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Vibrio parahaemolyticus is one of the most important pathogen for seafood-borne
gastroenteritis in Shanghai and the rest of the world. A total of 42 V. parahaemolyticus
strains were isolated from 1900 fecal specimens collected from patients in Shanghai
hospital presenting from January 2014 to December 2015. All isolates were evaluated
for potential virulence factors [tdh, trh, and type three secretion system (T3SS)
genes], typed using multilocus sequence typing (MLST) and screened for antimicrobial
resistance phenotype and genotype. And for the first time, the relationship between
virulence, genetic diversity and antimicrobial resistance of these isolates were identified.
The results showed that 37 isolates carried the tdh gene (88.1%) and only seven
isolates were positive for the trh gene. The T3SS1 and T3SS2 genes were detected
in all strains and only trh-positive isolates are also containing the T3SS2β genes. MLST
analysis of the 42 Shanghai isolates identified 20 sequence types (STs) with 16 novel
STs and that these clinical V. parahaemolyticus strains showed high degrees of genetic
diversity. All isolates expressed high levels of resistance against Ampicillin (100.0%),
Streptomycin (100.0%), Cephazolin (92.9%), Kanamycin (92.8%) and Amikacin (90.5%),
and eight out of 38 resistance genes (SHV, tet(B), strA, qnrA, gryA, qnrB, sulI, sulII)
were detected in at least two isolates. This study confirms that antimicrobial resistance
of clinical V. parahaemolyticus isolates is greater than those of environmental isolates.
Furthermore, no clear correlation between antimicrobial resistance and virulence or
genetic diversity was found in this study. These results add to epidemiological data
of clinical V. parahaemolyticus isolates in Shanghai and highlight the need for additional
mechanistic studies, especially antimicrobial resistance, to reduce the burden of disease
caused by this pathogen in China.
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INTRODUCTION

Illnesses caused by foodborne pathogens are an increasingly critical public health concern
(Velusamy et al., 2010). Vibrio parahaemolyticus is recognized as a major foodborne pathogen for
causing gastroenteritis worldwide, especially in coastal countries and regions (McLaughlin et al.,
2005; Su and Liu, 2007; Letchumanan et al., 2014; Hubbard et al., 2016). Clinical symptom of
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V. parahaemolyticus infections include diarrhea, abdominal
cramps, vomiting and fever, which also progresses to septicemia
can sometimes lead to death in patients (Scallan et al., 2011;
Lopatek et al., 2015). In 1950, this pathogen was first discovered
in Japan, which resulted 272 illnesses with 20 deaths (Fujino
et al., 1953). From 1997 to 2000, 84 food poisoning outbreaks
caused by V. parahaemolyticus were recorded in Spain (Fournier
and Ogata, 2005). From 2000 to 2008, it was reported around
35,000 V. parahaemolyticus infections annually in US (Haendiges
et al., 2015). In China, during 2003 to 2008, this microorganism
has caused 9041 illnesses and 3948 hospitalizations (Wu et al.,
2014). It is essential to gather the epidemiological data of
V. parahaemolyticus to reduce the burden of disease caused by
this pathogen in China.

Virulence of V. parahaemolyticus is primarily attributed
to the production of a thermostable direct haemolysin
(TDH), TDH-related haemolysin (TRH) and two type III
secretion systems, T3SS (Makino et al., 2003; Ritchie et al.,
2012; Zhang et al., 2013). TDH and TRH are encoded
by the tdh gene and trh gene, respectively (Letchumanan
et al., 2014). Although the specific actions of these genes in
human infection remain unknown, the relevance between
pathogenicity of V. parahaemolyticus and the presence of tdh
and trh is well recognized (Broberg et al., 2011; Ceccarelli
et al., 2013). Contamination of foods with tdh- and/or trh-
positive V. parahaemolyticus strains is considered a public
health risk (Pazhani et al., 2014). The two T3SS systems in
V. parahaemolyticus are known as T3SS1 and T3SS2 (Wang
et al., 2015). T3SS1 is encoded by the first pathogenicity island on
chromosome I and is involved in cytotoxicity (Paranjpye et al.,
2012). T3SS2 is located on chromosome II and is also encoded
by a pathogenicity island. As a newly identified type of secretion
system, T3SS2 appears to be associated with enterotoxicity and
cytotoxicity, in experiments conducted in vitro and in intestinal
cell lines (Ritchie et al., 2012). Currently, it is possible to detect
the presence of tdh, trh and T3SS genes in V. parahaemolyticus
isolates by PCR-based methods (West et al., 2013).

