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Microbial iron cycling influences the flux of major nutrients in the environment (e.g.,
through the adsorptive capacity of iron oxides) and includes biotically induced iron
oxidation and reduction processes. The ecological extent of microbial iron cycling is
not well understood, even with increased sequencing efforts, in part due to limitations
in gene annotation pipelines and limitations in experimental studies linking phenotype
to genotype. This is particularly true for the marine subseafloor, which remains
undersampled, but represents the largest contiguous habitat on Earth. To address
this limitation, we used FeGenie, a database and bioinformatics tool that identifies
microbial iron cycling genes and enables the development of testable hypotheses on
the biogeochemical cycling of iron. Herein, we survey the microbial iron cycle in diverse
subseafloor habitats, including sediment-buried crustal aquifers, as well as surficial and
deep sediments. We inferred the genetic potential for iron redox cycling in 32 of the 46
metagenomes included in our analysis, demonstrating the prevalence of these activities
across underexplored subseafloor ecosystems. We show that while some processes
(e.g., iron uptake and storage, siderophore transport potential, and iron gene regulation)
are near-universal, others (e.g., iron reduction/oxidation, siderophore synthesis, and
magnetosome formation) are dependent on local redox and nutrient status. Additionally,
we detected niche-specific differences in strategies used for dissimilatory iron reduction,
suggesting that geochemical constraints likely play an important role in dictating
the dominant mechanisms for iron cycling. Overall, our survey advances the known
distribution, magnitude, and potential ecological impact of microbe-mediated iron
cycling and utilization in sub-benthic ecosystems.

Keywords: metagenomics, marine sediment, marine aquifer, FeGenie, iron cycling, iron acquisition, iron oxidation,
iron reduction
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INTRODUCTION

Iron is the dominant redox-active element in the Earth’s crust
and an important nutrient for almost all known life. In many
environments, iron cycling is intimately linked to biogeochemical
cycling of other elements, including carbon (e.g., CO2, CH4,
and organic carbon), nitrogen (Laufer et al., 2016b; McAllister
et al., 2020b), and heavy metals (Cooper et al., 2006). Thus, even
though biologically available iron is comparatively rare/transient
in many ecosystems, its speciation and flux considerably impacts
the overall activities and productivity of diverse ecosystems.
Research on the genetic basis for microbial iron cycling is in its
infancy, and annotation pipelines annotate genes related to iron
oxidation or reduction as “hypothetical” or simply “cytochrome
c.” Accordingly, the extent of information that can be gained from
metagenomes or metagenome-assembled genomes (MAGs),
derived from shotgun sequencing, in relation to the potential for
microbial iron redox cycling in the environment remains poorly
constrained. This is particularly true of the marine subsurface,
an extremely remote and difficult to access/sample environment,
that is nevertheless significantly influenced by microbe-mineral
interactions, particularly those related to iron oxidation and
reduction (Edwards et al., 2003a; Roden, 2012).

While there have been studies, largely in ecosystems where
iron-oxidizing and –reducing bacteria are conspicuously present
(Riedinger et al., 2014; Laufer et al., 2016a,b; Beam et al.,
2018; Bryce et al., 2018; Aromokeye et al., 2020; McAllister
et al., 2020b), the extent of microbial iron cycling in other
environments, including marine sediment and sediment-buried
crustal aquifers, remains comparatively underexplored. Even
though microbes capable of iron redox can form only a
small proportion of the community in the latter habitats (e.g.,
rare biosphere), their influence on iron-cycling has potential
to significantly impact the surrounding geochemistry. We
previously developed FeGenie (Garber et al., 2020), a database
and bioinformatics tool, to aid in annotating the iron redox genes
and other genes involved in many aspects of the microbial iron
cycle, including iron transport, storage, and regulation; we are
also continuously updating the library of iron genes to include
more genes and processes, such as siderophore transport and
biosynthesis (Neilands, 1995), and fermentative iron reduction
(Jones et al., 1984), which will be included in the next release.
Herein, we used FeGenie, with an updated set of hidden Markov
models (HMMs) for iron redox cycling and iron transport
(Supplementary Table 1), to systematically profile the microbial
iron cycle in recently published metagenomes representing six
marine sediment sites and two sediment-buried crustal aquifer
sites (Table 1). These metagenomes, published over the last
decade, have recently illuminated the microbial lifestyle under
the often harsh conditions imposed by subsurface geochemical
regimes. Some of the original analyses of these metagenomes
provided evidence for microbial iron oxidation and reduction
occurring in the subseafloor, but these conclusions were inferred
by using a limited iron redox gene database (Meyer et al., 2016;
Tully and Heidelberg, 2016; Tully et al., 2018; Smith et al., 2019).
Using FeGenie, we re-analyzed these metagenomes with a focus
on iron cycling, using a standardized approach that includes

all known genetic markers for dissimilatory iron reduction and
oxidation. We note that these metagenomes were generated using
a variety of wet-lab and in silico methods, limiting the cross-
comparisons that can be carried out. Nonetheless, we highlight
the potential for microbial iron cycling in the marine subsurface
and demonstrate FeGenie’s capability to provide added valuable
insights into iron cycling and acquisition/storage mechanisms in
subseafloor habitats.

