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ABSTRACT

Despite massive government and private sector investments into prevention of cardiovascular disease, diabetes mellitus
and obesity, efforts have largely failed, and the burden of cost remains in the treatment of downstream morbidity and
mortality, with overall stagnating outcomes. A new paradigm shift in the approach to these patients may explain why
existing treatment strategies fail, and offer new treatment targets. This review aims to provide a clinician-centred primer
on metabolic memory, defined as the sum of irreversible genetic, epigenetic, cellular and tissue-level alterations that occur
with long-time exposure to metabolic derangements.
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INTRODUCTION

Approximately 45% of the US population suffers from chronic
disease, mainly pulmonary and cardiovascular diseases (CVD),
diabetes mellitus (DM), obesity and cancer, while more than
half of the annual deaths worldwide can be attributable to
chronic conditions [1, 2]. We have moved past failed efforts at
primary prevention to management of downstream morbidity
and mortality, hopefully with detection of early biomarkers of
progression [3].

Engerman and Kern [4], a relatively long time ago, described
that diabetic retinopathy progressed despite good glycaemic
control in dogs and coined the term metabolic memory. Despite
almost 40 years of knowledge that tight glycaemic control does
not completely prevent diabetic complications, we still follow
glycated haemoglobin (HbA1c) to this day, with no better bio-
markers in routine use.

Metabolic memory applies to chronic diseases [4] and
describes microscopic to macroscopic irreversible changes that
occur over time [5].
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Various primary, early, intermediate, late-onset alterations
with genetic and epigenetic interactions play a role in the meta-
bolic memory (Figure 1).

Lead time bias in the natural history of metabolic memory
likely accounts for treatment failures in some patients while
others have better outcomes. As this affects patients seen in the
clinic daily, this report aims to provide a clinician centred
review of metabolic memory.

THE METABOLIC MEMORY OF DM

Diabetes causes more blindness (microvascular), myocardial
infarction (macrovascular), stroke (macrovascular) and renal
failure (microvascular) worldwide than any other disease [6, 7],
and the outcomes of the microvascular complications are not
completely addressed by HbA1c, which is still the main bio-
marker used to follow ‘successful’ diabetes management.
Diabetes does not cause these effects overnight; rather, micro-
vascular damage leads to macrovascular consequences [8].

In a study involving 1441 Type I DM patients undergoing ei-
ther intensive (�3 daily insulin injections adjusted via frequent
glucose monitoring) or conventional therapy (1–2 daily insulin
injections) for a mean duration of 6.5 years, the Diabetes
Complications and Control Trial (DCCT) demonstrated that
delayed onset of microvascular complications, as well as slower
progression, could be achieved via intensive therapy [9, 10] but
the microvascular complications did not reach zero, even with
these unrealistically strict treatment guidelines.

Furthermore, after the study, all patients were placed on in-
tensive therapy, and the group that had received conventional
therapy previously had higher rates of microvascular complica-
tions at 8-year follow-up, 17-year follow-up for CVD and even
22-year follow-up for low glomerular filtration rate. The meta-
bolic memory of the conventional therapy could not be cor-
rected even with the strictest glycaemic control, suggesting that
other treatment strategies must be developed for true

microvascular prevention [11–15]. A separate study including
5102 newly diagnosed persons with Type II DM >10 years had
similar findings [16, 17]. In patients with longstanding poor dia-
betic control, tight glycaemic control slightly improves cardio-
vascular outcomes compared with conventional management,
a disappointing outcome for an intense intervention [18, 19].
Despite the best existing management, patients cannot escape
the fate of their metabolic memory. In the below paragraphs,
we give detailed description of mechanisms including immune
mechanisms, oxidative stress, genetic and epigenetic changes
in relation to tissue damage and pathological findings related to
metabolic memory.