Vibrio parahaemolyticus strains exhibit high genetic diversity
due to high rates of recombination and mutation, which caused
potential infection risk for human health (Ludeke et al., 2015).
A number of molecular typing methods have been used to
determine the molecular epidemiology of V. parahaemolyticus,
and these methods include multilocus sequence typing (MLST),
serotyping, and pulsed-field gel electrophoresis (PFGE) (Banerjee
et al., 2014; Xu et al., 2015). MLST has proven to be
powerful tool for investigating the prevalence and diversity of
V. parahaemolyticus strains in recent years (Wu et al., 2016).
MLST is based on the sequencing of seven housekeeping genes
and can be analyzed directly via the internet (Gonzalez-Escalona
et al., 2008). MLST is commonly used for identifying the
relationship between isolates in public database and has proven
to be an important method for investigation of the evolution and
epidemiology of V. parahaemolyticus (Banerjee et al., 2014).

Antimicrobials are used in the treatment of infectious diseases
and improper or enhanced application of antimicrobials leads
to development of antimicrobial resistant (AMR) bacteria (Yano
et al., 2014). The Economic Forum for Global Risks indicates

that the problem of AMR is projected to be one of the greatest
threats to human health in the future (Koser et al., 2014; Blair
et al., 2015). The critical factors for the emergence of AMR are
antimicrobial resistance genes (ARGs) which can be transferred
by the horizontal gene transfer (Thomas and Nielsen, 2005).
ARGs are emerging contaminants posing a potential worldwide
human health risk (Allen et al., 2010; Lou et al., 2016). It is vital
to monitor the AMR and ARGs of V. parahaemolyticus strains,
which can be used for disease management and reducing the
burden of disease caused by this pathogen.

Shanghai is one of the largest prosperous cities in China
with high annual consumption of seafood and many cases of
V. parahaemolyticus infections (Zhang and Orth, 2013; Qi et al.,
2016), which have become a potential threat for human health.
The researches for V. parahaemolyticus strains isolated from
aquatic products are widely reported (Wang et al., 2011; Guo
et al., 2013; He et al., 2015, 2016; Lou et al., 2016; Hu and Chen,
2016; Yu et al., 2016; Zhang et al., 2017), while studies on clinical
isolates has been poorly documented (Zhang and Orth, 2013; Qi
et al., 2016).

The main objectives of this study are to monitor the virulence,
genetic diversity and antimicrobial susceptibility of clinical
V. parahaemolyticus isolates from Shanghai. We hope to provide
reliable information, for assessing the genetic traits and the
antimicrobial resistance risk of V. parahaemolyticus strains, and
for better management of foodborne infections in Shanghai.

MATERIALS AND METHODS

Specimen Collection and Bacteria
Isolation
A total of 1900 fecal specimens were collected by Shanghai
hospital from patients who presented with acute diarrhea to
gastroenteritis outpatient clinics during the period from January
2014 through to December 2015. These fecal samples were
placed in sterile sealed plastic bags and stored at 4◦C prior to
further analysis. Confirmation of V. parahaemolyticus samples
were performed using standard culture methods (ISO, 2007).

