spatial position of any
feature (target) point of the spine can be calculated by finding
the intersection of the X-ray projection lines passing through
the projection point of the feature point on each of the two C-
Arm images. Further, the surgeonmay plan a surgical path by
selecting the projection points of the start point and end point
of the path on each of the two C-Arm images.The navigation
system will automatically calculate the spatial position and
orientation of the surgical path. Under the real-time posi-
tioning guidance of the navigation system, the surgeon will
be able to move surgical instruments tracked by the optic
tracker to the planned surgical path. Since only two C-Arm
images are needed for surgical planning and guidance, the
risk of radiation exposure is reduced significantly compared
to that of conventional surgery. Moreover, the surgeon will
have more confidence in positioning surgical instruments
and pedicle screws into the pedicle, and thus surgical quality
can be improved [3].

SinceC-Arm images are projective andwith lack of spatial
position information, it is difficult to plan surgical paths onC-
Arm images. Instead, path planning in 3D CT reconstructed
model is easy and accurate. Therefore, it is recommended to
do path planning on 3D CT model and then transform the
planned path onto the C-Arm images. This enables easy and
safe path planning on the CT images and guidance of surgical
tools by C-Arm images.

2.2. 2DC-Arm and 3DCTRegistration. In order to transform
the surgical path planned on CT images into the C-Arm
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images, 2D C-Arm and 3D CT registration is needed. The
registration is to iteratively position the 3D CT model so
that its Digital Reconstructed Radiograph (DRR) images and
the C-Arm AP- and LA-view images have the highest image
similarity. Figure 4 shows the flowchart of the registration
procedure including the following: (1) reconstructing 3D CT

model; (2) calibrating C-Arm images and generating X-ray
projection model of the C-Arm; (3) initial registration of C-
Arm and CT images; (4) using CUDA to accelerate the DRR
(Digital Reconstructed Radiograph) image construction; (5)
calculating the similarity of C-Arm and DRR images and
performing the optimization approach of registration.
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Figure 5: A reconstructed 3D CT spine model with axial, coronal,
and sagittal views.

As shown in Figure 5, the 3D CT spine model is recon-
structed by using marching cube algorithm [15]. The axial-,
sagittal-, and coronal-view images are also generated for
surgical path planning. The C-Arm AP- and LA-view images
are taken, captured, and calibrated during the operation
and the C-Arm X-ray projection model is constructed by
the X-ray emission source and image plane, and the spatial
geometry of the images is constructed using the biplanar
method as shown in Figure 3. Three corresponding feature
points on the 3D CT model and 2D C-Arm images are
selected and used for initial registration between the CT
model and the C-Arm images. Then, accurate registration is
carried out by optimizing the similarity of the DRR and C-
Arm images. This study used the intensity-based method for
the 2D-3D image registration, which included the following
three steps: (1) generating the DRR image according to the
current pose of theCTmodel and the region of interest to save
computing time; (2)measuring the similarity between the C-
Arm andDRR images; (3) using the optimization approach to
adjust the pose of the CTmodel iteratively, in order to obtain
the optimum similarity of the C-Arm and DRR images; and
(4) determining the transformation matrix between the CT
and C-Arm image frames.

2.3. The Digital Reconstructed Radiograph (DRR). The image
gray level is positive proportional to the logarithm of received
X-ray intensity. According to X-ray principle, the X-ray
intensity projected onto an image plane can be calculated by

𝐼 (𝑢, V) = 𝐼0 exp(−∫
𝑟(𝑢,V)
𝜇 (𝑥, 𝑦, 𝑧) 𝑑𝑟) , (1)

where 𝐼
0
is the initial X-ray intensity, 𝐼(𝑢, V) is the X-ray

intensity received at position (𝑢, V) of the C-Arm image plane,
and 𝜇(𝑥, 𝑦, 𝑧, 𝐸eff ) is the X-ray attenuation coefficient of the
tissue at the position (𝑥, 𝑦, 𝑧).