MATERIALS AND METHODS

Data Acquisition and Assembly
Metagenome assemblies representing North Pond fluids, which
were made available by Tully et al. (2018), were downloaded
from figshare (see original publication for figshare link). For
the Guaymas Basin metagenome, in lieu of an assembly, we
downloaded the 551 MAGs published by Dombrowski et al.
(2018), and concatenated the contigs. Thus, due to the great
amount of data available from these MAGs, no unbinned fraction
from that dataset was evaluated. For all other metagenomic
datasets, listed in Table 1, raw metagenome reads were obtained
using the SRA Toolkit (release 2.10.0, SRA Toolkit Development
Team). Reads were quality trimmed using Trimmomatic v0.36
(minimum length = 36 bp, sliding window = 4 bp, minimum
quality score = 15, adaptors used = ILLUMINACLIP:TruSeq3-
PE:2:30:10) (Bolger et al., 2014), and assembled using Spades
v3.13.0 (default k-mers, Bankevich et al., 2012). Metagenome
assemblies were then subjected to FeGenie analysis (Garber
et al., 2020). For those metagenomes where metagenome-
assembled genomes (MAGs) were publically available (Guaymas
Basin, Loki’s Castle, Eastern Gulf of Mexico, Juan de Fuca
ridge aquifer fluids, Juan de Fuca ridge olivine biofilms, and
North Pond aquifer fluids), those were downloaded and also
analyzed with FeGenie.

FeGenie Analysis
We used FeGenie to identify iron genes in metagenome
assemblies and MAGs. FeGenie was run with the –meta
flag, directing the gene-calling software Prodigal, part of the
FeGenie pipeline, to use its metagenomic procedure. Iron redox
genes from the FeGenie output files were extracted using a
custom python script (Supplementary File 1) and organized
into pathways. To identify the closest sequenced relatives of
identified iron genes, the protein sequences were extracted from
FeGenie and queried (e-value cutoff: 1E-6) against the non-
redundant protein database (release 240) from the National
Center for Biotechnology Information (NCBI) using DIAMOND
v2.0.4.142 (Buchfink et al., 2015). The closest phylogenetic
relatives were then inferred from the top 50 DIAMOND matches
and summarized in Supplementary File 2.

Siderophore biosynthesis clusters that were identified with
FeGenie were confirmed using AntiSMASH v.5 (Blin et al., 2019).
Contigs containing putative siderophore cluster genes were
extracted using the grep command and subsequently subjected
to AntiSMASH analysis (–cb-general, –cb-subclusters, –cb-
knownclusters, –clusterhmmer, –asf, all other parameters were
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TABLE 1 | Metadata for metagenome samples in which iron redox genes were detected with FeGenie.

Location Longitude Latitude Depth below
seafloor (bsf)

Depth below
sealevel

NCBI BioProject
ID

Metagenome
references

Iron content Iron references

Juan de Fuca U1362A (R/V Atlantis
cruise ATL18-07)

47.761 −127.761 428–527 m
(193–292 m below
basement)

2,650 m PRJNA269163 Jungbluth et al., 2017 0–1.1 µM
aqueous Fe

Jungbluth et al., 2016

Juan de Fuca U1362B (R/V Atlantis
cruise ATL18-07)

47.758 −127.762 264–352 m
(29–117 m below
basement)

2,650 m PRJNA269163 Jungbluth et al., 2017 0–1.1 µM
aqueous Fe

Jungbluth et al., 2016

Juan de Fuca 1301A (olivine biofilm) 47.754 −127.764 275–287 m 2,650 m PRJNA264811 Smith et al., 2019 NA NA

North Pond U1382A 22.750 −46.083 191.4–311.4 m
(90–210 m below
basement)

∼4,500 m PRJNA391950 Tully et al., 2018 <1 µM Fe(II) Bach, 2016; Meyer
et al., 2016

North Pond U1383C 22.750 −46.083 123.6–285.6 m
(70–232 m below
basement)

∼4,500 m PRJNA391950 Tully et al., 2018 <1 µM Fe(II) Bach, 2016; Meyer
et al., 2016

South Pacific Gyre (Expedition
Knox-02RR)

−39.310 −139.801 0–5 cm 5,283 m PRJNA297058 Tully and Heidelberg,
2016

5.6–7.3%
Fe2O3

D’Hondt et al., 2011;
Dunlea, 2016

Arctic mid-ocean ridge (Loki’s
Castle)

73.763 8.464 3-11 m ∼3,250 m PRJNA504765 Dharamshi et al., 2020 0–220 µM Fe(II)
in pore water

Jørgensen et al., 2012,
2013

Costa Rica (IODP Expedition 334:
U1378)

8.592 −84.077 2–93 m ∼1,000 m PRJEB11766 Martino et al., 2019;
Farag et al., 2020

Non-iron
bearing clays

Expedition. 344
Scientists, 2011

Guaymas Basin 27.006 −111.409 0–60 cm ∼2,000 m PRJNA362212 Dombrowski et al.,
2018

NA NA

Adriatic Sea (MET2 sample) 45.062 13.652 30 cm NA PRJEB13497 Gacesa et al., 2018 NA NA

The solent 50.714 −1.464 0–8 cm 23.9–31.7 m PRJEB6766 Smith et al., 2015 NA NA

Eastern Gulf of Mexico (Site E26) 26.590 87.510 0–20 cm 2,800 m PRJNA485648 Dong et al., 2019; Li
et al., 2020

NA NA

Western Gulf of Mexico
(Chapopote, Oily sediment in the
vicinity of the asphalt volcano)

21.964 93.226 0–10 cm 2,925 m PRJEB32776 Laso-Pérez et al.,
2019; Li et al., 2020

NA NA

Santa Monica Basin (Eastern
Pacific Ocean)

33.789 118.668 0–12 cm 860 m PRJNA431796 Scheller et al., 2016; Yu
et al., 2018; Li et al.,
2020

NA NA

Håkon Mosby Mud Volcano 72.004 14.730 0–10 cm 1,250 m PRJNA248084 Ruff et al., 2019; Li
et al., 2020

NA NA

NA, not available.
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default). Results were then visually inspected for confirmation of
potential for siderophore synthesis.

The R packages ggplot2 (Wickham et al., 2020), ggdendro (de
Vries and Ripley, 2020), and Pvclust (Suzuki and Shimodaira,
2006), were used to generate plots presented in this article.