Briefly, 25 g of each fecal specimen was homogenized for
2 min in a stomacher 400 with 225 mL of alkaline peptone
water (APW; Beijing Land Bridge Technology Company Ltd.,
Beijing, China) containing 3% NaCl, and incubated at 37◦C for
16-18 h. After incubation, a loop from the top 1 cm was streaked
onto thiosulfate-citrate-bile salts-sucrose (TCBS; Beijing Land
Bridge Technology Company Ltd., Beijing, China) agar plates and
incubated at 37◦C for 18–24 h. Presumptive individual bacterial
colony (green or blue green colony, 2–3 mm in diameter) were
grown in 10 ml tryptic soy broth (TSB; Beijing Land Bridge
Technology Company Ltd., Beijing, China) supplemented with
3.0% NaCl and incubated at 37◦C for 18–24 h. After cultivation,
the bacterial liquid and 50% glycerol in the proportion of 1:1 were
placed in a glycerol tube and stored at –80◦C for further analysis.

DNA Extraction
DNA extraction of all presumptive V. parahaemolyticus isolates
was performed using the TIANamp Bacteria DNA Kit (Tiangen
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Biotech Beijing Co., Ltd, Beijing, China), in accordance to
the manufacturer’s recommended protocols and then stored it
at –20◦C prior to PCR analysis.

Identification of Vibrio parahaemolyticus
The presumptive V. parahaemolyticus isolates were tested for the
presence of the species specific gene tlh by using polymerase
chain reaction (PCR). Detection of tlh gene was carried out using
the primer tlh-F (5- AAA GCG GAT TAT GCA GAA GCA
CTG -3) and tlh-R (5- GCT ACT TTC TAG CAT TTT CTC
TGC -3) as specified in (Food and Drug Administration [FDA],
2004). The reaction mixture for this PCR assay was performed
in 25 µL, containing 1 µL of DNA template, 12.5 µL of PCR
Mix (Sangon Biotech, Shanghai, China), 9.5 µL of dd H2O and
1 µL of each primer. The thermal-cycling program is as follows:
initial denaturation at 94◦C for 3 min, 25 cycles of 94◦C for 1 min,
60◦C for 1 min and 72◦C for 2 min, and a final extension at 72◦C
for 3 min. Finally, PCR products were analyzed by agarose gel
electrophoresis.

We also chose the API 20E system (BioMerieux, Inc., Durham,
NC, United States) and DBI-08 (Beijing Land Bridge Technology
Company Ltd., Beijing, China) to analyze and identify the
V. parahaemolyticus isolates, according to the procedure
described by the manufacturer and using V. parahaemolyticus
ATCC 33847 as the reference strain (Croci et al., 2007; Li et al.,
2016; Xie et al., 2016).

Detection of Virulence-Associated Genes
Detection of the V. parahaemolyticus virulence genes tdh
(West et al., 2013) and trh (Nilsson and Turner, 2016) were
also performed by PCR. We designed a primer for detection
of the ureR gene to study the variation of the trh gene
as outlined in Nilsson and Turner, 2016. The ureR gene
encodes for the transcriptional activator of the urease gene
cluster located immediately upstream from trh and is widely
reported to be genetically linked to trh (Nilsson and Turner,
2016). V. parahaemolyticus virulence associated genes of type
III secretion system-1 (T3SS1) genes (VP1670 [vscP], VP1686
[putative], VP1689 [vscK] and VP1694 [vscF]), T3SS2α genes
(VP1362 [vopB2], VP1339 [vscC2], VP1335 [vscS2] and VP1327
[vopT]) and the T3SS2β genes (vscC2, vopB2, vopC, vscS2)
were tested by conventional PCR (Jones et al., 2012). In our
study, the oligonucleotide primers were synthesized by Sangon
Biotech (Sangon Biotech, Shanghai, China). Particularly worth
mentioning is that the V. parahaemolyticus ATCC17802 (trh+)
and ATCC33847(tdh+) were used as the reference strains, and
distilled water was used as the negative control.