For a voxel of CT images, its attenuation coefficient is
positively related to its CT number or Hounsfield Units
(HU). Therefore, the grey level of the DRR image pixel is
determined based on the summation of CT numbers of the
CT voxels passing through by the X-ray. In this study, ray
casting method is selected to generate DRR images. The ray
is determined by the X-ray emission source and a pixel of the
C-Arm X-ray image plane. Also the ray has to pass through
the ROI bounding box of the 3D CT spine model to save
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Figure 6: The ray-tracing projection model of DRR image.

computermemory and computing time as shown in Figure 6.
The accumulation of Hounsfield Units of all voxels passing
through by the X-ray has linear relation with the DRR image
grey level and is assigned to the range of 0∼255.

The generation of a DRR image costs a lot of time,
and thus the related optimization process of registration is
time consuming, too. To accelerate the DRR reconstruction
process, the parallel program development environment of
Nvidia CUDA (GTX570 with 480 CUDA cores) is applied so
that the projecting pose of CT spine model can be modified
effectively to optimize the similarity of the C-Arm and DRR
images rapidly, so as to enhance clinic practicability [16, 17].
An example to test the performance of the CUDA accelerator
in generating DRR image from a set of 200 CT images has
been done.The resolution of each CT image has a dimension
of 512 × 512 pixels, while the DRR image size is set to be 470 ×
470 pixels. The computing time of using NVIDIA GTX570
CUDA accelerator is 0.051 seconds while that of only using
Intel CPU@2.4GHz is 106.7 seconds. The performance of
CUDA accelerator is significant.

Since aDRFwill be clamped on the spinal process or other
instruments such as retractors will be used during spinal
surgery, their metal properties will produce dark images on
the C-Arm images and so influence the robust and accuracy
of image similarity measure. Here, we propose to copy the
same image of the DRF or instrument into the DRR images
so both C-Arm andDRR images will have same noisy images.
An example is shown in Figure 7. Figures 7(a) and 7(d) are the
AP- and LA-view images, respectively, with the DRF clamper
within the C-Arm image areas. The instrument images are
segmented by using region growth algorithm as shown in
Figures 7(b) and 7(e).The segmented images are added to the
C-Arm image areas to generate the masks of Figures 7(c) and
7(f), which are added to the corresponding C-Arm and DRR
images as shown in Figure 8 to generate effective images with
the same noisy images for accurate image similarity measure.

2.4. Experiment of Optimum Registration. To have the opti-
mum registration or transformation matrix between the C-
Arm and CT images, optimization method is applied to
iteratively estimate the pose (three translations and three
rotations) of the CT model so that the image similarity of
the DRR and C-Arm images will be best. In this study, three
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Figure 7: (a) Original AP-view image. (b) Segmentation of the instrument. (c) The mask for AP-view DRR image. (d) Original LA-view
image. (e) Segmentation of the instrument. (f) The mask for LA-view DRR image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: (a) Original AP-view image. (b) Effective AP-view image. (c) Original LA-view image. (d) Effective LA-view image. (e) Original
AP-view DRR image. (f) Effective AP-view DRR image. (g) Original LA-view DRR image. (h) Effective LA-view DRR image.
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(a) (b)

Figure 9: (a) The vertebra phantom with fiducial markers and a DRF attached. (b) The reconstructed CT model.

optimization methods are adopted, which are the gradient-
based Powell’s method, the geometric-based downhill sim-
plex algorithm, and probabilistic-based genetic algorithm
[6, 18]. The objective function of optimization is defined as
the similarity measure of the C-Arm and DRR images. Six
similarity measure methods [14] are proposed, which are
Normalized Cross-Correlation (NCC), Gradient Correlation
(GC), Pattern Intensity (PI), Gradient Difference Correlation
(GD), and Mutual Information (MI). Since C-Arm image-
assisted navigation system requires AP- and LA-view images
to determine the spatial position of the target, the image
similarity measure is defined as the average of the two
measures corresponding to AP- and LA-view images.

This experiment aimed to evaluate the registration effi-
ciency and accuracy of the fifteen combinations of the three
optimizations approaches with the five similarity measure
methods. The vertebra phantom used in the experiment is
a saw bone model with spherical fiducial markers attached
as shown in Figure 9(a). It was scanned by a Siemens
Somatom Sensation 16 Multislice CT with a resolution of
0.46mm× 0.46mm× 0.7mm (pixel size 512× 512, 400 slices)
and shot by a GE OEC 7700 C-Arm with 9󸀠󸀠 image plane
as shown in Figure 1. Figure 9(b) shows its reconstructed
CT model. The DRR images were constructed by ray-casting
algorithm due to its better image quality. Since the vertebra
phantom is deformable, only single body was selected as the
ROI for registration. The average time spent on the DRR
image construction by using theCUDAaccelerator was about
0.01 s.

