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Abstract: Jamming and spoofing are the two main types of intentional interference for global
navigation satellite system (GNSS) receivers. Due to the entirely different signal characteristics
they have, a few techniques can deal with them simultaneously. This paper proposes a two-stage
interference suppression scheme based on antenna arrays, which can detect and mitigate jamming
and spoofing before the despreading of GNSS receivers. First, a subspace projection was adopted to
eliminate the high-power jamming signals. The output signal is still a multi-dimensional vector so
that the spatial processing technique can be used in the next stage. Then, the cyclostationarity of GNSS
signals were fully excavated to reduce or even remove the noise component in the spatial correlation
matrix. Thus, the signal subspace, including information of the power and the directions-of-arrival
(DOAs) of the GNSS signals, can be obtained. Next, a novel cyclic correlation eigenvalue test (CCET)
algorithm was proposed to detect the presence of a spoofing attack, and the cyclic music signal
classification (Cyclic MUSIC) algorithm was employed to estimate the DOAs of all the navigation
signals. Finally, this study employed a subspace projection again to eliminate the spoofing signals and
provide a higher gain for authentic satellite signals through beamforming. All the operations were
performed on the raw digital baseband signal so that they did not introduce additional computational
complexity to the GNSS receiver. The simulation results show that the proposed scheme not only
suppresses jamming and spoofing effectively but also maximizes the power of the authentic signals.
Nonetheless, the estimated DOA of spoofing signals may be helpful for the interference source
positioning in some applications.

Keywords: Global Navigation Satellite System (GNSS); anti-jamming; spoofing detection; spoofing
mitigation; antenna array; subspace projection; Cyclic MUSIC algorithm

1. Introduction

With the extensive application of global navigation satellite systems (GNSS) in both military
and civilian fields, the research of navigation countermeasure technology has gained more and more
attention. Due to the inherent weakness of the satellite navigation systems, GNSS receivers are
susceptible to both intentional and unintentional interference [1,2]. Jamming and spoofing are the two
main kinds of intentional interference.

A jammer transmits high-power signals to the target receiver, which is very easy to implement
because the power of the satellite signal reaching the ground is weak (about 20–30 dB below the
thermal noise). It can degrade the carrier to noise ratio (C/N0) performance of the victim receiver or
even put it into an “unlock” state [3]. Many relatively mature technologies can suppress this type of
interference [4–7]. Among them, spatial processing based on an antenna array is considered as the
most effective one. It can shape the reception beam pattern of the antenna array to form nulls toward
jamming sources, thus the interferences are suppressed [8,9].
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Spoofing is a more insidious and damaging interference that aims to mislead the target GNSS
receiver to generate an erroneous position and timing solutions without awareness [10]. It can be
realized by using a signal generator to counterfeit GNSS signals, namely generator-based spoofing, or by
replaying the recorded authentic satellite signals, namely receiver-based spoofing or meaconing. Since
the spoofing signals have similar temporal and spectral characteristics to authentic signals, it is more
challenging to detect and mitigate such interference. In recent years, an increasing number of research
groups have been involved in the study of spoofing countermeasures [11,12]. Most of them focus
on spoofing detection based on a single antenna, such as amplitude discrimination [13], polarization
discrimination [14], and the time-of-arrival (TOA) discrimination [15]. However, merely detecting the
presence of a spoofing attack is not enough, and the ultimate goal of anti-spoofing is to eliminate spoofing
signals and recover the positioning and timing capabilities of the victim receiver. The anti-spoofing
techniques based on the antenna array, which is rising recently, not only can analyze the spatial
signature of the received signals and identify spatially correlated spoofing signals, but also mitigate
them by nulling technology [12]. These kinds of techniques can be implemented at the pre-despreading
or post-despreading stage of a GNSS receiver. A pre-despreading method in [16] cross-correlated
the baseband samples from different antennas in order to form a spatial correlation matrix and
extracted the eigenvector corresponding to the maximum eigenvalue as the spoofing subspace. Then,
projecting the array signal into its orthogonal subspace mitigated the spoofing signals. The basic
idea is that all spoofing signals come from the same direction, the power density of which is higher
than the other directions. Although this method has low complexity, it is difficult to determine the
detection threshold because the navigation signals arriving at the receiver are generally below the
noise level, whether it is an authentic signal or spoofing signal. In the post-despreading methods,
the correlation and accumulation processes have been applied to each antenna sample [17,18]. Then,
the directions-of-arrival (DOAs) of all the incoming navigation signals are estimated to distinguish
between the spoofing and authentic signals. This method can not only ensure the gain of the authentic
satellite signals through beamforming [19] while eliminating the spoofing signals, but also provide
support for interference source positioning in some applications. Nonetheless, higher computational
complexity makes it difficult to put into practice due to a large number of correlators that are needed
for the receiver.

It is worth mentioning that there is a more complicated interference scenario where jamming
and spoofing coexist. For example, in a confrontational environment, the jamming makes the target
receiver loss-of-lock in a short time, and then the spoofing with higher power than the satellite signal
leads the receiver to lock onto a false peak during reacquisition. Another possibility is to transmit
high-power jamming signals and latent spoofing signals at the same time. Since most receivers on the
market have strong capabilities of anti-jamming, this strategy can raise the probability of making the
victim receiver fail in its positioning.

For such complex situations, the existing countermeasures are mostly a combination of adaptive
spatial filtering based on array antennas and single antenna-based spoofing detection. Some schemes
can suppress both jamming and spoofing by spatial processing. The authors in [20] introduced
the subspace projection technique to eliminate jamming signals and exploit the despread-respread
method to suppress spoofing interference. The despread-respread method [21], as a post-despreading
method, requires repeated multi-peak acquisition processes for all pseudo-random noise (PRN) codes,
thus increasing the computational burden of the receiver significantly. However, the acquisition
threshold is difficult to determine in practice. If the threshold is too large, it can miss the possible false
signal. If it is too small, it can be susceptible to multipath effects, resulting in a high false alarm rate.
As for the pre-despreading methods, the authors in [22] employed the cross-spectral self-coherence
restoral (cross-SCORE) algorithm to mitigate jamming and spoofing signals simultaneously. It presents
a new idea that the navigation signal component can be enhanced in the cross-covariance matrix due
to the self-coherence of the C/A code. However, the authors found in the simulation that this approach
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would fail when periodic jamming occurs, and the spoofing detection performance is sensitive to the
location and length of the data block that is selected to estimate the cross-covariance matrix.

This paper aims to propose a novel GNSS interference suppression scheme using an antenna
array that can detect and mitigate both jamming and spoofing signals before the despreading process
of the receiver and reach a compromise between the computational cost and interference suppression
capability. Since the two types of interference have entirely different signal characteristics, a two-stage
structure was used to cope with them in turn. In the first stage, the spatial correlation matrix of
the received signal is estimated. By performing the eigenvalue decomposition (EVD) on this matrix,
the number of jamming signals and the jamming subspace can be easily determined because the
jamming power is much higher than the noise level. Then, the array signal is projected into the
jamming’s orthogonal subspace to eliminate the jamming signals. In the next stage, in order to deal
with the spoofing signals with low power, the authors make full use of the cyclostationarity of GNSS
signals to construct a cyclic correlation matrix, in which the noise component is significantly reduced
or even removed. Thus, the signal subspace, which includes information about the power and DOAs
of the GNSS signals, can be obtained before the despreading process. Then, a novel cyclic correlation
eigenvalue test (CCET) algorithm is proposed to detect the presence of a spoofing attack, in which a
test statistic is calculated based on the principal eigenvalues of the cyclic correlation matrix and then
compared to a predefined threshold. The only assumption on this spoofing detection method is that
all the spoofing signals are transmitted from a single-antenna source. Afterward, the cyclic music
signal classification (Cyclic MUSIC) algorithm is employed to estimate the DOAs of all the navigation
signals. Finally, subspace projection is again utilized to eliminate spoofing signals and meanwhile
perform beamforming for each authentic satellite signal to overcome the power reduction caused by
interference nulls.