Multilocus Sequence Typing
Seven housekeeping genes, dnaE, gyrB, recA, dtdS, pntA,
pyrC, and tnaA (Supplementary Table S1), were used for
V. parahaemolyticus characterization under the MLST scheme,
PCR fragments were sequenced by Sangon Biotech (Sangon
Biotech, Shanghai, China) and alignments of these sequences
were determined using DNAMAN. The sequences were analyzed

online1 to assign allele numbers and define sequence types
(STs). New sequences for alleles and new ST profiles were
submitted to the V. parahaemolyticus MLST database. Based on
the relatedness of the STs, all of the isolates were subdivided
into clonal complexes (CCs) or groups by eBURST program.
Nucleotide sequence analyses were evaluated by MEGA5.1
program. In this study, the primary founder of a CC, a
single locus variants (SLVs), double locus variants (DLVs), and

1http://pubmlst.org/v.parahaemolyticus/

TABLE 1 | Information of 42 Vibrio parahaemolyticus clinical isolates.

Name Gender Age tlh tdh trh ureR

VPC1 Female 57 + + – –

VPC2 Female 53 + + – –

VPC15 Female 30 + + – –

VPC16 Female 31 + + – –

VPC17 Male 56 + + – –

VPC18 Female 29 + – + +

VPC19 Male 16 + + – –

VPC20 Male 13 + + – –

VPC21 Female 54 + + – –

VPC22 Male 17 + + – –

VPC25 Female 35 + + – –

VPC26 Female 36 + + – –

VPC27 Male 22 + + – –

VPC28 Male 48 + + – –

VPC29 Male 26 + + – –

VPC32 Male 57 + + – –

VPC33 Male 38 + + – –

VPC34 Male 37 + + – –

VPC35 Male 56 + + – –

VPC36 Female 47 + – + +

VPC37 Male 63 + + – –

VPC38 Female 56 + + – –

VPC40 Female 58 + + – –

VPC41 Female 79 + + – –

VPC42 Male 55 + + – –

VPC43 Male 56 + + + +

VPC44 Male 33 + – – –

VPC45 Female 54 + + – –

VPC46 Male 26 + + – –

VPC47 Female 86 + + – –

VPC48 Female 45 + + – –

VPC49 Female 56 + + + +

VPC50 Male 46 + + – –

VPC51 Male 24 + + – –

VPC54 Female 39 + + + +

VPC55 Male 22 + + – –

VPC85 Female 58 + – + +

VPC89 Female 46 + + – –

VPC90 Male 37 + + – –

VPC94 Male 28 + – + +

VPC97 Female 26 + + – –

VPC100 Male 56 + + – –
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singletons were defined as described previously (Han et al.,
2015).

Antimicrobial Susceptibility Testing
The antibiotic susceptibilities of the 42 isolates were assessed
using the disk diffusion method on Mueller Hinton agar (MHA)
(OXOID Limited, China) according to the guidelines of the
Clinical and Laboratory Standards Institute (CLSI, 2015; Lou
et al., 2016). Briefly, Muller–Hinton agar and a panel of 18
antibiotics disks were selected for resistance tests. The 18
common antimicrobials belonging to 6 classes used in this
study were: β-lactam (ampicillin: AMP, amoxicillin-clavulanic:
AMC, piperacillin: PRL, cefotaxime: CTX, ceftazidime: CAZ,
cefoxitin: FOX, cephazolin: KZ, imipenem: IPM, meropenem:
MEM), aminoglycoside (amikacin: AK, gentamicin: CN,
kanamycin: K, streptomycin: S), tetracycline (tetracycline: TET),
quinolone (ciprofloxacin: CIP, levofloxacin: LEV), sulfonamides
(trimethoprim-sulfamethoxazole: SXT), chloramphenicol
(chloramphenicol: C). The results were expressed as sensitive
(S), intermediate (I), or resistant (R) according to the methods of
the CLSI (CLSI, 2015). Escherichia coli ATCC 25922 was used as
the quality control organism for the antimicrobial susceptibility
testing.

Evaluation of Antibiotic
Resistance-Encoding Genes
The 38 antibiotic resistance genes (Supplementary Table S2) of
six classes of antibiotics were identified by PCR, as previously
described (Lou et al., 2016). All obtained PCR products were
purified and sequenced by Sangon Biotech (Sangon Biotech,

TABLE 2 | Distribution of T3SS genes among 42 clinical V. parahaemolyticus
isolates.