The spatial coordinates of the fiducial markers are mea-
sured by the optic tracker while their image coordinates
are detected from the CT images through image process.
The transformation matrix between the two coordinate sets
can be determined by using interactive closest point (ICP)
algorithm, which is the ground truth and is defined as 𝑇GT.
Then, the pose estimation of the CT model is down to have
optimum image similarity between the C-Arm and DRR
images.The transformationmatrix of this 2D-3D registration
is defined as 𝑇

2d3d. The two transformation matrixes are used
to define the target registration error (TRE) as

TRE (𝑃, 𝑇2d3d, 𝑇GT) =
󵄩󵄩󵄩󵄩𝑇2d3d𝑃ct −𝑇GT𝑃ct

󵄩󵄩󵄩󵄩 , (2)

Figure 10: The graphic illustration of the registration result of the
seven markers.

where 𝑇2d3d is the transformation matrix obtained by 2D-3D
registration and 𝑃ct is the CT image coordinate of the fiducial
marker.

The root mean square errors of the ICP registration of
seven fiducial markers on a single body are 𝑥 = 0.34mm,
𝑦 = 0.28mm, and 𝑧 = 0.26mm, which is illustrated by
Figure 10.

In the beginning of the optimum registration process,
three visually identical feature points on the same body
were selected from the C-Arm images and CT model, and
the initial registration (or transformation matrix) of the C-
Arm and CT image frames can be determined by using the
coordinates of the three feature points. The purpose is to
enable the control of search range of the six translation and
rotation parameters (𝑇

𝑥
, 𝑇
𝑦
, 𝑇
𝑧
, 𝑅
𝑥
, 𝑅
𝑦
, and 𝑅

𝑧
) to be within

5mm in displacement and 5 degrees in angle relative to the
parameters obtained by the initial registration.

3. Result

Nine sets of the six initial position and orientation parameters
are given randomly for the fifteen combinations of the three
optimizations approaches with the five similarity measure
methods. Figure 11 shows an example of registration result by
visual validation of the DRR image contour overlapping the
original C-Arm image.The displacement errors and registra-
tion time are shown in Figures 12 and 13. The performances
of the Powell method in displacement error (or registration
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Figure 11: Visual validation of single-body registration without instrument (a) and with instrument (b) and superimposed images (c).
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Figure 12: Displacement errors (mm) of fifteen combinations.

accuracy) and the genetic algorithm in registration time were
poor. The downhill simplex algorithm with the NCC simi-
larity measure method showed that the average displacement
error was 0.18 ± 0.02mm and the average angular error
was 0.23 ± 0.05∘. Moreover, the displacement errors and
angular errors of the NCC with any of the three optimization
methods were less than 1mm and 1∘ and the registration
times were between 10 and 21 seconds. It was observed that
the nongradient-based image similarity measuring method
NCC had a much better effect in this study, whereas the
gradient measuring method GC had a worse effect due to
image edge differences and background noise. However, both
NCC and GC methods had better performance than the
other three methods, because the gray levels of the C-Arm
and DRR images were linearly dependent.This image feature
conformed to the similarity measure characteristics of NCC
and GC, meaning that the linear brightness and contrast
variation of the C-Arm and DRR images would not influence
the measure result.
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Figure 13: Registration time (sec) of fifteen combinations.

In order to find out the adaptation of convergence range
of the combination of the downhill simplex optimization
approach with the NCC objective function, four conver-
gence intervals are given by (±5mm, ±5∘); (±10mm, ±10∘);
(±10mm, ±15∘); (±15mm, ±10∘). For each of the intervals,
a total of 40 data sets were sampled randomly. Table 1
lists the small displacement errors (excluding failure) and
large displacement errors (including failure) in the different
convergence ranges, so as to select the appropriate interval of
convergence. It is obvious that the convergence accuracy and
time are positively proportional to the convergence intervals.
The larger the convergence interval is, the more the conver-
gence error and time are. For the reasonable convergence
interval (±10mm, ±10∘), the average displacement error was
0.22 ± 0.01mm, the mean convergence time was 16.18 ± 3.6
seconds, and the success rate was 90%.
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Table 1: Convergence results of different convergence interval.