HISTOLOGICAL ALTERATIONS AND IMMUNE
RESPONSE

The histopathological features of diabetic complications, most
typically diabetic nephropathy, are mesangial expansion with
increased extracellular matrix (ECM) production, formation of
Periodic acid–Schiff (PAS) (þ) diffuse thickening of glomerular
basement membrane, effacement of podocyte food processes
and hyaline arteriolosclerosis in both afferent and efferent arte-
rioles of glomeruli and Kimmelstiel–Wilson nodules mostly as a
post-mortem finding [20]. Similar patterns of histopathological
changes are observed in both diabetic neuropathy and retinopa-
thy with the addition of microaneurysm formation and punc-
tate haemorrhages in retinopathy [21]. Expression of fibronectin
and collagen mRNA, two predominant ECM proteins, has been
shown to be significantly higher in human endothelial cells cul-
tured in a hyperglycaemic environment [22, 23]. Elevated ex-
pression persisted after switch to normoglycaemic culture
medium despite multiple cell divisions and replanting while
cells with higher expression levels displayed proliferative ad-
vantage [22]. In addition to changes in ECM production, degra-
dation of ECM is also impaired by hyperglycaemia leading to

Primary alterations
• High plasma glucose
• Dyslipidemia
• High blood pressure
• Poor nutritional status

Genetic and epigenetic alterations

• miRNA and lncRNA
  (i.e. miR-192/200b/200c/216a/217
  and lncRNA CJ241444)
• Histone acetylation and/or deacetylation
  (i.e. H3K9ac)
• DNA hypomethylation and/or
  hypermethylation (i.e. hypomethylation
  at 3’ UTR of TXNIP)

Early onset alterations
Polyol pathway
Protein kinase C pathway
Hexosamine pathway
AGE production
ROS production and
oxidative stress
ER stress and
mitochondrial damage

Intermediate onset
alterations

Production of pro-
inflammatory cytokines
(IL-1β, IL-6, IL-8,
MCP-1 etc.)

• Proliferation of
  inflammatory cells
• Improved T-cell survival
• Monocyte adhesion
• Monocyte-to-macrophage
  differentiation

Late onset alterations

TGFβ1 pathway
mTOR pathway
Akt pathway

FIGURE 1: Triggering factors and mechanisms of development of metabolic memory. ER, endoplasmic reticulum.

Metabolic memory and chronic kidney disease | 757



glycation of mesangial proteins that impair matrix
metalloproteinase-2 (MMP-2), the primary MMP secreted in
mesangium responsible for the degradation of Type IV collagen
[24].

Hyperglycaemia also promotes inflammatory changes in tis-
sues, predominantly via activation of nuclear factor kappa B
(NF-jB) and Toll-like receptor pathways [25]. Changes include
release of inflammatory cytokines [interleukin (IL)-1b, IL-6, IL-8
and monocyte chemoattractant protein (MCP-1)], enhancement
of monocyte-endothelial or vascular smooth muscle cell bind-
ing, monocyte-to-macrophage transition and increased vascu-
lar permeability [26, 27]. Furthermore, hyperglycaemia may
cause premature senescence of various cell types and acceler-
ated cellular ageing processes that may lead to senescence-
associated secretory phenotype that secretes pro-inflammatory
cytokines, leading to a destructive loop. Microbiotic alterations
occur in people with pro-inflammatory cytokine levels and in-
ducing senescence-associated secretory phenotype [28].
Furthermore, hyperglycaemia reduces CXC chemokine receptor
type 4 (CXCR4) expression in CD34 (þ) haematopoietic stem
cells via altered DNA methylation patterns, improving T-cell
survival via the activity of advanced glycation end-product
receptors (RAGE) [29, 30].

Endothelial dysfunction and inflammation-induced insulin
resistance also cause diabetic progression [31–34]. High-carb,
high-fat diets inflame feeding control neurons in the hypothala-
mus [35, 36]. In addition, HbA1c positively correlates with IL-6
and tumour necrosis factor-a [37].

Hyperglycaemia leads to increased production and impaired
degradation of ECM proteins, persistent pro-inflammatory state
and altered immune response, causing net fibrosis and thicken-
ing of basement membranes causing diabetic microvascular
and macrovascular complications. These are also the treatment
targets.