Site Descriptions
North Pond
The ∼8 Mya North Pond aquifer lies beneath a Mid-Atlantic
ridge sediment basin and is composed of basaltic rocks, an
important source of iron in this habitat, which are subject
to chemical weathering by seawater due to advective fluid
flow (Langseth et al., 1992; Meyer et al., 2016). Major solid
weathering products include iron and manganese oxides, as
well as carbonate minerals. Although classified as an oxic
environment, the periodic presence of anaerobes and marker
genes for low-O2 metabolisms suggests the occurrence of
anaerobic microenvironments and redox oscillations (Tully et al.,
2018). The frequency of redox oscillations is likely related to
the seawater residence time in fractures, as well as the redox-
buffering capacity of the rocks, in which anaerobic zones may
occur due to fluid stagnation and consumption of oxygen
through reaction with reduced minerals (MacQuarrie and Mayer,
2005; Trinchero et al., 2019). In contrast, intersecting fractures
may result in fluid mixing of deep and shallow seawater,
leading to microbial hot spots supported by fluctuating O2
concentrations that are ideal for iron-reducing and -oxidizing
bacteria, something that has been previously observed in a
terrestrial fractured rock aquifer (Bochet et al., 2020).

Juan de Fuca
The ∼3.5 Mya Juan de Fuca (JdF) ridge crustal aquifer is
a basalt-hosted habitat located along a mid-ocean ridge flank
with hydrothermal fluid circulation (Jungbluth et al., 2016).
In comparison to North Pond, the geochemical signature
of JdF fluids is more representative of extensive water-rock
interactions due to longer fluid residence times and elevated fluid
temperatures (Edwards et al., 2012). Seawater recharge occurs
slowly due to the impermeability of the surrounding sediment
and spreads laterally along fractures. Along the flowpath, fluid
is heated and reduced, interacting with the basaltic rock, and
is subsequently further altered by diffusive exchange with the
overlying sediment pore water. The latter is most intense along
the strong redox gradient at the sediment-rock boundary, where
fluids are enriched in Fe, Mn, ammonium, Si, and Ca, and
depleted in nitrate and oxygen (Wheat et al., 2013). Iron
enrichment is particularly substantial and can be approximately
3000-fold higher in concentration relative to seawater and other
JdF fluids in the flow path (Wheat et al., 2013).

Marine sediments
The metabolic potential for iron oxidation and reduction in
marine sediments, hosting an estimated 0.18–3.6% of Earth’s total
living biomass (Kallmeyer et al., 2012), remains understudied.
Potential for oxidized iron to serve as an important electron sink
and contribute significantly to the breakdown of organic carbon
in sediment was recognized as early as 1963 (Kamura et al.,
1963; Takai et al., 1963a,b). More recently, it was determined that

Zetaproteobacteria are rare within marine sediments (estimated
global abundance of 0.11%) but can contribute ∼8 × 1015 g
of Fe in sedimentary iron oxides annually (Beam et al., 2018).
Here, to survey the genetic capacity for iron cycling across
diverse sedimentary regimes, we examine 27 marine sediment
metagenomes (from 10 geographical sites, Table 1), including
a low productivity oligotrophic site in the South Pacific Gyre,
and high productivity sites like the Arctic Mid-Ocean Ridge
(Dharamshi et al., 2020), Costa Rica Margin (Martino et al.,
2019), and Guaymas Basin (Dombrowski et al., 2018).

RESULTS AND DISCUSSION

The Impact of Shifting Redox Conditions
on Iron Cycling in the North Pond Aquifer
Recent work, including metagenomic, metatranscriptomic, and
colonization/poised-electrode experiments, provide evidence for
iron oxidation within the North Pond aquifer. Metagenomic
(Tully et al., 2018) and metatranscriptomic (Seyler et al., 2020)
studies revealed the presence of genes associated with iron
oxidation, specifically, cyc2 [encoding an outer membrane porin-
cytochrome fusion; (Appia-Ayme et al., 1998; Castelle et al., 2008;
Barco et al., 2015; He et al., 2017, Keffer et al., 2021)] and foxE
(encoding a periplasmic cytochrome; Croal et al., 2007; Pereira
et al., 2017). Tully et al. (2018) also reconstructed metagenome-
assembled genomes (MAGs) affiliated with the iron-oxidizing
Zetaproteobacteria, which are known to adapt to fluctuating O2
concentrations and advective flow regimes (Chiu et al., 2017;
Blackwell et al., 2020), further solidifying the presence and
significant contribution that iron-oxidizing bacteria make to the
aquifer community. Recent mineral colonization and current
generation on poised electrodes also demonstrated the presence
of iron oxidizing bacteria and provided evidence for their ability
to utilize insoluble electron acceptors (Jones et al., 2020).

Our survey of 18 metagenome assemblies from the North
Pond crustal aquifer (Tully et al., 2018) using the FeGenie
library confirmed the presence of previously reported iron
oxidases (Figure 1) (Tully et al., 2018; Seyler et al., 2020),
which we phylogenetically linked to Zetaproteobacteria (cyc2)
and Rhodospirillaceae (foxE) (Supplementary File 2). Linking
cyc2 to Zetaproteobacteria is important because this gene is
highly diverse and is often encoded by taxa not known to be
capable of iron oxidation; thus, only a handful of cyc2 genes
have been experimentally shown to be iron oxidases (Castelle
et al., 2008; Jeans et al., 2008; Barco et al., 2015; McAllister
et al., 2020a; Keffer et al., 2021). Further, we also documented
the presence of genes associated with iron reduction [mtrCAB
(Pitts et al., 2003; Hartshorne et al., 2007; Edwards et al., 2020)
within seven of the timepoints, which span 2 years (Figure 1)].
The mtrCAB genes are most closely related to the dissimilatory
iron reducer Shewanella benthica (Supplementary File 2), which
was also enriched in mineral colonizations from the North Pond
aquifer (Jones et al., 2020). We also identified nine MAGs (Tully
et al., 2018), encoding copies of genes linked to respiratory iron
oxidation or reduction (Supplementary Table 2). Notably, two
MAGs that encode cyc2 belong to the family Mariprofundaceae,
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FIGURE 1 | Distribution of iron redox genes among the 32 metagenomes in which potential for iron reduction or oxidation was detected. The gene mtrB/mtoB is
deliberately placed in between the iron oxidation and iron reduction categories because it encodes a porin that can be part of both the iron reduction (mtr) or the iron
oxidation (mto) pathways.