The main contributions of this paper can be summarized as follows:

(1) A two-stage GNSS interference suppression scheme is proposed, in which the subspace projection
instead of the conventional adaptive spatial filtering technique is adopted to remove jamming
signals so that spoofing signals can be detected and mitigated by the spatial processing technology
based on the array antenna.

(2) Due to all of the above, the operations are performed on the digitized baseband samples before
the despreading process. The proposed technique does not introduce additional computational
complexity to the GNSS receiver. Therefore, it is convenient to apply in real systems.

(3) Compared with other anti-spoofing methods implemented at the pre-despreading stage, such as
the above-mentioned one [16], the proposed scheme not only suppresses jamming and spoofing
effectively but also provides a higher gain in the directions of the desired satellite signal.
Nonetheless, the estimated DOA of spoofing signals may be helpful for the interference source
positioning in some applications.

(4) The proposed technique is effective only when the number of array elements is higher than
the number of signals (include interference and satellite signals). Therefore, a suboptimal
scheme is provided for the applications using small arrays, in which the maximum gain
requirement for the authentic signals is relaxed to ensure that the jamming and spoofing signals
are successfully eliminated.

The rest of this paper is organized as follows. In Section 2, the interference scenario is described
and the received signal model is introduced. Then, the two-stage interference suppression scheme is
presented in Section 3. In Section 4, the performance of the proposed spoofing detection is evaluated
through theoretical analysis and simulation results. In Section 5, more simulation results are provided
to validate the proposed scheme in different application scenarios. Section 6 concludes this paper.
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2. Signal Model

This paper focuses on the complicated interference scenario where both jamming and spoofing
exist. As an example, Figure 1 illustrates an intentional attack on a GNSS receiver mounted on an aerial
vehicle. Herein, there are likely one or several jamming sources emitting high-power radio frequency
(RF) interference, while the spoofing source generally uses a single-antenna to transmit all the false
signals, whether it is generator-based spoofing or receiver-based spoofing.
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Figure 1. Illustration of an intentional attack on a global navigation satellite system (GNSS) receiver
mounted on an aerial vehicle.

2.1. Received Array Signal

Without the loss of generality, it is assumed that MA authentic satellite signals, MS spoofing
signals and MJ jamming signals arrive at an N-element antenna array. Each element of the antenna
array is connected to an RF front end and the resulting baseband sampled signals constitute the N × 1
array signal vector as follows:

x(nTs) =
MA∑

m=1

aA
msA

m(nTs) +
MS∑
p=1

aS
psS

p(nTs) +
MJ∑
q=1

aJ
q jq(nTs) + n(nTs) (1)

where Ts is the sampling interval. Each row of x(nTs) denotes the received signal by the corresponding
array element and n(nTs) is a complex additive white Gaussian noise vector. jq(nTs) (q = 1, · · ·MJ)

represents the jth jamming signal; sA
m(nTs) (m = 1, · · ·MA) denotes the mth authentic satellite signal,

sS
p(nTs) (p = 1, · · ·MS) means the pth spoofing signal and

sA
m(nTs) =

√
PA

mDA
m(nTs − τA

m)CA
m(nTs − τA

m)e j2π( fIF+ f A
m )nTs+ jφA

m

sS
p(nTs) =

√
PS

pDS
p(nTs − τS

p)CS
p(nTs − τS

p)e
j2π( fIF+ f S

p )nTs+ jφS
p

(2)

in which fIF is the intermediate frequency (IF), symbols P, τ, f , φ represent the power, code delay,
Doppler frequency and phase of each signal, and the superscripts A, S refer to the authentic satellite
and spoofing signal, respectively. D(nTs) is the navigation data bit and C(nTs) is the PRN sequence that
identifies each satellite. Depending on the type of the spoofing attack, the number of spoofing PRNs
can be the same or different from the authentic ones. The differences of the code delay and the Doppler
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frequency between the spoofing and authentic signals can be designed optionally. However, the power
level of each spoofing signal should be comparable to that of its corresponding authentic one.

In Equation (1), the symbols aA
m, aS

p , aJ
q denote the array steering vectors of the authentic satellite

signals, the spoofing signals, and the jamming signals respectively. They describe the carrier phase
differences of the received signals from the different antenna channels in specific directions [23].
Figure 2 shows the local antenna coordinate system, in which the x-axis and y-axis lie in the planar
array and the z-axis points to the normal direction of the array, forming a right-hand coordinate system.
Assume that the direction of the incoming signal is depicted by the angle pair γ = (θ,ϕ), with θ as the
angle off the x−y plane and ϕ as the angle off the x-axis within the x−y plane. The incident direction
vector is presented as:

g(γ) = −[cosθ cosϕ, cosθ sinϕ, sinθ]T (3)
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Ideally, the steering vector of this incoming signal can be expressed as follows:

a(γ) = [e− j 2π
λ pT

1 g(γ), e− j 2π
λ pT

2 g(γ), · · · , e− j 2π
λ pT

Ng(γ)]
T

(4)

where pk = [xk, yk, zk]
T (k = 1, · · ·N) is the position vector of the kth element and λ denotes the

wavelength of the incident signal.
It can be seen that the signals incident on the array in the same direction have the same steering

vector. Therefore, based on the assumption of single-antenna spoofing source, the received signal
model in Equation (1) can be rewritten as:

x(nTs) =
MA∑

m=1

aA
msA

m(nTs) + aS
MS∑
p=1

sS
p(nTs) +

MJ∑
q=1

aJ
q jq(nTs) + n(nTs) (5)

in which aS is the same steering vector of all the spoofing signals.

2.2. Cyclostationarity of Global Positioning System (GPS) L1 Signals

It is well known that most GNSS systems employ PRN codes that are derived from linear
shift-register sequences owing to their superior correlation properties. Considering the civilian GPS L1
signal, the signal C(nTs) in Equation (2) is the periodic replication of a specific PRN code sequence of
1023 chips for each satellite [24]. Therefore, each GPS L1 signal exhibits a cyclostationarity at the code
period TC/A = NcTc, where Nc = 1023 and Tc = 1/1.023 MHz is the chip period.

A signal is considered to be cyclostationary if its cyclic autocorrelation function (CAF), defined as:



Sensors 2019, 19, 3870 6 of 26

Rcc
ss(τ) = E

{
s(t)s∗(t− τ)

}
(6)

is non-zero with some lag parameter τ [25]. Note that the CAF in this paper is the abbreviation of
the cyclic autocorrelation function rather than the well-known cross-ambiguity function. Due to
the periodicity of the PRN codes, the CAF of the individual GPS L1 signal is also periodic and
is non-zero when and only when τ = lTC/A (l = 1, 2, 3, · · ·). Therefore, it can be considered as a
cyclostationary signal.

It is worth mentioning that the spoofing detection and mitigation technique proposed in this
paper is applicable to all the GNSS signals with periodic PRN codes. For convenience, the following
section is described in the context of GPS L1 C/A signals.