OXIDATIVE STRESS AND BIOCHEMICAL
CHANGES

Diabetic rats have more oxidative stress than those with imme-
diately controlled diabetes, measured via reduced levels of nitric
oxide (NO) and reduced glutathione in the urine [38]. Human
studies revealed similar outcomes, though, the negative effects
of oxidative stress on endothelial cell function are reversible
in patients with initial HbA1c<7% with glycaemic control and
use of anti-oxidants—while damage is irreversible if initial
HbA1c is >7% [32, 33]. This is due to cytoplasmic reactive oxygen
damage upon mitochondrial function and structure, leading to
instability of electron transport chain (ETC), thus, cyclically
higher levels of oxidative stress.

Long-standing high plasma glucose levels are associated
with excess production of reactive oxygen species (ROS),
namely superoxide radicals that may be converted into other
species, by mitochondrial ETC. Hyperglycaemic status leads to
activation of glycolysis, formation of higher concentration of
pyruvate, activation of tricarboxylic acid cycle and in turn
higher levels of electron donors (nicotinamide adenine dinucle-
otide and flavine adenine dinucleotide). High rates of electron
flux between ETC and electron donors lead to increase in the
electrochemical gradient across inner mitochondrial membrane
until a critical threshold, which leads to inhibition of complex
III of ETC when reached. Electrons are accumulated in coen-
zyme Q, which are then transferred to molecular oxygen, lead-
ing to generation of superoxide radicals [39]. These changes are

reversible with the inhibition of ETC or by the use of uncoupler
molecules to eliminate electrochemical gradient across inner
membrane [39, 40]. In addition, high cellular glucose levels lead
to the inhibition of a glycolytic enzyme, glyceraldehyde 3-phos-
phate dehydrogenase, which leads to accumulation of upstream
glycolytic intermediates. As a result, the protein kinase C (PKC)
pathway, by formation of diacylglycerol, and the AGE products
pathway, by the formation of main precursor called methyl-
glyoxal, are activated.

In addition to increased ROS, many other pathways are used
to describe biochemical changes occurring in hyperglycaemic
states including the activation of the polyol pathway, AGEs, PKC
pathway and hexosamine pathways. Activation of the polyol
pathway, primarily the enzyme aldose reductase that converts
glucose into sorbitol in the presence of nicotinamide adenine
dinucleotide phosphate (NADPH), leads to depletion of NADPH
stores of cells and may enhance the pre-existing status of oxi-
dative stress observed in hyperglycaemia [41, 42]. However, in
most cases of hyperglycaemia, the polyol pathway is not as-
sumed to play major role since the requirement for cellular glu-
cose concentration is too high according to the enzyme
dynamics [43, 44].

Activation of the PKC pathway decreases NO production in
vascular smooth muscle cells by inhibition of endothelial NO
synthase, increase in the expression of transforming growth
factor (TGF)-b1, NF-jB and plasminogen activator inhibitor-1,
and increase in fatty acid oxidation in vascular endothelial cells,
which may cause atherosclerosis [45–49]. Furthermore, increase
in the expression of TGF-a, TGF-b1 and plasminogen activator
inhibitor-1 is enhanced by the increase in O-GlcNAcylation of
the transcription factor Sp1, as a result of activated hexosamine
pathway [50, 51].

Increased levels of AGE in circulation leading to increased
binding of AGE to its receptor referred to as RAGE result in in-
creased expression of NF-jB, vascular cell adhesion molecule-1,
trombomodulin, tissue factor, MCP-1 and vascular endothelial
growth factor, and increased levels of ROS formation [52–58].
RAGE–NF-jB interaction has shown to be involved in the devel-
opment of diabetic neuropathy and atherosclerosis as compli-
cations. Potential early biomarkers are summarized in Table 1
[59, 60].

GENETIC AND EPIGENETIC CHANGES

Genetics underpin maturity-onset diabetes of the young
(MODY), and the development of Types I and II DM, with muta-
tions at HNF4-alpha (MODY 1), glucokinase (MODY 2), HNF1-
alpha (MODY 3) and HNF1-beta (MODY 4) [61]. On the other
hand, epigenetic shifts (same DNA, different expression) likely
play a more important role in metabolic memory. The main
types of epigenetic modifications are DNA methylation, histone
modifications, chromatin remodeling, non-coding ribonucleic
acids (RNAs) as microRNA (miRNA), and lncRNA and RNA edit-
ing (Figure 1).