Gene No. of strains (n = 42)

tdh+ trh–
(n = 34)

tdh+ trh+

(n = 3)
tdh– trh+

(n = 4)
tdh– trh–

(n = 1)

T3SS1

VP1670 (vscP) 34 3 4 1

VP1686 (putative) 34 3 4 1

VP1689 (vscK) 34 3 4 1

VP1694 (vscF ) 34 3 4 1

All 4 genes present 34 3 4 1

T3SS2α

VP1362 (vopB2) 34 2 3 1

VP1339 (vscC2) 34 1 3 1

VP1335 (vscS2) 34 1 2 1

VP1327 (vopT ) 34 1 2 1

All 4 genes present 34 1 2 1

T3SS2β

vscC2 0 3 4 0

vopB2 1 3 4 0

vopC 1 2 4 0

vscS2 1 3 4 0

All 4 genes present 0 2 4 0

FIGURE 1 | Multilocus sequence typing (MLST) of 42 V. parahaemolyticus
clinical isolates.

Shanghai, China). The acquired sequences were aligned and
analyzed with the BLAST program2.

RESULTS

Prevalence of V. parahaemolyticus
A total of 42 presumptive V. parahaemolyticus strains were
isolated from 1900 fecal specimens (2.2%) collected from
patients presenting in Shanghai hospital during January, 2014
to December, 2015. The PCR results showed all isolates were
positive for the presence of the tlh gene (Table 1), which indicated
that these 42 isolates were V. parahaemolyticus strains. And the
results of API 20E and DBI-08 provided further evidence to the
veracity of PCR outcomes, with all 42 isolates being identified
with 99% confidence as V. parahaemolyticus. The demographic
characteristics of patients about 42 V. parahaemolyticus isolates
are also presented in Table 1. The 42 individuals enrolled in this
research included 20 females and 22 males. The male patients’
ages ranged from 13 to 57, while for the female patients, the age
distribution was more uniform in women whose median ages
above 30 years-old.

Distribution of Virulence-Associated
Genes
From our study, the hemolysin gene tdh was detected in most
of the isolates (88.1%, 37/42), whereas the trh gene was present
in only 7 strains (16.7%, 7/42). We further determine the
distribution of the trh gene by the ureR gene. The ureR gene
and the variable trh gene were observed in the same seven
V. parahaemolyticus isolates. Of these, 3 of 42 (7.1%) clinical
isolates were positive for both tdh and trh. Only one strains

2http://www.ncbi.nlm.nih.gov/BLAST
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FIGURE 2 | The relationship between genetic diversity and virulence-associated genes characterization of isolates. ST, sequence type.

(2.4%, 1/42) from the diarrheal patients contained neither the tdh
nor the trh gene.

The two types of T3SS complexes are features in the virulence
mechanism of V. parahaemolyticus and the distribution of T3SS
genes is presented in Table 2. T3SS1 genes were identified in all
of the V. parahaemolyticus isolates and these samples contained
all four T3SS1 genes (100%). All thirty-four of the tdh+/trh-
and one of the tdh-/trh- clinical isolates contained all four genes
of the T3SS2α genes. However, the isolates of tdh+/trh+ and
tdh-/trh+ the detected percentage of all T3SS2α genes was only
33.3% and 50.0%, respectively. Additionally, four of the tdh-/trh+
isolates were amplified all four genes of the T3SS2β genes,
followed by the isolates of tdh+/trh+ the detected percentage

of all T3SS2β genes was 66.7%. Only one remaining tdh+/trh-
isolate (VPC89) amplified all four T3SS2β genes but vscC2. As
expected, one of the tdh-/trh- clinical isolate was evaluated in
negative of all four T3SS2β genes. Overall, the T3SS2α-associated
genes were most prevalent in tdh+ isolates (93.5%, 35/37), and
the T3SS2β genes were detected prevalent in the trh+ clinical
isolates (85.7%, 6/7).