3. Proposed Interference Suppression Scheme

Figure 3 depicts the block diagram of the proposed interference suppression scheme. It is
implemented in two stages, namely jamming suppression and spoofing detection and mitigation.
In the jamming suppression module, the spatial covariance matrix of the received signal is firstly
estimated. Then, the EVD of the covariance matrix is performed to determine the number of jamming
signals and the eigenvectors of the jamming subspace. Finally, subspace projection is used to obtain
a jamming-free signal vector. The second stage of this scheme is the detection and mitigation of a
spoofing attack. It mainly contains five steps: (1) The cyclic correlation matrix estimation, (2) signal
subspace determination, (3) spoofing detection based on the CCET algorithm, (4) DOA estimation and
(5) subspace projection and beamforming. All the processing of the proposed scheme is performed on
the raw digital baseband signal, and the resulting signals are passed to the despreading and tracking
unit of the GNSS receiver for generating authentic PVT solutions. The details of these stages are
provided in following subsections.
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3.1. Jamming Suppression

Based on Equation (5), the covariance matrix of the received signal vector can be expressed
as follows:

Rx = E
{
x(nTs)xH(nTs)

}
=

MJ∑
q=1

RJ
q(nTs)a

J
q(a

J
q)

H
+

MA∑
m=1

RA
m(nTs)aA

m(aA
m)

H
+

MS∑
p=1

RS
p(nTs)

aS
(
aS

)H
+ σ2

nI
(7)

which is generally estimated by K samples in practice using the following formula:

R̂x =
1
K

K−1∑
k=0

x(kTs)xH(kTs) (8)

In Equation (7),
RJ

q(nTs) = E
{
sJ

q(nTs)s
J∗
q (nTs)

}
= PJ

q

RA
m(nTs) = E

{
sA

m(nTs)sA∗
m (nTs)

}
= PA

m

RS
p(nTs) = E

{
sS

p(nTs)sS∗
p (nTs)

}
= PS

p

(9)

are the values of the autocorrelation function of the jth jamming signal, the mth satellite signal and
the pth spoofing signal, respectively, indicating the corresponding signal strength. In most situations,
the power of satellite signal is approximately 20~30 dB lower than the noise and the spoofing signal is
slightly higher than the authentic signal but still below the noise level, while jamming is usually much
stronger than the noise. That is, the power of them satisfies:

PJ
q � σ2

n � PS
p ≥ PA

m (10)

where q = 1, · · · , MJ, p = 1, · · · , MS, m = 1, · · · , MA. Hence, the covariance matrix can be approximated
as the sum of the jamming covariance matrix and the noise covariance matrix as follows:

R̂x ≈ R̂J + R̂n

≈

MJ∑
q=1

PJ
qaJ

q(a
J
q)

H
+ σ2

nI
(11)

In order to obtain the jamming subspace, the EVD of the covariance matrix and select corresponding
eigenvectors of the MJ largest eigenvalues can be performed. Assume that the EVD of R̂x is given by

R̂x =
N∑

i=1

β̂iêiêH
i (12)

where β̂1, β̂2, · · · , β̂N are the eigenvalues in descending order and ê1, ê2, · · · , êN are the normalized
eigenvectors. Under the premise that the number of the jamming sources is unknown, we determine
the number of the large eigenvalues are determined based on the following criterion [23]

β̂ j
N∑

i=1
β̂i

> TJ
1 ( j = 1, · · · , N)

β̂ j+1

β̂ j
> TJ

2 ( j = 1, · · · , N − 1)

(13)

in which TJ
1, TJ

2 are the test thresholds. The first metric is the ratio of the jth eigenvalue to the sum of all
the eigenvalues, denoting the percent of the total power contained in ... If it exceeds the threshold,
β̂ j is considered as a large eigenvalue. The second metric is the ratio of the (j + 1) th eigenvalue to
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the jth eigenvalue which has been declared to be large. If it is tiny, even approximately zero, then the
eigenvalues β̂k(k = j + 1, · · · , N) correspond to the noise subspace.

Then, the number of large eigenvalues is regarded as the dimension of the jamming subspace and
the first M̂J eigenvectors construct the jamming subspace:{

VJ = [ê1, ê2, · · · , êMJ ] M̂J
≥ 1

VJ = 0 M̂J = 0
(14)

Accordingly, the orthogonal complement space to VJ is defined as:

VJ
⊥
= I−VJ

(
VH

J VJ
)−1

VH
J (15)

which meets:
VJ
⊥

aJ
q ≈ 0 (q = 1, · · · , MJ) (16)

Therefore, projecting the received signal in this orthogonal complement space can suppress
jamming and the output signal vector is given by:

y(nTs) = VJ
⊥

x(nTs)

=
MA∑

m=1
bA

msA
m(nTs) + bS

MS∑
p=1

sS
p(nTs) +

~
n(nTs)

(17)

where bA
m = VJ

⊥
aA

m, bS = VJ
⊥

aS denote the new steering vectors of the authentic satellite signal and
spoofing signals respectively, and

~
n(nTs) = VJ

⊥
n(nTs) is the new noise vector. Note that the new

steering vector is still an N-dimensional column vector but the subspace projection reduces its spatial
degree of freedom (DOF) to be (N − M̂J).

3.2. Spoofing Detection and Mitigation

In the output of the jamming suppression module, the power of the spoofing signals and satellite
signals are still below the noise level. In order to cope with the spoofing signals before the despreading
operation of the receiver, the particular characteristics of the GPS signals have to be excavated
sufficiently. As mentioned in Section 2, each GPS L1 signal is a cyclostationary sequence that has a
periodic cyclic autocorrelation function, and the value of the CAF is non-zero when and only when the
lag parameter is τ = lTC/A (l = 1, 2, 3, · · ·). Therefore, in order to concentrate on the signal components
in the spatial correlation matrix and remove the noise component, the cyclic correlation matrix should
be calculated, which is defined as the cross-correlation of the received signal vector and its delayed
version as follows:

Rc
y = E

{
y(nTs)yH(nTs − Tc/a)

}
=

MA∑
m=1

bA
m

(
bA

m

)H
Rcc

mAmA(TC/A) + bS
(
bS

)H MS∑
p=1

Rcc
pSpS(TC/A) +

MA∑
i=1

bA
i

(
bS

)H
Rcc

iSiA
(TC/A)

(18)

where Tc/a is the C/A code period, which is almost equal to 1 ms for each GPS L1 signal without
considering the influence of code Doppler.

Rcc
mAmA(TC/A) denotes the value of the CAF of the mth (m = 1, · · ·MA) satellite signal at Tc/a.