DNA methylation and histone acetylation, the two primary
epigenetic mechanisms, are highly investigated in relation to
their roles in metabolic memory in diabetic patients [62].
Monocyte and lymphocyte DNA analysis from patients in
the DCCT and The Epidemiology of Diabetes Interventions and
Complications (EDIC) trials showed elevated levels of H3k9ac, in-
volved in the activation of affiliated genes, in many inflammatory
genes in patients not receiving intensive therapy initially [63].
Another study demonstrated correlation between HbA1c levels
and H3K9ac, thus, H3K9ac is one of the key contributors to
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metabolic memory. Another study utilizing both the initial and
17-year follow-up whole blood sample and monocytes of the par-
ticipants of DCCT and EDIC trials demonstrated many hypo/
hypermethylated DNA regions, for example, hypomethylation at
the 3-untranslated region (UTR) of Thioredoxin-Interacting
Protein (TXNIP) encoding thioredoxin-interacting protein, to be
associated with diabetic complications [64]. Individualized analy-
sis of the same data in accordance with the HbA1c levels during
follow-ups revealed the persistent hypomethylation of 30-UTR of
the TXNIP gene, thus, epigenetic alterations of the TXNIP gene ap-
pear to be strongly related to metabolic memory [64]. In addition,
a similar pattern has been observed in other studies in patients
with high plasma glucose levels and hyperlipidaemia [65].
miRNAs, 20–25 nucleotides in length, are thought to regulate up
to 60% of gene translation by binding to the 30-UTR region of spe-
cific mRNAs. miRNAs are synthesized as a primary transcript by
RNA polymerase II, the same enzyme involved in mRNA synthe-
sis, and processed by Drosha-DGCR8 in the nucleus and Dicer in
the cytoplasm into mature miRNA [66]. Despite being a highly in-
vestigated topic for many chronic diseases, the applicability to
human diseases remains forthcoming with few actual human
studies [67]. The main findings so far are in mice, where expres-
sion levels of five miRNAs (miR-192, miR-200b, miR-200c, miR-

216a and miR-217) are enhanced in renal glomeruli in the early
stages of induced-diabetic states compared with control [68].
Among those miRNA, miR-192 appeared to be the key regulator
since it upregulated expression of the others and was involved in
the down-regulation of mRNAs involved in collagen and ECM pro-
tein synthesis [69]. In addition, mice treated with miR-192 inhibi-
tors and miR-192 knockout mice progressed to diabetic
nephropathy more slowly, while miR-192 gene amplification
resulted in glomerular basement membrane hypertrophy and in-
creased accumulation of ECM proteins including collagen [70].
Similar expression status can be achieved through treatment
with TGF-b1, thus, effects of hyperglycaemia appear to be medi-
ated through TGF-b1 expression at the genomic level [71–75].
Other highly investigated miRNA changes include upregulation of
miR-21 and miR-377 and downregulation of miR-29, all of which
lead to ECM hypertrophy and accumulation of ECM proteins
through TGF-b1, Akt and mammalian target of rapamycin
(mTOR) signalling [76–83]. Another crucial miRNA involved in the
pathogenesis of hyperglycaemia is downregulation of Let-7 family
members that inhibit collagen production and TGF-b1 expression

miRNAs may be the treatment biomarkers of choice, with
high specificity for downstream morbidities. A study of
700 miRNAs in 40 patients with Type I DM with chronic kidney

Table 1. Possible early biomarkers and alterations in patients with DM

Possible early biomarker categories Examples

miRNA Upregulation of expression of certain miRNA:
• miR-192; miR-200b; miR-200c; miR-216a; miR-217; miR-21; miR-377

Downregulation of expression of certain miRNA:
• miR-29; Let-7 family members

lncRNA Upregulation of expression of certain lncRNA:
• lncRNA Erbb4-IR; lncRNA Tug1 ; lncRNA RP23–298H6; lncRNA CJ241444

Downregulation of expression of certain lncRNA:
• lncRNA Lin01619

Signaling pathways Over-activation of certain pathways:
• TGF-b1 signaling pathway; NF-jB signaling pathway