Multilocus Sequence Typing Analysis
The genetic characteristic of the V. parahaemolyticus isolates was
analyzed by MLST. MLST classified the 42 V. parahaemolyticus
isolates into 20 different STs (Figure 1), of which 16 ST were novel
(ST1457, ST1458, ST1459, ST1460, ST1461, ST1462, ST1463,
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ST1464, ST1465, ST1466, ST1467, ST1468, ST1469, ST1470,
ST1471, and ST1472). The go eBURST algorithm used in our
study categorized 20 different STs into 10 singletons, one clone
complexes (CC655) and Two groups (Figure 2). Among these,
CC655 was the most prevalent clone complexes, including
22 isolates with ST655(50%), ST1464(36.4%), ST3(9.1%) and
ST1468(4.5%). In addition, ST655 was the most frequent
sequence type, which including 11 isolates (VPC16, VPC19
VPC20, VPC21, VPC22, VPC25, VPC27, VPC29, VPC33,
VPC34, VPC97).

Antimicrobial Resistance Profile
As shown in the Table 3, the isolates of V. parahaemolyticus
were detected for different levels of antibiotic resistance.
One concern, all V. parahaemolyticus strains were resistant
to ampicillin (100%) and streptomycin (100%), followed by
Cephazolin (92.9%), Kanamycin (92.9%) and Amikacin (90.5%).
Isolates were also commonly resistant to Gentamicin (71.4%),
Piperacillin (54.8%), and Cefoxitin (50%). In addition, all the
clinical isolates showed susceptibility to six antibiotics, including
Chloramphenicol, Cefotaxime, Imipenem, Ceftazidime,
Trimethoprim-sulfamethoxazole and Meropenem. And only one
V. parahaemolyticus strains (VPC2) were not found in multidrug
resistance (MDR, defined as resistance to 3 or more different
antimicrobials). So the multidrug resistance rate reaches to 97.6%
of all 42 clinical V. parahaemolyticus isolates. Of these, there
were 92.9% multidrug-resistant isolates showing resistance to

TABLE 3 | Antimicrobial resistance profiles of 42 clinical V. parahaemolyticus
isolates.

Classify Antimicrobial
agent

Vibrio parahaemolyticus (n = 42)

No. (%)
of R

No. (%)
of I

No. (%)
of S

β- lactam Ampicillin 42 (100.0) 0 (0.0) 0 (0.0)

Amoxicillin-
Clavulanic

0 (0.0) 8 (19.0) 34 (81.0)

Piperacillin 7 (16.7) 16 (38.1) 19 (45.2)

Cefotaxime 0 (0.0) 0 (0.0) 42 (100.0)

Ceftazidime 0 (0.0) 0 (0.0) 42 (100.0)

Cefoxitin 0 (0.0) 21 (50.0) 21 (50.0)

Cephazolin 16 (38.1) 23 (54.8) 3 (7.1)

Imipenem 0 (0.0) 0 (0.0) 42 (100.0)

Meropenem 0 (0.0) 0 (0.0) 42 (100.0)

Tetracyclines Tetracycline 0 (0.0) 2 (4.8) 40 (95.2)

Aminoglycosides Amikacin 2 (4.8) 36 (85.7) 4 (9.5)

Gentamicin 3 (7.1) 27 (64.3) 12 (28.6)

Kanamycin 3 (7.1) 36 (85.7) 3 (7.1)

Streptomyein 30 (71.4) 12 (28.6) 0 (0.0)

Quinolones Ciprofloxacin 0 (0.0) 11 (26.2) 31 (73.8)

Levofloxacin 0 (0.0) 2 (4.8) 40 (95.2)

Chloramphenicol Chloramphenicol 0 (0.0) 0 (0.0) 42 (100.0)

Sulfonamides Trimethoprim
-sulfamethoxazole

0 (0.0) 0 (0.0) 42 (100.0)

R, resistant; I, intermediate; S, sensitive.

more than five antibiotics. Strikingly, we found that four isolates
showed resistance to ten antibiotics.