Convergence
intervals (mm,
degree)

(5, 5) (10, 10) (10, 15) (15, 10)

Displacement
error (mm)

0.21 ± 0.03 0.22 ± 0.01 0.2 ± 0.01 0.19 ± 0.01

Mean
convergence
time (sec)

12.9 ± 2.1 16.18 ± 3.6 17 ± 4.6 18.2 ± 4.9

Success rate of
convergence

100% 90% 75% 72.5%

4. Discussion

C-Arm image-assisted surgical navigation system has been
broadly applied to orthopedic surgery. For spinal surgery,
accurate path planning on the C-Arm AP image is difficult
due to lack of the information about axial view of vertebrae
that is the key in the placement of pedicle screws. Therefore,
the applicability of the C-Arm guided of navigation system
is restricted. 2D C-Arm/3D CT image registration is the
resolution method to improve the weak point about C-
Arm guided of navigation system. A good transformation
matrix depends on rapid and effective 2D C-Arm/3D CT
image registration method between C-Arm and CT image
coordinate frames. Through the transformation matrix, the
preplanned surgical path or implant model on preoperative
CT images can be transformed and displayed real time on
the C-Arm images for surgical guidance. During operation,
the locations of surgical instruments will also be displayed on
both CT and C-Arm images to help the surgeon to precisely
and safely position surgical instruments.

The key in the image-assisted surgical navigation system
is to establish an accurate registration relationship between
the patient and the before-operation CT images during the
operation, in order to implement noninvasive 2D-3D regis-
tration. Among the numerous image registration methods,
Markelj et al. [6] divided the existing rigid registration
methods for 2D images and 3D medical images into three
types according to the data volume of the image features:
feature-based [8–10], gradient-based [2, 11], and intensity-
based [1, 12–14]. In 2D-3D registration, the 2D C-Arm
image and the 3D CT image must be consulted in the
same coordinate system.There are three registrationmethods
for this, according to the image dimensions and positional
connection: (1) the projection algorithm, which converts a
3D image to 2D space via a coordinate system for 2D-2D
registration; (2) the back-projection algorithm; and (3) the
3D reconstruction algorithm, which converts a 2D image to
3D space for 3D-3D registration.The similarity is maximized
bymatching the image contour, image gradient, or image gray
scale of the object. The registration result can coordinate the
spatial location of corresponding points on two images. The
main differences between 2D and 3D registration methods
are in the image dimensions and the image features.

2D-3D registration aims to complete an accurate reg-
istration process within a short time, in order to improve
the practicability in clinical operations. The accuracy of
feature-based registration directly depends on the accuracy
of segmentation, and it is therefore difficult to perform fully
automatically.

Our study compares several methods to find the better
calculated methods for 2D-3D registration. We found that
the performances of the Powell method in displacement
error (or registration accuracy) and the genetic algorithm
in registration time were poor. The downhill simplex algo-
rithm with the NCC similarity measure method showed
better result. The average displacement error of this method
was 0.18 ± 0.02mm and the average angular error was 0.23 ±
0.05
∘. Moreover, the displacement errors and angular errors

of the NCC with any of the three optimization methods
were less than 1mm and 1∘ and the registration times were
between 10 and 21 seconds. The results of our studies show
that the combination of NCC measure method with down-
hill simplex algorithm obtains maximum correlation and
similarity in C-Arm and Digital Reconstructed Radiograph
(DRR) images.

5. Conclusion

This research studies the registration of 2D C-Arm and
3D CT images for an image-assisted navigation system for
spinal surgery. The registration efficiency and accuracy of
the fifteen combinations of three optimization approaches
with five image similarity measure methods are evaluated.
According to the result of our study, this DRR image
was rapidly generated by ray-casting algorithm and CUDA
parallel program development environment. Among the
fifteen combinations for registration, the downhill simplex
optimizationmethodwith theNCC image similaritymeasure
method had shown the best performance in convergence
accuracy and time, which demonstrated the clinic applicabil-
ity of the combination of 3D CT and 2D C-Arm in image-
assisted spinal surgery. The surgical paths can be planned
on 3D CT model, transformed into the C-Arm images, and
guided by the C-Arm assisted navigation system, which add
the spatial information of 3D CT images to the 2D C-Arm
images.
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