DNA methylation/demethylation Hypomethylation at 3-UTR of TXNIP
Histone acetylation/deacetylation Upregulation of certain regulators:

• H3k9ac

Enzymatic control Activation of certain enzymes:
• Aldose reductase

Inhibition of certain enzymes:
• eNOS; glyceraldehyde 3-phosphate dehydrogenase; MMP-2

Upregulated molecules Certain connective tissue regulators:
• plasminogen activator inhibitor-1; TGF-a; vascular cell adhesion molecule-1; trombomodulin;

tissue factor; MCP-1; vascular endothelial growth factor

Biochemical outcomes:
• ROS; AGE; Polyols

Pro-inflammatory cytokines:
• IL-1b; IL-6; IL-8; MCP-1; tumour necrosis factor-a

Downregulated molecules • NO
• NADPH
• CXCR4 on T cells

NF-jB, nuclear factor-kappa light chain enhancer of activated B cells; CXCR4, C-X-C chemokine receptor Type 4; ncRNA, non-coding RNA; 3-UTR, three prime untrans-

lated region.
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disease (CKD) has been undertaken with this goal [84], and TGF-
b1-regulated miRNAs and tissue-specific miRNA expression
patterns have been proposed as biomarkers [68, 85–88].

Long non-coding RNA (lnc-RNA) are comprised of >100
nucleotides and regulate transcription and translation via his-
tone modifications or regulating miRNAs [89]. Two miRNAs
upregulated during hyperglycaemia and TGF-b1 signalling (miR-
216a and miR-217) are regulated along with lncRNA RP23-
298H6.1-001 [90, 91]. Similarly, coregulation of lncRNA CJ241444
and miR-192 has been reported. Diabetic nephropathy in mice is
associated with downregulation of lncRNA Lin01619, and upre-
gulation of both lncRNA Erbb4-IRand lncRNA Tug1 [92–97].
lncRNA NR_033515 upregulation is correlated with diabetic
nephropathy and may be a treatment biomarker [98–100].

CLINICAL IMPLICATIONS
Obesity

Obesity is defined as a body mass index >30 kg/m2, and affects
more than one-third of men and women in the USA. It is accom-
panied by various comorbidities including Type II DM, meta-
bolic syndrome, hypertension, dyslipidaemia, obstructive sleep
apnoea, hyperuricaemia CVD and strokes [101]. The concept of
genetic background in obesity was first hypothesized by Von
Noorden in 1907, while mutations in leptin, leptin receptor, pro-
opiomelanocortin, melanocortin 4 receptor, proconvertase-1/2,
Neurotrophic Receptor Tyrosine Kinase 2 (NTRK2)/Brain-derived
neurotrophic factor (BDNF) and many others have been identi-
fied since then as a genetic aetiology [102, 103]. Studies per-
formed on a Dutch cohort comprised participants exposed to
Dutch famine demonstrated DNA hypomethylation at the IGF2
gene [104]. Similar outcomes have been observed in the
Leningrad siege study, where participants were exposed to pre-
natal undernutrition and postnatal shortage of food supply
[105]. Remarkable upregulation of genes involved in energy me-
tabolism, inflammatory responses and cell growth/death via
epigenetic mechanisms have been recorded on genome-wide
association studies and epigenome studies. Human studies
have demonstrated inverse correlation between the length of
breast-feeding and DNA methylation levels of LEP promoter, a
gene associated with low levels of plasma leptin and infant
body mass index [106–108]. Histological, genetic, biochemical
and epigenetic alterations have importance in the emergence
and progression of obesity.