Neglecting the navigation data bits, it can be expressed as:

Rcc
mAmA(TC/A) = E

{
sA

m(nTs)sA∗
m (nTs − TC/A)

}
= PA

me j2π( fIF+ f A
m )Tc/a

(19)

Similarly,
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Rcc
pSpS(TC/A) = E

{
sS

p(nTs)sS∗
p (nTs − TC/A)

}
= PS

pe j2π( fIF+ f S
p )Tc/a

(20)

is the value of CAF of the pth (p = 1, · · ·MS) spoofing signal at Tc/a.
Knowing that the Doppler frequency shifts for the baseband GPS signals are generally between

−5 kHz and +5 kHz, the following approximation can be made:

e j2π( fIF+ f A
m )Tc/a ≈ e j2π( fIF+ f S

p )Tc/a ≈ e j2π fIFTc/a , CIF (21)

where CIF is defined as a complex constant, the norm of which is 1. Accordingly, Equation (19), (20)
can be simplified to:

Rcc
mAmA(TC/A) ≈ CIFPA

m

Rcc
pSpS(TC/A) ≈ CIFPS

p
(22)

The last term of Equation (18) is the cross correlation between the satellite and spoofing signals
with the same PRN code CA

i (t) = CS
i (t) = Ci(t), which can be expressed as:

Rcc
iSiA

(TC/A) = E
{
sA

i (t)s
S∗
i (nTs − TC/A)

}
≈

√
PA

i

√
PS

i E
{
Ci(nTs − τA

i )Ci(nTs − τS
i − TC/A)

}
e j2π( f A

i − f A
i )TC/A

(23)

As can be seen, its value depends on the code delay difference and the Doppler frequency
difference between the satellite signal and its counterfeit signal. In general, the Doppler frequency
difference between the spoofing signal and the corresponding satellite signal is a few Hz, it can be
written

(
f A
i − f A

i

)
TC/A � 1 and the phase rotation can be neglected. Equation (23) can be denoted as:

Rcc
iAiS

(TC/A) ≈ ρ
AS
ii

√
PA

i

√
PS

i (24)

where ρAS
ii

(
0 ≤ ρAS

ii ≤ 1
)

is the correlation result of Ci(nTs − τA
i ) and Ci(nTs − τS

i − TC/A). In general,
the spoofing signals are designed to be more than one chip delay or advance relative to the authentic
signals, and Ci(nTs − τA

i ) and Ci(nTs − τS
i − TC/A) can be considered to be uncorrelated, that is,

Rcc
iSiA

(TC/A) = 0 [24]. However, in some complicated scenarios, the code phase differences may be
within one chip, which makes it difficult to distinguish between spoofing and authentic signals by the
time-domain methods.

In Equation (18), the cross-correlation matrix of each GPS signal and noise vector and the
cross-correlation matrix of the noise vector and its delayed version have been eliminated because the
noise is assumed to be Gaussian.

Without the loss of generality, the authors regard spoofing detection as a binary statistical
hypothesis testing problem with H0 denoting the null hypothesis that there is no spoofing attack and
with H1 denoting the null hypothesis that spoofing attack is present. Equation (18) is reformulated as:

Rc
y =


MA∑

m=1

(
CIFPA

m

)
bA

m

(
bA

m

)H
H0

MA∑
m=1

(
CIFPA

m

)
bA

m

(
bA

m

)H
+

CIF
MS∑
p=1

PS
p

bS(bS)
H
+

MA∑
i=1

(
ρAS

ii

√
PA

i

√
PS

i

)
bA

i

(
bS

)H
H1

(25)

As can be observed, when there is no spoofing attack, the rank of the cyclic correlation matrix is
equal to the number of satellite signals, i.e., rank

(
Rc

y

)
= MA. By computing the EVD, MA non-zero

eigenvalues and (N −MA) zero eigenvalues can be obtained. The first MA eigenvectors is a set of
the orthogonal basis of the signal space spanned by the signal steering vectors

{
bA

1 , bA
2 , · · · , bA

MA

}
,
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and the remaining eigenvectors corresponding to the zero eigenvalues form the null space. Therefore,
the DOAs of signals can be estimated by the Cyclic MUSIC algorithm [26]. The difference between this
algorithm and the traditional MUSIC algorithm is that it uses the cyclic correlation matrix instead of
the covariance matrix.

Whereas if a spoofing attack is present, H1 consists of two cases. (i) When each spoofing signal is
off the authentic counterpart by more than one chip in time, the last term in Equation (25) is negligible.
The rank of the cyclic correlation matrix becomes (MA + 1) and the signal subspace contains the
steering vectors of satellite signals and spoofing signals as

{
bS, bA

1 , bA
2 , · · · , bA

MA

}
. Due to the power

of all the spoofing signals are combined in a specific steering vector, there should be a significantly
larger eigenvalue in the (MA + 1) principal eigenvalues. The maximum peak location of the spatial
power spectrum estimated by the Cyclic MUSIC algorithm indicates the DOA of the spoofing signals.
(ii) When the code phase difference is within one chip, the performance of the Cyclic MUSIC algorithm
depends on the correlation between the spoofing and authentic signals. If the spoofing is close to
the authentic signal, the high correlation may cause rank deficiency of the signal subspace. In the
follow-up simulations, it has been found that when the offset between spoofing and authentic signals
is less than the 0.5 chips, the DOA of these signals cannot be estimated accurately. On the other hand,
if the offset is more than the 0.5 chips, the correlation between the spoofing and authentic signals is
not sufficient to make their DOA indistinguishable. In either case, because each pair of the correlated
signals contains a spoofing signal, a significant component can still appear in the principal eigenvalues.
The victim can detect the unusual eigenvalue and issue the spoofing alarm.

Therefore, in this section, the focus is on the case of weak correlation and a cyclic correlation
eigenvalues test (CCET) algorithm is proposed to detect the presence of a spoofing attack and make the
full use of the DOA estimation results to mitigate spoofing signals by subspace projection and enhance
the authentic satellite signals through beamforming. The following subsections present the specific
steps of the proposed technique.

3.2.1. Cyclic Correlation Matrix Estimation

In practice, the cyclic correlation matrix can not be obtained accurately and has to be estimated by
finite samples as follows:

~
R

c
y =

1
K

YK
(
YD

K

)H
(26)

where:
YK = [y(k), y(k− 1), · · · , y(k−K + 1)]
YD

K = [y(k−D), y(k−D− 1), · · · , y(k−D−K + 1)]

are the N ×K data matrix and respective delayed matrix, K is the length of the data block and D is the
number of samples in one code period (1 ms).

This is the most direct way of estimating the cyclic correlation matrix, which is the most employed
in the literature [22]. However, the authors found through the experiments that it might yield poor
estimation performance when applied to a real system. This is because the data samples used for
cyclic correlation matrix estimation are selected randomly and the length of the data block is limited.
Take one of the satellite or spoofing signals as an example, and GPS L1 C/A signal structure is shown
in Figure 4. Several pairs of data blocks are marked in the figure, and it is noted that the Data Block G
(purple line) is split between two adjacent symbols with opposite signs. If this data block is used for
estimating R̃

c
y, the correlation result of this signal can be weakened.

This paper solves this problem by using multiple data blocks to get many more correlation
matrixes. As shown in Figure 4, G (1 ≤ G < 20) data blocks are selected and the averaging correlation
matrix can be expressed as:

R̂c
y =

1
G

G∑
g=1

(
R̂c

y

)g
=

1
G

G∑
g=1

1
K

Yg
K

(
YgD

K

)H
(27)
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where
Yg

K = [y(k− gD), y(k− 1− gD), · · · , y(k−K + 1− gD)]

YgD
K = [y(k− (g + 1)D), y(k− 1− (g + 1)D), · · · , y(k−K + 1− (g + 1)D)]

are the gth data block and the gth delayed data block. For each GPS L1 C/A signal, at most, one pair of
these data blocks may suffer from symbol transition, while the others belong to one symbol.
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However, it is worth noting that Equation (27) is generally not Hermitian, resulting in the EVD
cannot be performed. It needs to be turned into a conjugate symmetry matrix by:(

R̂c
y

)g∗
=

1
2

( 1
K

Yg
K

(
YgD

K

)H
+

1
K

YgD
K

(
Yg

K

)H
)

(28)

which has been proved to have similar statistical properties with
(
R̂c

y

)g
in [27].