Antimicrobial Resistance Genotypes of
V. parahaemolyticus
The 38 antibiotic resistance genes of 6 classes of antibiotics
searched in 42 pathogenic V. parahaemolyticus isolates are shown
in Supplementary Table S3. Eight out of 38 resistance genes (SHV,
tet(B), strA, qnrA, gryA, qnrB, sulI, sulII) were detected in at
least one isolates. Notably, all of the clinical isolates carried two
or more ARGs evaluated. Among them, tet(B) was the most
prevalent gene, with the detection frequencies of 100%, followed
by strA, sulI, SHV, qnrA, qnrB gryA, and sulII the detected
percentage of them was 92.9, 90.5, 28.6, 28.6, 26.2,19.0, and 4.8%,
respectively.

Correlation among Virulence genes, STs,
Resistance Phenotype, and Genotype
A minimum spanning tree (MST) of the sequence types (STs)
that was constructed based on subtyping information, including
sequence type and virulence-associated genes, is shown in
Figure 2. As shown in Figure 2, We can see that the most
prevalent clonal complexes were CC655, all of them were positive
for virulence-related tdh (100%), T3SS1(100%) genes and T3SS2α

(100%) genes and the majority of them were negative for the trh
(95.5%) and T3SS2β (95.5%) genes. Notably, two distinct lineages
of the T3SS2 have been described with a correlation between the
presence of tdh with T3SS2α and trh with T3SS2β. From this we
can observe that the virulence-related gene of trh and T3SS2β are
co-occurrences and disappearance simultaneously. Specifically,
the tdh (100%), T3SS1(100%) genes and T3SS2α (100%) genes
were detected in all ST655 isolates.

We conclude that correlation between virulence-related genes,
AMR phenotypes and genotypes was absent. Likewise, as shown
in Figure 3, genetic diversity is not apparently associated with the
AMR phenotypes and genotypes.

DISCUSSION

In this study, we analyzed 1900 fecal specimens collected from
Shanghai hospital from January, 2014 to December, 2015 and
isolated 42 V. parahaemolyticus strains, with an isolation rate
of 2.2%. Compared to other studies in China, this rate is
significantly less than the 6.0% reported for southern coastal
China in 2007–2012 (Li et al., 2014) and the 8.1% observed
in southeastern China in 2009–2013 (Chen et al., 2016).
Compared to other developing countries, our result is also
less than the clinical V. parahaemolyticus isolation rate of
5.1% detected in Northwestern Mexico from 2004 to 2010
(Velazquez-Roman et al., 2012). That indicates the current status
of V. parahaemolyticus infection in Shanghai is better than other
regions.

The thermostable direct haemolysin (TDH), the TDH-related
haemolysin (TRH) and the two type III secretion systems
(T3SS1 and T3SS2) are recognized as major virulence factors in
V. parahaemolyticus (Ceccarelli et al., 2013; Letchumanan et al.,
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FIGURE 3 | The relationship of genetic diversity, resistance phenotypic and genotypic characterization of 42 clinical V. parahaemolyticus isolates. ST, sequence type;
R, resistant; I, intermediate; S, sensitive.

2014; Raghunath, 2015). In our study, the hemolysin gene tdh was
detected in 88.1% V. parahaemolyticus isolates, whereas the trh
gene was present in only 7 strains. And we found that one of the
clinical isolates is co-negative for tdh and trh gene. This finding
is consistent with prior studies that not all clinical strains harbor
these genes (Okuda et al., 1997). All V. parahaemolyticus strains
in this study contains the T3SS1 component genes, which is also
consistent with a previous study (Jones et al., 2012). The T3SS2
contains two gene clusters, T3SS2α and T3SS2β (Ritchie et al.,
2012; Wang et al., 2015), which is closely related to tdh-positive
and trh-positive V. parahaemolyticus, respectively (Jones et al.,
2012). However, in this study, T3SS2α genes didn’t appear with
tdh+ genes simultaneously, which indicates that there is high
genetic heterogeneity in V. parahaemolyticus T3SSs.