Parental nutritional status and hyperglycaemic exposure
may be reflected in utero with an epigenetic signature, termed
the Barker hypothesis. Association of high-fat maternal diet,
low birthweight, short stature, hyperglycaemic state and under-
nutrition with epigenetic changes leading to obesity, insulin re-
sistance and hypertension have been made. High-fat maternal
diet leads to DNA hypermethylation at adipocytokine and leptin
genes, leading to down regulation of those genes [109–117].
These changes persist over generations despite normal fat diet
in the offspring and are not reversible with switches to normal
fat diet prior to and during pregnancy [104, 118, 119].
Interestingly, paternal high fat diet also increases the risk of in-
sulin resistance in the offspring. However, it is important to
note that all studies are performed with animals in the absence
of human studies, and there is uncertainty about their validity
in humans. Similar effects are also indicated in cases of gesta-
tional DM and hyperglycaemia [120–123]. In addition to DNA
hypermethylation of the adipocytokine and leptin genes, hypo-
methylation of mesoderm-specific transcript gene (MEST) and

hypermethylation of ATP-binding cassette transporter A1
(ABCA1) gene may occur in response to those stimuli [121, 122,
124–126]. Even though those epigenetic changes have not been
proven in human subjects yet, significant correlation between
those epigenetic markers, including hypomethylation of MEST
and obesity, has been reported [127].

Hypothalamic control of obesity through various genes in-
volved in appetite and energy metabolism have been proposed
as potential epigenetic alteration sites, although no human

studies have been conducted yet [128].

CKD

CKD most commonly results from diabetes and hypertension,
affects more than a tenth of the world population and causes
significant morbidity and mortality in adults [129]. End-stage re-
nal disease (ESRD) is defined by histopathological findings in-
cluding fibrosis, chronic inflammatory infiltrates, sclerosis of
the glomeruli and hyaline obliteration. Certain prenatal condi-
tions can predispose to ESRD by decreasing the number of func-
tional nephrons, including prematurity, low birthweight,
placental insufficiency and maternal diabetes, smoking, alcohol
abuse, drugs and hypoproteinaemia, may affect the nephron

number [130–135].
Transforming growth factor beta-1 (TGFb-1)/SMAD signalling

is crucial in the histopathological changes including ECM accu-
mulation in CKD and renal fibrosis, as with diabetic nephropa-
thy. In addition to the number of nephrons, epigenetic
alterations play a crucial role in CKD development and
progression.

Renal fibrosis is related to the activation of histone acetyl-
transferase p300/CBP-associated factor, involved in the activa-
tion of pro-inflammatory molecules such as intercellular
adhesion molecule-1 and vascular cell adhesion molecule-1, de-
creased histone acetylation at genes (HDAC1/2/5/6), involved in
the downregulation of renal protective molecule BMP7, and
upregulation of transcription factor ETS-1 (ETS-1 gene) via his-
tone acetylation [136–139]. Furthermore, production of hypoxia-
inducible factor 1 in cases with hypoxia results in the activation
of histone demethylases mostly in genes involved in TGF-b1
pathway [140].

Increase in the production of Angiotensin Converting
Enzyme-1 (ACE-1) in animal models in response to hyperten-
sion results in the enhancement of activatory epigenetic
changes such as H3KAc and H3K4me and decline in repressive
epigenetic modifications such as H3K9me2 at ACE promoter,
thus inducing its over-production and a vicious cycle [141, 142].
Moreover, maternal low protein diet has been linked to ACE-1
overexpression.

As a model of RNA interference, regulation of miRNAs has
been in the centre of epigenetics of CKD since animal studies in-
volving downregulation of Dicer, the key enzyme in miRNA
processing, were shown to cause to renal failure and death.
miR-21, miR-29 and miR-200, downstream molecules in TGF-
b signalling, have been shown to be important in renal fibrosis
by pro-fibrotic effects of miR-21 via amplification of TGF-b sig-
nalling and anti-fibrotic effects of miR-29 and miR-200 via the
inhibition of Epithelial to masenchymal transition (EMT). The
latest studies identified other miRNAs with significant renal
functions as miR-205, involved in apoptosis, and miR-146a, in-
volved in ischaemia–reperfusion injury [80, 143–149].
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CVD

CVD is the leading cause of morbidity and mortality in developed
countries, developing as a consequence of either an embryologi-
cal, anatomical, environmental and/or genetic conditions [150].
Despite the high prevalence and risk for mortality and morbidity
in CVD, mostly secondary to ischaemic heart diseases, treatment
modalities have limited influence on the progression of disease
with significant efficiency and adverse reaction issues.
Resistance to commonly prescribed coronary artery disease
(CAD) medications such as nitrates, clopidogrel and aspirin have
been reported [151–153]. The most common aetiologies of
chronic heart diseases include atherosclerosis, dyslipidaemia
and diabetes, all of which increases risk for vascular plaque for-
mation and thrombosis. Similar histological and epigenetic alter-
ations with diabetic patients have been reported in patients with
chronic CVD.