Summing up the above, the estimation of the cyclic correlation matrix is given by:

R̂c
y =

1
G

G∑
g=1

1
2K

(
Yg

K

(
YgD

K

)H
+ YgD

K

(
Yg

K

)H
)

(29)

3.2.2. Signal Subspace Determination

Due to the cyclic correlation matrix is estimated by finite samples, in practice, there are no zero
eigenvalues but only small eigenvalues. The dimension of the signal subspace d based on the minimum
description length (MDL) criterion [28] needs to be estimated before spoofing detection and DOA
estimation. Denoting the EVD of R̂c

y as follows:

R̂c
y =

N∑
i=1

λ̂iûiûH
i (30)

where λ̂1, λ̂2, · · · , λ̂N are the eigenvalues in descending order and û1, û2, · · · , ûN are the normalized
eigenvectors. The MDL estimator of the signal subspace dimension is given by:

d̂ = arg min
d=0,···N−M̂J

{
Ld(d) +

1
2

[
d
(
N − M̂J

− d
)
+ 1

]
ln(GK)

}
(31)

where

Ld(d) = GK
(
N − M̂J

− d
)

ln


1

N−M̂J−d

N−M̂J∑
k=d+1

λ̂k(
N∏

k=d+1
λ̂k

) 1
N−M̂J−d


(32)

is the log-likelihood function and GK is the number of all samples for estimating R̂c
y. It is noticeable

that the used set of eigenvalues is
{
λ̂1, λ̂2, · · · , λ̂N−M̂J

}
instead of

{
λ̂1, λ̂2, · · · , λ̂N} . This is because



Sensors 2019, 19, 3870 12 of 26

the jamming suppression module has reduced the rank of the correlation matrix through subspace
projection, resulting in the latter M̂J eigenvalues being negligible.

Then, the first d̂ eigenvectors construct the signal subspace:

ÛS =
[

û1 û2 · · · ûd̂

]
(33)

and the remaining
(
N − d̂

)
eigenvectors form the null space:

ÛN =
[

ûd̂+1 ûd̂+2 · · · ûN
]

(34)

3.2.3. Spoofing Detection Based on the CCET Algorithm

This subsection describes the proposed spoofing detection method based on the distribution of
the principal eigenvalues of the cyclic correlation matrix, which is referred to as the CCET algorithm.

As mentioned before, there is a significantly larger eigenvalue in the principal eigenvalues{
λ̂1, λ̂2, · · · , λ̂d̂

}
if the spoofing attack exists. To clarify this point further, two groups of Monte-Carlo

simulations were carried out with a 10-element uniform linear array (ULA) under H0 and H1. The four
satellite signals were considered and the power of each signal was assumed to be –157 dBW. Under H1,
four spoofing signals with the same PRNs as the satellite signals have been assumed and the power
of them was also −157 dBW. The code delay and Doppler frequency of each spoofing signals were
randomly chosen but not equal to those of authentic signals. The power of additive White Gaussian
noise was assumed to be −130 dBW. The run was repeated 1000 times. The normalized eigenvalues
under H0 and H1 arranged in descending order, are shown in Figure 5.
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As can be seen from the figure, the first four eigenvalues distribute approximately along a straight
line concerning their indexes under H0. In the other case, when several spoofing signals from one
specific direction present, their power is superimposed to produce a significantly large eigenvalue,
which is no longer consistent with the straight line formed by other ones. If a straight line is found to
fit the points of λ̂i (i = 1, · · · , d̂) in a least-squares sense, the quality of the obtained solution can be
assessed using the sum of squares of errors (SSE), which is defined by:

SSE =
d̂∑

i=1

(
λ̂i − λ̃i

)2
(35)

where λ̃i is the points on the straight line corresponding to λ̂i.
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Under H0, the SSE metric follows a non-central chi-squared (χ2) distribution with d̂ degrees of
freedom and non-central parameter σ0, which depends on the variance of the satellite signal power.
When the power of all the satellite signals are equal, the residuals of the least- squares solution are
unbiased and the SSE metric follows a central χ2 distribution [29]. Under H1, the SSE metric follows a
non-central χ2 distribution with the same degrees of freedom d̂, but a bigger non-zero parameter σ1

owing to the largest eigenvalue. Therefore, it is well-reasoned to take the SSE metric of linear fitting as
the test statistic of spoofing detection, which follows:

Tsse ∼

 χ2
(
d̂, σ0

)
χ2

(
d̂, σ1

) under H0

under H1
(36)

Then the decision rule can be expressed as:

Tsse

H0

<
>
H1

η (37)

where η > 0 is a threshold chosen to achieve an expected detection performance.
The false alarm probability PFA and the detection probability PD are vital parameters used to

evaluate the performance of detection algorithms. The detection probability is the probability of being
under H1 and accurately detecting the spoofing attack. The false alarm probability is the probability of
being under H0 but mistakenly detecting a spoofing. That is,

PD , Pr(T > η|H1 )

PFA , Pr(T > η|H0 )
(38)

An optimal threshold is required to improve the detection probability and reduce the false alarm
probability as much as possible. In practical applications, the receiver may be up against different
spoofing scenarios where the number and power of spoofing signals are unknown and the incoming
direction is randomly varied. It is difficult to predict the probability distribution function (PDF) of the
test statistic under H1. Nevertheless, when the H0 hypothesis is true, the PDF of the test statistic in
different scenarios can be obtained where the number and power level of satellite signals are varied
but known. Once the PDF under H0 is determined, given a desired false alarm probability PFA,
the detection threshold η can be calculated by satisfying:∫

∞

η
fχ2(x, d, σ0)dx = PFA (39)

where fχ2(·, d, σ0) is the PDF of a χ2 random variable with degree-of-freedom d and non- central
parameter σ0.

3.2.4. DOA Estimation and Spoofing Mitigation

After the spoofing detection unit, the Cyclic MUSIC algorithm is adopted to estimate the DOAs of
the navigation signals. Its basic idea is to estimate the spatial power spectrum by the signal subspace
ÛS obtained from the cyclic correlation matrix as follows:

Q(γ) =
1

v(γ)
(
I− ÛSÛH

S

)
vH(γ)

(40)
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in which v(γ) = PJ
⊥

a(γ) is the steering vector of an incoming signal from γ = (θ,ϕ), and then search
for its d̂ largest peaks. In the spatial power spectrum, the location of the ith peak γ̂i = (θ̂i, ϕ̂i) denotes
the DOA of the ith signal and the value of the peak indicates the power density in that direction.