known to encompass at least eight isolated strains of iron
oxidizers (Emerson and Moyer, 2002; McBeth et al., 2011;
Mumford et al., 2016; Barco et al., 2017; Chiu et al., 2017;
McAllister et al., 2019). Another MAG, which belongs to the
genus Shewanella, encodes two copies of the mtrCAB operon
for iron reduction. Other putative iron oxidizers and reducers
are shown in Supplementary Table 2. 16S rRNA gene amplicon
sequencing presented by Jones et al. (2020), showed that
Geobacter-related spp. were also enriched on minerals; however,
we did not detect any Geobacter-related gene markers for iron
reduction (omcS, omcZ, and type IV aromatic/electroactive pili
[t4ap]), suggesting that this lineage may be part of the rare
biosphere and undetectable with metagenomic approaches, at
least in the aquifer fluids. Additionally, two metagenomes,
derived from bottom water sampled near the North Pond
aquifer, showed potential for iron oxidation via cyc2, foxE, and
sulfocyanin, a blue-copper protein used as a genetic marker for
iron oxidation in Archaea (Castelle et al., 2015). However, these

sequences were not related to known iron-oxidizing bacteria (e.g.,
Mariprofundaceae), and no iron reduction genes were detected.

The co-occurrence of iron oxidizers and reducers in the
North Pond aquifer supports potential for coupling of iron redox
processes. Mutualistic interactions between iron oxidizers and
reducers have been reported in various habitats (Weber et al.,
2006; Blöthe and Roden, 2009; Emerson, 2009; Roden et al., 2012;
Elliott et al., 2014; Byrne et al., 2015). While the coupling of
iron reduction with oxidation may be less apparent in an iron-
rich habitat like the Loihi Seamount (Emerson and Moyer, 2002),
iron reducers and iron oxidizers may be more dependent on each
other’s metabolic by-products in the North Pond aquifer, where
dissolved iron and carbon concentrations are much lower. As
noted above, the presence of anaerobes within the North Pond
aquifer hints at the possibility of sub-oxic microenvironments
and varying redox conditions (Tully et al., 2018). This variability
may be reflected in the observed fluctuation of iron oxidases
and reductases over the 2-year sampling period (Figure 1).
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FIGURE 2 | Dotplot summary of iron genes in marine subcrustal aquifers and sediment identified by FeGenie, showing the variation among iron genes from different
time points from North Pond. North Pond metagenomes are colored blue, while metagenomes from the Juan de Fuca ridge are colored green. Metagenomes
derived from sediment samples are colored black. While certain pathways appear to be universal (iron acquisition and storage), other processes appear to vary in
abundance (iron redox cycling and siderophore synthesis), while others still (magnetosome formation and heme oxygenases) appear to be quite rare. “Percent of
predicted ORFs” was calculated by dividing the total number of genes identified from each iron gene category by the total number of predicted ORFs from each
respective metagenome.

Consistent with this, hierarchical clustering of the metagenomes
based on the overall iron gene composition (including iron
acquisition and storage) demonstrated the dissimilarity between
different North Pond timepoints (Figure 2), consistent with
the observed temporal separation between iron reducers and
oxidizers. Iron-oxidizers and reducers can take advantage of
redox oscillations (Coby et al., 2011; Jewell et al., 2016), and in
the North Pond aquifer, dominance of either iron reducers and
oxidizers may be cyclical.

Different Iron Redox Strategies Between
Planktonic and Biofilm Communities of
the Juan de Fuca Ridge
Evidence for iron oxidation at the JdF first came in the
form of a chemolithoautotrophic iron-oxidizing isolate (Edwards
et al., 2003b), and then with the identification of biogenic

iron oxides resembling those formed by iron-oxidizing bacteria,
like Mariprofundus and Leptothrix (Kennedy et al., 2003;
Toner et al., 2008). However, this evidence is from seafloor
samples collected in the vicinity of the JdF aquifer. For example,
the biogenic iron oxides were either (i) found in iron oxide
mounds (Kennedy et al., 2003) or (ii) enriched from mineral
incubations deployed at the seafloor (Toner et al., 2008). No
sequence-based analysis has been performed on these iron
oxide-rich samples, and the exact identity and mechanisms for
iron-cycling in microbial communities associated with those
iron oxides remains unknown. Three metagenomes representing
the planktonic (2 samples) and crust-associated (1 sample)
microbial communities from the sediment buried crustal aquifer
at the JdF have since been published, allowing molecular
interrogation of genetic potential for iron-related metabolisms.
Two crustal aquifer planktonic metagenomes (Jungbluth et al.,
2017) were collected at subseafloor observatories retrofitted with

Frontiers in Microbiology | www.frontiersin.org 6 September 2021 | Volume 12 | Article 667944

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-667944 September 1, 2021 Time: 11:17 # 7

Garber et al. Iron Cycling in Subseafloor Habitats

Circulation Obviation Retrofit Kits [CORKs; Edwards et al.
(2012)]; one biofilm metagenome is derived from an olivine
chip biofilm incubated in situ for 4 years within a Flow-through
Osmotic Colonization System [FLOCS; Orcutt et al. (2010)]
(Smith et al., 2019).