The genetic diversity of V. parahaemolyticus was also
investigated using MLST. Compared to other molecular methods,
such as the identification of known virulence genes, phylogenetic
analysis of housekeeping genes, microarray, and PFGE, MLST

give a better understanding of the genetic relationships
among V. parahaemolyticus isolates (Perez-Losada et al., 2013;
Hazen et al., 2015; Ludeke et al., 2015). In this study, 42
V. parahaemolyticus isolates were classified into 20 sequence
types (STs) with 16 novel STs. The high proportion of novel STs
indicated a high genetic diversity of V. parahaemolyticus strains,
and shows that the information content in the MLST database on
this strain is still evolving. Thus, more MLST surveillances should
be performed in China and the rest of world, to contributed to
better understanding the genetic diversity of V. parahaemolyticus.
Furthermore, ST655 was the most frequent hypotype in our
study, which was clustered into the major clonal complex, CC655.
Previous studies have been reported that ST3 belonged to the
most prevalent clonal complex CC3, which is widely distributed
and plays an important role in V. parahaemolyticus infections
in multiple countries (Fuenzalida et al., 2006; Martinez-Urtaza
et al., 2013; Turner et al., 2013; Haendiges et al., 2015; Han
et al., 2016). There is only one locus difference between ST3
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and ST655, which indicates that these STs are closely related. We
recommend further research on the pandemic clonal complexes
CC655 containing ST655 for management of V. parahaemolyticus
infections.

Antibiotic treatment is necessary for controlling
V. parahaemolyticus infections, but overuse of antibiotics
has led to the generation and distribution of antimicrobial-
resistant bacteria, which is becoming a major concern for
human health (Ji et al., 2011; Shaw et al., 2014; Blair et al.,
2015). This study also investigated the antimicrobial resistance
phenotype and genotype of the 42 clinical V. parahaemolyticus
strains. All isolates showed a high level of resistance against
Ampicillin (100.0%), Streptomycin (100.0%), Cephazolin
(92.9%), Kanamycin (92.8%), and Amikacin (90.5%), and
eight out of 38 resistance genes (SHV, tet(B), strA, qnrA,
gryA, qnrB, sulI, sulII) were detected in at least two isolates.
According to this study and some previous researches (Chen
et al., 2016; Xie et al., 2017), the antimicrobial resistance of
clinical V. parahaemolyticus was significantly higher than that
of environmental strains which were isolated from water (Shaw
et al., 2014), aquatic products (Letchumanan et al., 2015; Lou
et al., 2016; Yu et al., 2016; Xie et al., 2017) or ready-to-eat
foods (Xie et al., 2016). As the human gastrointestinal
tract is a conducive environment for promoting horizontal
ARGs transfer (Hu et al., 2013; Theethakaew et al., 2013),
we speculate that the complex gastrointestinal environment
may accelerate the acquisition of antimicrobial resistance in
V. parahaemolytiucs. The microevolution mechanisms for the
different rates of acquisition of antibiotic resistance between
clinical and environmental pathogens should be studied
further.

CONCLUSION

This study is the first comprehensive research describing the
virulence, genetic diversity, antibiotic resistance phenotype, and
genotype of V. parahaemolyticus from diarrhea patients in
Shanghai. The study reveals that tdh, trh and T3SS genes are of

equal importance as virulence associated factors. MLST analysis
showed that the novel loci and STs points to high genetic
diversity of V. parahaemolyticus strains isolated in Shanghai.
ST655 was the most prevalent STs and this ST could have
evolved from the global pandemic ST3. The antimicrobial
resistance profiles indicated that the multidrug-resistant isolates
were also widespread and measures to contain or slowdown the
emergence of drug-resistant strains should be a top priority in
China. These results add to the epidemiological data of clinical
V. parahaemolyticus isolates in Shanghai and highlight the need
for more AMR type research for managing the burden of disease
caused by this pathogen in China.
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