Depending on the result of spoofing detection, the subsequent process is distinct in the following
two cases:

• Assume that H1 is true

The location of the largest peak γ̂1 = (θ̂1, ϕ̂1) denotes the DOA of the spoofing signals and the
spoofing steering vector can be estimated as follows:

b̂
S
= PJ

⊥
a(γ̂1) (41)

In the same way, the steering vectors of
(
d̂− 1

)
authentic satellite signals are obtained by:

b̂
A
i = PJ

⊥
a(γ̂i+1) (i = 1, · · · , d̂− 1) (42)

Similar to the subspace projection method in Section 3.1, spoofing interference can be eliminated
by projecting the array signal vector onto the null space of the spoofing subspace. The projection
matrix is calculated by:

PS
⊥
= I−

b̂
S
(b̂

S
)

H

(b̂
S
)

H
b̂

S
(43)

Furthermore, to reduce unavoidable attenuation on the array pattern in the directions of authentic
satellite signals due to jamming and spoofing nulls, the power of each authentic signal is maximized
individually by beamforming. The array weight vector for the ith authentic satellite signals can be
represented by:

wH
i =

(
b̂

A
i

)H
PS
⊥

(44)

and the final output of the ith signal channel is given by:

zi(nTs) = wH
i y(nTs) (45)

• Assume that H0 is true

The locations of the d̂ peak indicate the DOAs of the authentic satellite signals and the corresponding
estimated value of the steering vectors is expressed as follows:

b̂
A
i = PJ

⊥
a(γ̂i) (i = 1, · · · , d̂) (46)

The spoofing mitigation is no longer required in this case and the array weight vector in
Equation (44) becomes:

wH
i =

(
b̂

A
i

)H
(47)

3.3. Overall Interference Suppression Scheme

To summarize the proposed multiple interference suppression scheme, all the steps are listed in
Algorithm 1.
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Algorithm 1 Multiple Interference Suppression Scheme

Jamming Suppression
Input: x(nTs)

(1) Estimate the spatial covariance matrix R̂x = 1
K
∑K−1

k=0 x(kTs)xH(kTs).

(2) Compute the EVD of R̂x, and obtain the jamming subspace VJ and its orthogonal subspace PJ
⊥

.

(3) Project the received signal onto the jamming-free subspace y(nTs) = PJ
⊥

x(nTs).

Output: y(nTs), PJ
⊥

, MJ

Spoofing Detection and Mitigation
Input: y(nTs), PJ

⊥
, MJ

(1) Estimate the cyclic correlation matrix by Equation (28).
(2) Compute the EVD of R̂c

y and obtain the eigenvalues and eigenvectors of the signal subspace

λ̂i, ûi
(
i = 1, · · · , d̂

)
.

(3) Compute the test statistic Tsse based on the CCET algorithm.
(4) Decision. If Tsse > η, then the spoofing signals exist; otherwise, there is no spoofing signal.

(5) Estimate the spoofing steering vector b̂
S

and the authentic steering vectors b̂
A
i (i = 1, · · · , d̂− 1) by the

Cyclic MUSIC algorithm.

(6) Compute the array weight vector for each satellite signal wH
i =

(
b̂

A
i

)H
PS
⊥

(under H1) or wH
i =

(
b̂

A
i

)H

(under H0)
(7) Obtain the output signal zi(nTs) = wH

i y(nTs)

Output: zi(nTs)

3.4. Countermeasure in the Case of Small Arrays

Notably, the above method is proposed under the premise that the number of array elements
is higher than the number of signals (include interference and satellite signals). That is to say,
after jamming the suppressing module, the remaining degree of freedom is still higher than the number
of other signals so that the DOAs of the satellite signals and the spoofing signals can be obtained.
However, in some small or agile applications, it may be not possible to install a large enough array.
Under the circumstances, the requirement for the gain of the authentic signal must be relaxed to ensure
that the spoofing signals are successfully eliminated.

When the EVD of R̂c
y contains d̂ = N −MJ non-zero eigenvalues, it denotes the inability to obtain

the number of the signal sources and estimate their directions accurately. In this case, only spoofing
signals can be detected by observing whether there is a relatively large eigenvalue. Similar to jamming
detection, the authors predicate the existence of the spoofing attack if the largest eigenvalue satisfies:

λ̂1
λ̂2
> TS

1 (a)
λ̂1

N−MJ∑
i=1

λ̂i

> TS
2 (b) (48)

where TS
1 , TS

2 are the test threshholds. It is worth mentioning that the spoofing detection performance
of this method is superior to that of the traditional pre-despreading technique. As the noise component
has been greatly attenuated by the cyclic correlation process, the eigenvalues of R̂c

y directly reflect the
percent of the signal power in a specific direction in the total power.

Then project the array signal vector onto the null space of the spoofing subspace, and the final
output is given by:

z(t) = wH
S PS
⊥

y(t) (49)
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where PS
⊥
= I− û1ûH

1 1 is the projection matrix for spoofing mitigation and wS = [1, 0, · · · , 0]H denotes
the weight vector resulting in the quiescent beam pattern [22], with the value of 1 corresponding to the
reference element.

4. Performance Evaluation of the Spoofing Detection Method

In the proposed scheme, the jamming suppression module is simple in principle and significantly
effective, while the spoofing detection and mitigation module is implemented in multiple steps
and each step may involve errors when applied to real systems. In this section, both theoretical
analysis and simulation results are presented to evaluate the performance of the proposed spoofing
detection method.

The common simulation parameters are given as follows. A 10-element ULA was employed
and the spacing between adjacent elements was half signal wavelength. The authentic and spoofing
signals were generated with a Matlab-based GPS L1 C/A signal generator and they were sampled
at a rate of 5 MHz. The additive Gaussian noise on each antenna was assumed to be white with
spectral density N0 = −204 dBW/Hz. The power of authentic and spoofing signals varied based on the
simulation scenarios.

4.1. Finite-Sample Effect on the Cyclic Correlation Matrix Estimation

In Section 3.2.2, the authors explained that the estimation performance of the cyclic correlation
matrix can be improved by using multiple pairs of data blocks. In essence, it can be proved [30] that
R̂c

y in Equation (29) is an asymptotically unbiased estimator of Rc
y and:

E
{
R̂c

y

}
= (1− ρ)Rc

y (50)

E
{
R̂c

yR̂c
y

H
}
=

(
1 +

( 2
G
− 2

)
ρ
)N

(
N + σ̃2

)
K

Rc
y +

N
(
1 + σ̃2

)
K

I

 (51)

On the right-hand side of Equation (51) is the expected cyclic correlation matrix multiplied by
a constant and ρ = Tcode/Tnav, in which Tcode and Tnav denote the periods of the PRN code and the
navigation data bit. For GPS L1 C/A signal, Tnav = 20Tcode. This attenuation coefficient (1− ρ) is due
to the term cancellation when one of the G (1 ≤ G < 20) data blocks split between the two adjacent
navigation symbols with opposite signs.

Assume that:
R̂c

y = (1− ρ)Rc
y + N (52)

N is a zero-mean error matrix, the variance of which can be expressed as:

var{N} =
(
1 +

( 2
G
− 2

)
ρ
)N

(
N + σ̃2

)
K

Rc
y +

N
(
1 + σ̃2

)
K

I

− (1− ρ)2Rc
yRc

y
H (53)

The above equation reveals that the estimation accuracy increases with the number of data blocks
used G and the number of samples per data block K.

Compared with the matrix R̂c
y, greater concern is warranted for its EVD result. In subsequent

processes, the eigenvalues were used to determine the signal subspace dimension d and detect a
spoofing attack, and the eigenvectors were for the DOA estimation. Herein, the simulation results are
provided to illustrate the influence of the value of G and K on the estimation accuracy of the signal
number and DOA.