FeGenie analysis revealed the genetic potential for iron
oxidation, via cyc2, in all three JdF metagenomes, while mtoAB,
a larger multi-protein porin-cytochrome complex (Jiao and
Newman, 2007; Liu J. et al., 2012), was detected in only one of the
crustal fluid metagenomes (Figure 1). The JdF crustal biofilm was
previously reported to not support iron oxidation through the
analysis of MAGs alone (Smith et al., 2019). Analysis of the whole
metagenome assembly, including the unbinned fraction (contigs
that were not included in the MAGs), identified at least eight
cyc2 gene copies. Seven of these cyc2 copies were in the unbinned
fraction of the assembly, and one was detected in JdFRolivine-5,
a MAG (within the class Clostridia) constructed and published
by Smith et al. (2019). Despite its significant homology, the cyc2
copy in JdFRolivine-5 has unclear function, as it is considerably
shorter than most other cyc2 genes.

Smith et al. (2019) also reported that the MAG JdFRolivine-10
is related to the known iron reducer Geoglobus (Slobodkina
et al., 2009; Mardanov et al., 2015) and encodes some of
the cytochromes implicated in iron reduction in Geoglobus
acetivorans (Mardanov et al., 2015). Three multiheme
cytochromes encoded by JdFRolivine-10 match those in
FeGenie’s HMM library (Supplementary Table 2), which were
previously linked to extracellular electron transfer: DFE_0449
(14-heme iron oxidase; Deng et al., 2018), GACE_1846 (4-heme
iron reductase), and GACE_1847 (22-heme iron reductase)
(Mardanov et al., 2015). The outer membrane cytochrome
with locus tag GACE_1847 was predicted to encode an outer
membrane anchor domain, as well as two hematite-binding sites
(Mardanov et al., 2015). These cytochromes are all located on
different contigs in JdFRolivine-10’s genome and were identified
using the new FeGenie flag –all_results, allowing us to bypass
FeGenie’s built-in operon-evaluating algorithm. FeGenie also
confirmed the presence of a hematite-binding motif (a new
feature in FeGenie’s pipeline, see Supplementary Methods for
details). The presence of heme-binding and transmembrane
domains encoded on the GACE_1847 homolog provides a clue to
one of the possible mechanisms for iron reduction within the JdF
aquifer biofilm. Other genes related to iron reduction were also
detected in the unbinned fraction of the metagenome from JdF
olivine biofilms: omcS (Mehta et al., 2005; Qian, 2011; Wang et al.,
2019), mtrC (Hartshorne et al., 2007), mtrA (Pitts et al., 2003),
and t4ap (Bray et al., 2020), further supporting the potential for
iron reduction within crustal biofilms. However, since olivine
contains only reduced iron (Fe2+), it likely has been oxidized
first by iron-oxidizing bacteria, supporting a potential cryptic
iron cycle on the surface of the olivine mineral (Supplementary
Figure 1); and since JdF is an anoxic system, this implicates
anaerobic iron oxidation, possibly nitrate-dependent.

In the crustal fluid metagenomes, we detected potential
for iron reduction via t4ap (Bray et al., 2020), omcZ (Inoue
et al., 2010), and the flavin-based extracellular electron transfer
mechanism recently reported in Listeria monocytogenes

(Light et al., 2018). Potential for iron oxidation was detected via
the dfeEFGHI operon (Deng et al., 2018). Unlike the olivine
biofilms, omcS was not detected in the fluid metagenomes.
This gene is associated with Geobacter species (Qian, 2011;
Wang et al., 2019), which prefer anaerobic environments and
less likely to dominate fluids subject to redox gradients (Lin
et al., 2004; Lovley et al., 2011; Engel et al., 2020). Indeed,
four omcS copies detected in the biofilm were phylogenetically
linked to Geoalkalibacter subterraneus and Malonomonas
rubra (Supplementary File 2 and Supplementary Table 4),
both obligate anaerobes that taxonomically fall within the
Desulfuromonadales order, which also contains Geobacter spp.
Because the planktonic community in the anoxic crustal fluids is
sourced from oxic bottom waters, we hypothesize that these iron
reducers, rare in seawater, remain rare in the chemically evolved
anoxic fluids. Eventually, these lineages may transition from
planktonic to biofilm lifestyles where the activities of previous
microbial communities (e.g., iron-oxidizing and sulfur-reducing
bacteria) provide them with oxidized iron substrates (Toner
et al., 2008; Ramírez et al., 2016). For example, as mentioned
above, we did not detect any Geobacter-related gene markers
from the North Pond aquifer metagenomes; however, recent
mineral incubations enriched an electroactive consortia that
includes Geobacter (Jones et al., 2020), supporting the latent
presence of this lineage in redox-fluctuating fluids.