DNA methylation levels vary significantly with gender,
race and risk factors associated with CAD, while critical DNA
methylation differences have been detected between
atherosclerosis-prone and atherosclerosis-resistant arteries in
the same CAD patients [154]. Alu and LINE-1, both retro-
transposable elements involved in genomic rearrangements and
control of genomic expression, are two commonly hypomethy-
lated genes in patients with CAD. Also, certain CAD risk factors
are proven to lead hypomethylation in those genes such as ho-
mocysteine, race, higher body mass index (for LINE-1) and height
(for Alu), whereas no significant variation with gender or age has
been determined [155–157]. Many other relevant genes have been
identified, for example, ABCA1 methylation is highly correlated
with atherosclerosis levels and is an important determinant of
plasma high-density lipoprotein-cholesterol (HDL-C) levels [158].
The methylation status of ABCA1 has been considered a bio-
marker for early stages of atherosclerosis in patients with no
other clinical or laboratory findings [159]. Additionally, methyla-
tion of forkhead box P3 (FOXP3) by mediating unstability in Treg
cells and methylation at MMP-9, Collagen alpha-1(XIV) chain and
INK4B (INK4B gene) have been proposed as candidates [160–163].

Nutritional intake as well as the medications used in the
treatment of CAD influences the DNA methylation levels.
Among these, homocysteine intake has crucial importance since
it can be transformed into S-adenosyl methionine in the body,
which is the primary methyl donor in biochemical pathways in-
cluding DNA methylation [164]. Maternal nutritional status is an
independent determinant of postnatal DNA methylation status
of infants [165]. Age is another factor that leads to alterations in
DNA methylation for which three age-related CpG islands have
been identified, namely the genes ITGA2B, ASPA and PDE4C.
Studies determining age by using the methylation status of
those CpG islands have <5 years difference with the actual age
[166]. To discriminate age and CAD-associated DNA methyla-
tion/hypomethylation another gene, ANGPTL2, has been pro-
posed that has age-specific methylation status while elevated
levels of methylation are observed in patients with CAD [167].

Although histone modifications have not been investigated
in detail so far, few possible targets have been identified as
downregulation of HDAC4, an enzyme that deacetylase histone
molecules to alter gene expression levels. Over-expression of
HDAC4 is known to induce mitochondrial dysfunction and apo-
ptosis, while down-regulation has been shown to induce car-
diac muscle and ECM hypertrophy and provides protection
against oxidative stress and mitochondrial damage [168, 169].

On the other hand, miRNA in the context of CAD emerges as
a possible site for earlier diagnosis and for intervention in order

to postpone disease onset and progression. miR-1 and miR-133,
which are involved in the control of cell cycle and death, are sig-
nificantly elevated in plasma and urine in patients with acute
coronary syndrome [170, 171]. Elevations occur in the first 2 h of
acute coronary syndrome, especially ST elevated myocardial in-
farction, and positively correlated with other commonly used
cardiac markers such as CK-MB and troponin [170–172]. In addi-
tion, miR-208 is a cardiac-specific miRNA only expressed in car-
diac tissue and only elevated in serum in cases of acute heart
diseases [173, 174]. Elevated levels of miR-208 in plasma have
high sensitivity and specificity for acute coronary syndrome
[175]. miR-126, miR-132, miR-146 and miR-499 have been pro-
posed as candidates in CVD to have importance diagnostically
or prognostically [176–182]. The role of lncRNA is unclear in the
development and progression of CVD due a scarcity of studies,
though lncRNA necrosis-related factor, carcinoma-associated 1
(UCA1) and LIPCAR may be involved [96, 183, 184].