For simplicity, the case is considered when there is no interference. Assume that four satellite
signals are considered with the same power –157 dBW. The Monte Carlo simulations have been
performed 1000 times, in which the DOAs of signals were changed randomly from 0◦ to 180◦, while the
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initial phases of signals were selected randomly. In each trial, the cyclic correlation matrixes were
estimated under different values of G and K to determine the signal subspace dimension and DOAs.
Figure 6 shows the probability of correct signal subspace dimension estimation versus the data block
number for the different sample number per data block. Figure 7 presents the root-mean-square-error
(RMSE) of the DOA estimation results under the different values of G and K. The estimation accuracy of
the subspace dimension can be seen, but also, the DOA estimation performance is shown to improve as G
and K increase. When G is large enough, the performance gain of a larger K is not so obvious. However,
the increase of G also means that more sample buffering is needed. Therefore, when this technique
applies in the real system, the proper values of G and K should be selected according to the actual
situation to achieve a compromise between algorithm performance and computational complexity.
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4.2. Spoofing Detection Performance

In Section 3.2.3, the CCET algorithm was proposed to detect the presence of the spoofing attack.
Herein, the performance of the proposed method is evaluated through simulations. These include:
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(1) The determination of the detection threshold with a given false alarm probability. (2) The influence
of the number and power of spoofing signals on the detection probability.

4.2.1. Determination of the Detection Threshold

Considering the situation of no spoofing attack, three groups of Monte Carlo simulations were
performed to predict the PDF of the proposed test statistic under different signal numbers. The number
of satellite signals was assumed to be MA = 4, 5, 6, respectively. In each group of simulations, two cases
were considered. In one case, it was assumed that the power of each authentic signal was equal and
set to be –157 dBW, which indicated the non-central parameter σ0 = 0 in Equation (36). In the other
case, the power of each signal was randomly chosen between –158 dBW to –156 dBW, which is more
coincident with the real situations.

The empirical PDFs of the obtained SSE metrics in Equation (35) for different signal number are
shown in Figure 8. Then, the detection threshold for a given false alarm probability can be calculated
by Equation (39). Table 1 shows the threshold values corresponding to different P f a at different values
of MA, σ0.
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Table 1. Detection thresholds for given P f a with different MA, σ0.

P f a = 10−1 P f a = 10−2 P f a = 10−3 P f a = 10−4 P f a = 10−5

MA = 4 σ0 = 0 0.38× 10−3 0.66× 10−3 0.87× 10−3 0.91× 10−3 0.94× 10−3

σ0 , 0 0.68× 10−3 0.96× 10−3 1.15× 10−3 1.29× 10−3 1.32× 10−3

MA = 5 σ0 = 0 0.45× 10−3 0.73× 10−3 1.01× 10−3 1.11× 10−3 1.11× 10−3

σ0 , 0 1.44× 10−3 2.12× 10−3 2.64× 10−3 2.89× 10−3 2.98× 10−3

MA = 6 σ0 = 0 0.61× 10−3 1.04× 10−3 1.38× 10−3 1.48× 10−3 1.52× 10−3

σ0 , 0 2.41× 10−3 3.45× 10−3 4.99× 10−3 5.46× 10−3 5.64× 10−3

4.2.2. Probability of Spoofing Detection

Once the detection threshold values were determined, the next simulations were conducted to
evaluate the probability of spoofing detection. It was assumed that the number of spoofing signals
was equal to that of the authentic signals and each spoofing signal had the same PRN code as the
corresponding authentic signal. The power of each authentic satellite was –157 dBW and the spoofing
power varied from –163 dBW to –154 dBW. The code phase difference between each spoofing signal
and their authentic counterpart was randomly chosen from 150 m to 600 m, and the Doppler frequency
differences were all set as 10 Hz.
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In each trial of Monte Carlo simulations, the test statistic was calculated and compared to the
predefined threshold value, which satisfies P f a < 10−5. Figure 9 shows the probability of the spoofing
detection as a function of the power ratio of spoofing to the authentic signal. It is observed that when
the signal number is 4, 5, 6, the presence of spoofing signals starts to be detected as soon as the power
ratio of spoofing to the authentic signal exceeds −3 dB, −4 dB, −5 dB, respectively. This is because the
spoofing signals come from the same direction and the total power is higher than the power of each
authentic signal. As the spoofing power increases, the detection performance of the proposed method
increases as well. Notably, once the power of the spoofing signals exceeds the power of the authentic
ones, the probability of spoofing detection in all scenarios exceeds 99%.Sensors 2019, 19, x 19 of 26 
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5. Simulation Results

In this section, more simulation results have been provided to demonstrate the effectiveness of
the proposed interference suppression scheme in different application scenarios.

• Scenario 1:

In the first experiment, a uniform linear array was used, in which ten omnidirectional antennas
were arranged in a straight line and the spacing between adjacent elements was half of a GPS L1
wavelength. Five authentic satellite signals PRN2, PRN5, PRN8, PRN19 and PRN26 were transmitted
from the direction at the azimuth of−50◦, −30◦, 0◦, 20◦ and 70◦with the power assumed to be−157 dBW.
There were two interference sources. One source transmitted five spurious signals PRN2, PRN5, PRN8,
PRN19 and PRN26 from the direction at azimuth of 50◦. The power of each spoofing signal was 3 dB
higher than the authentic signal. The code phase differences between the spoofing signals and their
authentic counterparts were all set as 150 m (about 0.5 chips) and the Doppler frequency differences
were set as 10 Hz. The other source emitted the jamming signal from the direction at the azimuth of
−5◦. The jamming-to-signal power ratio (J/S) was assumed to be 60 dB. The additive Gaussian noise on
each antenna was assumed to be white with spectral density −204 dBW/Hz. The bandwidth of the
receiver, as well as the I/Q sampling frequency, was set to be 5 MHz. The recorded data length was
120 s and the proposed interference suppression scheme was executed every 1 second. The relevant
results are as follows.

After the subspace projection in the first stage, the output signal passed to the acquisition process
of a GPS receiver to verify the jamming suppression effect. The acquisition result shows that five PRN
signals are captured. For example, the correlation result for PRN2 is presented in Figure 10. It can be
seen that there are two distinct correlation peaks, one for the authentic satellite signal and the other
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for the spoofing signal. It means that jamming has been removed from the received signal. As the
spoofing signal has a higher power, a normal GNSS receiver can track it instead of the right signal.Sensors 2019, 19, x 20 of 26 
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Figure 10. Correlation result of the receiver for PRN2 after jamming suppression.

In the spoofing detection and mitigation module, G = 9 data blocks were first selected, each of
which contains K = 1000 samples, to estimate the cyclic correlation matrix. Then, the eigenvalues
of this matrix are used to determine the number of signal sources based on the MDL criterion. For
d ∈ {0, 1, · · · , 9}, the resulting values of the MDL(d) are shown in Table 2. The minimum of the MDL is
obtained, as expected, at d̂ = 6.