A Survey of Iron Redox Potential in
Globally Dispered Marine Sediment
Potential for benthic iron reduction is prevalent among the
locations under relatively high water-column productivity (e.g.,
Loki’s Castle, Guaymas Basin, and Western Gulf of Mexico), but
is absent in the oligotrophic South Pacific Gyre (SPG) (Figure 1).
The lack of iron reduction in SPG is consistent with previous
analysis of these sediments (Tully and Heidelberg, 2016). High
water column productivity results in benthic conditions ideal for
iron reduction (low oxygen and high organic carbon deposition
rates). The South Pacific Gyre sediments are far from this
ideal, as they are low in carbon and oxic throughout the entire
sediment column (D’Hondt et al., 2009). Two of the four cold-
seep sediment metagenomes (Håkon Mosby Mud Volcano and
Eastern Gulf of Mexico) also lacked any detectable genes for iron
reduction. The surveyed metagenome sample from the Håkon
Mosby Mud Volcano represents the top cm of young, freshly-
erupted mud with ongoing aerobic activities, and, thus, is also
not primed for iron reduction (Ruff et al., 2019). It is unclear
why we did not detect genes for iron reduction in the Eastern
Gulf of Mexico sediment (Dong et al., 2019); this site represent
a petroleum seep where benthic communities may be dominated
by hydrocarbon-degrading microbes that are not capable of iron
reduction. It is important to note that technical (e.g., number
of contigs, contig lengths, etc.) and environmental (community
richness) differences can significantly influence inferences from
broad metagenomic surveys; often, several factors (e.g., quality
and concentration of DNA, strain-level diversity, prevalence of
repetitive DNA sequences) can play a major role in determining
the quality of the metagenome assemblies, as evidenced from the
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substantial variation in the distribution of contig lengths obtained
from different metagenome assemblies (Supplementary File 3).
This can affect the capacity of annotation pipelines, like FeGenie
or AntiSMASH, to detect certain pathways.

Higher productivity sites demonstrated a diverse array of
genes for iron reduction, including omcS, omcZ, and mtrCAB,
etc. Geobacter-related iron reductases [e.g., omcS, omcZ, and
other porin-cytochrome complexes (Shi et al., 2014)] were
more common in the marine sediment sites compared with
the surveyed aquifer metagenomes, with only the Guaymas
Basin encoding the mtrCAB operon. Numerous copies of the
aromatically dense type IV pili (Bray et al., 2020) gene were
detected. These are particularly prevalent in marine sediment
from the Western Gulf of Mexico (Laso-Pérez et al., 2019).

Potential for iron oxidation was detected in nearly all
surveyed marine sediment sites (Figure 1). Specifically, cyc2
[more specifically, cyc2-cluster 3 (McAllister et al., 2020a)]
appears to be the most common gene putatively linked to iron
oxidation. In the North Pond aquifer, many cyc2 homologs
were found to be closely related to those encoded by the iron-
oxidizing Mariprofundus. However, in marine sediments, cyc2
homologs appear to have a different phylogenetic distribution,
with associated taxa that have not previously been linked to
iron oxidation (e.g., Acidobacteria, Desulfobacterales, Ralstonia
solanacearum, etc.). In these taxa with no experimental evidence
for iron oxidation, the function of cyc2 is less clear. While cyc2
appears to be most widely distributed porin-cytochrome putative
iron oxidase, mtoAB is also present in three sediment sites:
Guaymas Basin, Loki’s Castle, and The Solent. Other genetic
markers for iron oxidation were also detected: sulfocyanin was
detected in three of the marine sediment sites (Loki’s Castle,
South Pacific Gyre, and Santa Monica Basin); the periplasmic
cytochrome-encoding foxE was found in two sites (Loki’s Castle
and The Solent). The Solent, which represents the only sediment
metagenome from the photic zone, was found to have a variety of
different markers for iron oxidation and reduction. Thus, unlike
other sites that are well below the photic zone (Table 1), where
iron oxidation has potential to fuel chemolithoautotrophy, in
The Solent, iron oxidation may fuel photoferrotrophy. While
the oxic South Pacific Gyre sediment may support aerobic
iron oxidation, the other surficial sediment sites, with higher
productivity and lower oxygen content, may support continuous
iron oxidation at the surface or during periods of oxygenation
[e.g., via bioturbation (Beam et al., 2018)].

Magnetosome Formation at Loki’s
Castle, but Absent From Other Sediment
and Aquifer Metagenomes
Magnetosomes are organelles of magnetotactic bacteria that
contain biomineralized magnetite (Frankel et al., 1979; Uebe and
Schüler, 2016). This allows bacteria to sense the Earth’s magnetic
field, facilitating orientation along geochemical gradients. We
detected nine separate loci encoding genes for magnetosome
formation at Loki’s Castle sediment (Figure 2). The genetic loci
for magnetosome formation identified at Loki’s Castle presented
a mixed phylogenetic distribution, with amino acid identities

near 50%, likely indicating a lack of closely related sequenced
organisms. However, some of the most closely related sequences
in NCBI’s non-redundant protein database appear to be from the
Magnetococcales order, which includes Magnetococcus marinus,
a marine magnetotactic bacterium isolated from the oxic-anoxic
sediment-boundary off the coast of Rhode Island (Bazylinski
et al., 2013). Magnetosomes are conceivably advantageous in
environments with geochemical gradients, and are considered to
be ubiquitous in aquatic habitats (Lefèvre and Bazylinski, 2013).
Thus, the apparent lack of magnetosome formation operons in
most marine sediment and all aquifer metagenomes is somewhat
surprising. It is possible that magenetosome formation is heavily
dependent on the availability and speciation of iron, which varies
as a function of the spatial distribution of the redox cascade.
Alternatively, the dearth of magnetosome formation operons
(mam) can be a result of FeGenie’s strict rules for its detection
(requiring the presence of at least 5 of the 10 diagnostic genes);
while the assembly qualities for most of the metagenomes used
in our survey are high (Supplementary File 3), detection of
magnetosome formation operons requires contigs greater than
5,000 bases in length, and these make up a relatively small
proportion (∼0.1–20%) of contigs in each assembly. In support
of the latter hypothesis, we identified a MAG with genetic
potential for iron oxidation (via foxE) – this MAG, with a
∼75% complete genome, is closely related to the mam-encoding
Magnetovibrio blakemorei, but only has 2/10 of the mam genes,
which are found on two different contigs; this is below FeGenie’s
detection threshold.