FUTURE DIRECTIONS

Multimodal diabetic complication management ranges from
lifestyle modifications, to drugs, to surgeries such as photocoag-
ulation/vitrectomy for diabetic retinopathy. Complications are
usually a late finding, and intervention at this stage has been
met with limited success overall. However, cognizance of meta-
bolic memory, and intervention on the metabolic memory, may
open up new treatment pathways [185].

Epigenetic alterations have been utilized in the treatment
of oncological, autoimmune and neurological diseases with
promising outcomes, such as four histone deacetylase inhibi-
tors (vorinostat, romidepsin, panobinostat and belinostat) and
two DNA methylation inhibitors (azacytidine and decitabine)
that are approved by the Food and Drug Administration (FDA)
[186, 187]. After detection of downregulation of the targets of
transcription factor EP300-related genes via computed analysis
of microarray data from many studies, vascular endothelial
cells of patients with DM have been treated with EP300 inhibi-
tors and HDAC inhibitors experimentally [188, 189]. In addition
to the results of that cell culture study, animal studies investi-
gating the efficiency of EP300 or HDAC inhibitors in DM are
promising. A class III HDAC [Sirtuin-1 (SIRT1)] inhibitor and

Table 2. Possible novel therapeutic approaches proposed and/or
investigating and targeting genetic and epigenetic modifications in DM

Possible target
for therapeutic
approaches Examples

miRNA • miR-192 inhibitor
• miR-29c inhibitor
• miR-21 inhibitor
• miR-192 inhibitor

lncRNA lnc-MGC
Histone acetylation/

deacetylation

• Histone deacetylase inhibitors:
• Vorinostat; romidepsin;

panobinostat; belinostat
• EP300 inhibitors

DNA methylation/
demethylation

• DNA methylation inhibitors:
• Azacytidine and decitabine

Genome editing Not yet been investigated

EP300, Adenovirus early region 1 A-associated protein p300.
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HMT EZH2 inhibitors demonstrated promising outcomes in an-
imal models [190–193]. Additionally, a bromodomain-
containing protein, JQ1, which blocks the expression of
Angiotensin-II related genes, is successful in mice studies to
reverse AngII-induced hypertension in animal models [194].
miRNAs are another possible site for intervention. Mice with
induced DM that are treated with miR-192 inhibitor illustrated
downregulation of many miRNAs such as miR-192 itself and
others (miR-200, miR-216a and miR-217, all of which are
involved in DM) and expression of p53, thus reducing the risk for
diabetic complications, mostly diabetic nephropathy. Other stud-
ies investigating the inhibition of miR-29c, miR-21 and miR-192
also demonstrate success [76, 77]. lncRNA, namely lnc-MGC, has
also been investigated as a target in DM, while studies regarding
that topic are limited (Table 2).

As we develop a better understanding of genetic and epige-
netic changes in chronic diseases including DM, CVD, CKD, meta-
bolic syndrome and many others, genome editing may become a
useful tool for treatment. Currently available techniques of ge-
nome editing include zinc-finger nucleases, first targeted nucle-
ase developed by the fusion of FokI restriction endonuclease and
custom-designed zinc finger domain, transcription activator-like
effector nuclease, effector proteins derived from plant pathogenic
bacteria genus Xanthomonas, homing endonuclease, referring to a
number of endonucleases synthesized from the regions within
introns and hydrolyzing genomic DNA within the same cell, and
Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)-Cas9, the most commonly utilized method in gene edit-
ing [195–200]. In bacteria, the Type II CRISPR system is a protec-
tion mechanism against foreign DNA such as viruses and
plasmids and provides some type of memory and adaptive im-
munity via RNA-guided DNA cleavage [201, 202].

CONCLUSION

Non-communicable cardio-metabolic chronic diseases are now
a global health issue, spanning DM, CVD and CKD. Prevention
strategies remain inadequate and the management of compli-
cations has not proven completely effective, so novel strategies
are needed to approach these conditions. Metabolic memory,
the sum of histological, biochemical, genetic, epigenetic and
cellular alterations in response to specific stimuli including
hyperglycaemia, dyslipidaemia or high blood pressure, have
been identified and may provide new surrogate biomarkers for
early detection and treatment response, as well as new targets
for novel therapeutic actions.
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