Table 2. The corresponding values of the MDL function for different d.

d 0 1 2 3 4 5 6 7 8 9

MDL(d) 801.3 673.7 553.7 424.1 356.8 314.1 298.7 320.8 335.5 345.3

Therefore, the first d̂ = 6 eigenvalues are used for spoofing detection. Then, the CCET algorithm
is used to calculate the test statistic, which is shown in Figure 11. It illustrates that the spoofing attack
is successfully detected every epoch. Then, the first d̂ = 6 eigenvectors construct the signal subspace to
estimate the spatial power spectrum and the result is shown in Figure 12. The dashed lines represent
the real DOAs of the authentic satellite signals, and the solid line represents the spoofing DOA. It shows
that the Cyclic MUSIC algorithm can estimate the directions of all the signal sources effectively and the
location of the maximum peak aligns with the spoofing DOA.
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Based on the above results, the final weight vector for each authentic satellite signal can be
calculated by Equation (37) and the antenna beam patterns are shown in Figure 13. It demonstrates
that the proposed interference suppression scheme can form nulls in the directions of spoofing and
jamming, while the authentic satellite signal gets the maximum gain. Figure 14 shows the correlation
result for PRN2 of the output signal, in which only the authentic peak is present.
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• Scenario 2:

In Section 3, an alternative spoofing suppression scheme was provided when the number of array
elements is less than the number of all the incoming signals (include jamming, spoofing and satellite
signals). Herein, the feasibility of this method was verified by simulation. In this experiment, the
ten-element ULA was still employed and the number of satellite signals was set to seven. Two jamming
sources transmitted high power interferences from different directions. One spoofing source emitted
seven spurious signals with the same PRNs as the authentic satellite. The PRN and DOA information
of these signals are given in Table 3. The other parameters are the same as the values in Scenario 1.

Table 3. Simulation parameters of the signal sources.

Sat1 Sat2 Sat3 Sat4 Sat5 Sat6 Sat7 Spoofing Jam1 Jam2

PRN 2 5 8 19 21 26 29 [2,5,8,19,21,26,29]
DOA −50◦ −30◦ 0◦ 20◦ 40◦ 70◦ −70◦ 50◦ −5◦ 5◦

The simulation results show that, in this scenario, the jamming signals can be detected and
eliminated successfully in the first stage. In the spoofing detection module, the values of the MDL(d)
are shown in Table 4. It can be seen that the MDL(d) is a monotonically decreasing function so that the
number of signal sources cannot be determined. In this case, the eigenvector corresponding to the
largest eigenvalue is regarded as the spoofing subspace and projects the array signal onto its null space.
Figure 15 shows the final beam pattern after two projections. It turned out that the proposed method
can eliminate jamming and spoofing signals in the case of a small array. Since the beamforming for
each satellite cannot be performed, the authentic signals may be attenuated more or less.

Table 4. The values of the MDL(d) in the case of a small array.

d 0 1 2 3 4 5 6 7 8

MDL(d) 1033.5 633.1 625.7 615.1 603.8 584.7 566.8 557.5 475.9
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• Scenario 3:

In the above two scenarios, a one-dimension line array was used to display the simulation results,
such as the estimated spatial spectrum and the beam patterns, more intuitively. In order to verify
that the proposed scheme is suitable for any arbitrary antenna array, in the next experiment, a 3 × 4
rectangular array was used, which consists of twelve omnidirectional antennas arranged as shown
in Figure 2. Four authentic satellite signals were incident on the array from different directions.
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One jamming source transmitted the jamming signal and one spoofing source emitted four spurious
signals from the same direction. Table 5 presents the DOAs of these signals in the form of the elevation
and azimuth angles. The other parameters are set as the values in Scenario 1 and Scenario 2.

Table 5. Simulation parameters of the signal sources.

Sat1 Sat2 Sat3 Sat4 Spoofing Jamming

PRN 2 5 8 19 [2,5,8,19]
DOA (20◦,300◦) (30◦,200◦) (40◦,60◦) (50◦,150◦) (50◦,30◦) (60◦,120◦)

Figure 16 shows the spatial spectrum estimated by the Cyclic MUSIC algorithm in which the black
dots denote the DOAs of all incident signals, S and A represent spoofing signal and authentic satellite
signal, respectively. It indicates that the presence of spoofing interference can be detected and then
mitigated through subspace projection and beamforming. Figure 17 shows the beam patterns for all
the authentic satellites with respect to azimuth and elevation, in which J represents jamming. It can be
seen that the weight vector calculated by the proposed method in this paper can suppress spoofing and
jamming simultaneously and guarantee the gain of the authentic satellite signals. It can be concluded
that the proposed interference suppression scheme is still valid when planar arrays are employed.
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6. Conclusions 

As the use of GNSS is pervasive in military and civil fields, interference like jamming and 
spoofing has shown its potential threats to modern GNSS applications. This paper introduces a two-
stage GNSS interference suppression scheme based on antenna arrays. In the first stage, the subspace 
projection was adopted to remove the strong jamming signals. The second stage dealt with low power 
spoofing signals, in which the cyclostationarity of navigation signals was fully excavated to detect 
spoofing signals and estimated the spatial power spectrum before the despreading process. Then, the 
subspace projection mitigated the spoofing signals and beamforming for each satellite which ensured 
that the power of the authentic signals was not attenuated. 

The simulation results show that the proposed scheme can detect jamming signals and form 
deep nulls (more than −90 dB) in beam patterns to eliminate them. When the code phase differences 
between the authentic and spoofing signals are more than 0.5 code chips, the scheme can detect the 
spoofing attack successfully and estimate the DOAs of all the signals accurately. The spoofing signals 
can be attenuated by more than 50 dB while the main-beam points to the desired satellite. It should 
be noted that our method is to distinguish between interference and satellite signals based on their 
differences in the spatial-domain. When the DOA of a satellite signal is close to the jamming’s or 
spoofing’s DOA, this signal can be eliminated in interference nulls. Fortunately, according to the 
geometry distribution of the GPS satellites, there are not many authentic signals from the direction 
close to the interference DOA. 

However, in the spoofing scenario of a small time-offset, the correlation between the authentic 
and spoofing signals may cause poor DOA estimation performance. Given this problem, the forward-
backward spatial smoothing techniques for de-correlation can be used to improve the DOA 
estimation performance, but it may also result in the loss of array freedom. When both the satellites 
and receiver are moving, the calculation of the cyclic correlation matrix over a long data set may 
provide the necessary smoothing needed. The authors intend to make further investigations in future 
work. 
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6. Conclusions

As the use of GNSS is pervasive in military and civil fields, interference like jamming and spoofing
has shown its potential threats to modern GNSS applications. This paper introduces a two-stage GNSS
interference suppression scheme based on antenna arrays. In the first stage, the subspace projection
was adopted to remove the strong jamming signals. The second stage dealt with low power spoofing
signals, in which the cyclostationarity of navigation signals was fully excavated to detect spoofing
signals and estimated the spatial power spectrum before the despreading process. Then, the subspace
projection mitigated the spoofing signals and beamforming for each satellite which ensured that the
power of the authentic signals was not attenuated.

The simulation results show that the proposed scheme can detect jamming signals and form
deep nulls (more than −90 dB) in beam patterns to eliminate them. When the code phase differences
between the authentic and spoofing signals are more than 0.5 code chips, the scheme can detect the
spoofing attack successfully and estimate the DOAs of all the signals accurately. The spoofing signals
can be attenuated by more than 50 dB while the main-beam points to the desired satellite. It should
be noted that our method is to distinguish between interference and satellite signals based on their
differences in the spatial-domain. When the DOA of a satellite signal is close to the jamming’s or
spoofing’s DOA, this signal can be eliminated in interference nulls. Fortunately, according to the
geometry distribution of the GPS satellites, there are not many authentic signals from the direction
close to the interference DOA.

However, in the spoofing scenario of a small time-offset, the correlation between the authentic
and spoofing signals may cause poor DOA estimation performance. Given this problem,
the forward-backward spatial smoothing techniques for de-correlation can be used to improve
the DOA estimation performance, but it may also result in the loss of array freedom. When both the
satellites and receiver are moving, the calculation of the cyclic correlation matrix over a long data set
may provide the necessary smoothing needed. The authors intend to make further investigations in
future work.
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