Iron Acquisition and Storage Is Common,
but Siderophore Synthesis Is Limited to
Subsurface Aquifers and One Sediment
Site
In addition to genes for iron redox cycling and magnetosome
formation, we also report the distribution of genes for iron
acquisition and storage, which are not directly linked to
respiration, but are essential functions for the majority of living
organisms (Figure 2). As expected, metagenomes examined in
this study have the genes necessary for ferrous and ferric iron
transport [efeUOB, fbpAB(C), feoAB(C), futABC], iron storage
within ferritin (PF00210), as well as iron gene regulation (dtxR,
fecR, feoC, and fur) (Supplementary Table 3). Potential for
transport of iron-chelating molecules like siderophores (Butler,
2005) and heme via the TonB-ExbB-ExbD system was also
detected (Krewulak and Vogel, 2011). We note that TonB-
dependent transport is not specific to iron-chelating compounds
(Noinaj et al., 2010). Even though heme can also be transported
by this pathway (Noinaj et al., 2010; Krewulak and Vogel,
2011), the marine sediment metagenomes were largely devoid of
heme oxygenase and storage homologs, except for one copy of
pigA (heme oxygenase; Friedman et al., 2003, 2004) and a few
copies of hutZ (heme storage; Liu X. et al., 2012) in the North
Pond metagenomes.

The North Pond metagenomes harbored several siderophore
synthesis gene clusters that share similarity to the known
clusters encoding desferrioxamine E, crochelin A, amonabactin
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FIGURE 3 | (A) Geographic distribution of marine aquifer and sediment sites from which metagenome samples are derived. (B) Schematic of the iron redox cycle in
various types of marine sediment. In shallow sediment within the photic zone (e.g., The Solent), photoferrotrophy can drive iron oxidation. Below the photic zone,
aerobic iron oxidation in surficial sediment (e.g., Guaymas Basin, Santa Monica Basin, and Western Gulf of Mexico) is contrasted with anaerobic iron oxidation (e.g.,
nitrate-dependent) in deep anoxic sediment (e.g., Costa Rica and Loki’s Castle). In these aforementioned sediments, iron reduction is present and represents the
other half of the iron cycle. Conversely, in oxic sediments, such as those underlying areas of low productivity (e.g., South Pacific Gyre), aerobic iron oxidation is the
dominant process, with no detectable iron reduction. The lower productivity is denoted by thinner arrows that signify carbon fixation and sedimentation. (C) Iron
cycling within the cold and oxic North Pond aquifer: iron is released from the young, largely ferrous (Bach and Edwards, 2003), basaltic crust via iron oxidation,
where it is free to cycle between the ferric and ferrous forms, and subject to the chelating activity of siderophores. (D) Iron cycling within the warm, anoxic JdF
aquifer: since the waters circulating in this aquifer are anoxic, iron oxidation is likely dependent on anaerobic metabolisms. Similar to North Pond, JdF basaltic crust
is young and the iron content is largely ferrous (Bach and Edwards, 2003); thus, iron is first released via oxidation. Detection of iron reduction on the surface of an
olivine chip suggests that iron oxides may be deposited on the olivine mineral after oxidation by iron-oxidizing microbes. FeOB, aerobic iron-oxidizing bacteria;
AnFeOB, anaerobic iron-oxidizing bacteria; PSAnFeOB, photosynthetic anaerobic iron-oxidizing bacteria; FeRB, iron-reducing bacteria; Sid, siderophores.

P, vicibactin, and vibrioferrin (Supplementary Table 5). The
percent of genes in these identified clusters with significant
BLAST hits to genes within known siderophore clusters ranged
from 33–80%, as determined by AntiSMASH (Blin et al.,
2019). Putative siderophore synthesis was also confirmed
in several North Pond MAGs (Supplementary Table 2).

MAGs taxonomically identified as Pseudomonas tetraodonis,
Halomonas alkaliantarctica, and Paracoccus sp. may produce
siderophores related to desferrioxamine E (75% gene similarity),
crochelin A (46%), and amonabactin P (42%), respectively.
Other North Pond MAGs encode siderophore gene clusters
similar to aerobactin (33%; Moritella sp000170855), bisucaberin
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B (100%; Flavobacteriaceae sp.), and unknown siderophores.
The presence of siderophore synthesis clusters in the North
Pond metagenomes and MAGs with low similarity to
known siderophore biosynthesis genes suggests potential
for synthesizing structurally related or novel siderophores.
Siderophore clusters are genetically diverse and modular systems
that are impacted by several evolutionary processes, including
gene loss and gene acquisition (e.g., through horizontal gene
transfer) (Cruz-Morales et al., 2017; Thode et al., 2018). This
leads to variation in siderophore structures (e.g., Seyedsayamdost
et al., 2012), which is likely required to prevent uptake by
non-siderophore-producing microorganisms, in what is known
as siderophore piracy (Hibbing et al., 2010; Butaitë et al., 2017).

We also detected a siderophore synthesis locus in one of the
JdF aquifer fluid metagenomes (Supplementary Table 5). Using
AntiSMASH, this cluster was confirmed to be related to the
acinetoferrin biosynthesis cluster.

Out of the 24 surveyed metagenomes from marine sediment,
only one, The Solent, appears to encode a siderophore
biosynthesis cluster, confirmed using AntiSMASH, to be most
closely related to xanthoferrin. The overall lack of siderophore
production in marine sediments may be due to the greater
bioavailability of iron in those habitatis, or the potential
presence of siderophores derived from the water column. The
metagenomes may also harbor siderophore synthesis loci that
share no or undetectable similarity to known siderophore
synthesis clusters/models. Siderophores are necessary to obtain
insoluble Fe(III) from the environment, and ferrisiderophore
complexes become an important source of iron when soluble
Fe(II) is limited. At Loki’s Castle and Guaymas Basin sediments,
pore water Fe(II) concentrations can reach ∼200 µM (Table 1),
which may obviate the need to synthesize siderophores. In the
South Pacific Gyre sediment, with extremely low productivity
and metabolic activities, the synthesis of siderophores may be
too energetically costly. In contrast, siderophore synthesis in
North Pond and JdF fluids concur with the minimal amounts
of bioavailable iron present (Table 1), although JdF fluids
have been shown to have highly variable iron concentrations
between boreholes (Wheat et al., 2013). Within North Pond,
oxic conditions (∼213–216 µM O2) result in the biotic and
abiotic removal of soluble iron, leading to extremely low
iron concentrations. This is consistent with the relatively high
numbers of different siderophore synthesis loci identified there.
The apparent lack of siderophore production in iron-limited
sediment, like Costa Rica sediments, mainly composed of
non-iron bearing clays (Vannucchi et al., 2013), and South
Pacific Gyre sediments, which are oxygenated and contain
only 5.6–7.3% Fe2O3 (D’Hondt et al., 2011; Dunlea, 2016)
suggests dependence on exogenous siderophores, or other iron-
chelating molecules (D’Onofrio et al., 2010). For example, in
higher-productivity areas, sedimentation of biomass may deliver
sufficient amounts of iron and iron-bearing molecules to benthic
communities (Boyd and Ellwood, 2010; Gledhill and Buck,
2012; Boiteau et al., 2016). Additionally, release of reduced
iron from sediment, which can also be catalyzed by iron-
reducing bacteria, can potentially contribute to the iron budget
of resident microbes. Alternatively, as mentioned above with

regard to the apparent lack of magnetosome formation operons,
the lack of siderophore biosynthesis operons may also be due
to the fact that, similar to the magnetosome formation operon,
siderophore biosynthesis operons are often >10,000 bases in
length and involve multiple genes; thus, reliable detection of
siderophore biosynthesis requires contigs that are relatively rare
in metagenome assemblies.

CONCLUDING REMARKS

Our reanalysis of globally distributed marine subsurface
metagenomes using FeGenie’s comprehensive iron gene library
illuminates the diversity of microbial iron redox mechanisms that
can occur across a range of geochemical regimes (Figure 3A).
Further, we demonstrate FeGenie’s utility in providing a
standardized pipeline for the comparison of iron genes among
many large genomic datasets. We note that the data used
in our survey were generated from multiple studies; inherent
differences in sampling collection and processing, sequencing,
and in silico methods, thus, make it difficult to generate
overarching conclusions. Despite these potential limitations, our
results support a hypothesis that geochemical constraints may
influence the distribution of iron redox genes, potentially playing
an important role in determining the dominant strategy for
iron cycling (Figures 3B–D). At high-productivity sites (e.g.,
Guaymas Basin, Santa Monica Basin, Western Gulf of Mexico,
Costa Rica), iron cycling is likely based on the penetration of
oxygen and/or nitrate into surficial sediment, or deeper due
to bioturbation, enabling microbial iron oxidation processes
until these electron acceptors are diminished and iron reduction
dominates. In oxic sediment, such as that underlying areas of
low productivity (e.g., South Pacific Gyre), iron cycling is likely
dominated by iron oxidation – with no or limited biological iron
reduction. In cold and oxic subseafloor aquifers like North Pond,
the flux of oxygen and organic carbon are possibly key factors
influencing the abundances of iron-oxidizers and iron-reducers
(Figure 3C), while in the warm and anoxic waters circulating
within the JdF aquifer, iron cycling is dependent on anaerobic
metabolisms (e.g., iron reduction and nitrate-dependent iron
oxidation) (Figure 3D).

In nearly every site where iron redox cycling was detected,
porin-cytochrome combinations were present and may
constitute an important vector for dissimilatory electron
transfer to and from soluble and insoluble iron (although porin-
cytochrome genes are also the most common genetic markers
currently available). For example, the porin-cytochrome fusion
encoded by cyc2 appears nearly ubiquitous in our surveyed
data; cyc2, whose phylogenetic distribution implies rampant
lateral transfer among prokaryotes (McAllister et al., 2020a),
may thus represent a widespread mechanism for respiratory
iron oxidation. Alternatively, it is possible that Cyc2 acts as an
iron detoxification mechanism (Bradley et al., 2020). In addition
to porin-cytochromes, other mechanisms for iron redox were
detected in diverse habitats. For example, the Geobacter-type
omcS, omcZ, and electroactive pili genes demonstrate another
strategy that may be largely relegated to sediment and biofilm
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niches. Although, detection of omcZ and t4ap genes in one of the
JdF aquifer plankton metagenomes supports the possibility that
this strategy may be utilized in planktonic niches, at least those
where anoxic conditions prevail.

Geochemical constraints also seem to impact other aspects of
the microbial iron cycle. Unlike the near-ubiquitous occurrence
of genes associated with iron transport, iron storage, iron
gene regulation, heme transport, and siderophore transport
amongst the surveyed metagenomes, siderophore biosynthesis
gene clusters were restricted to subseafloor aquifers, with only
one sediment site encoding a siderophore biosynthesis cluster.
Similarly, magnetosome formation genes were detected in only
one of the sediment metagenomes (and none in the subsurface
aquifers). It is possible that these biosynthesis operons are in
short supply due to geochemical factors influencing the supply
of iron or energy needed to synthesize them. However, we also
cannot rule out the possibility that siderophore biosynthesis
and magnetosome formation are more prevalent but undetected,
either due to high level of sequence divergence from pre-existing
HMMs used by FeGenie, or due to low abundances in the
sequenced samples. For example, FeGenie retains the ability
to detect potentially novel types of siderophore biosynthesis
clusters, but detection of magnetosome formation depends on
gene markers from a single known operon. In summary, our
survey provides a comprehensive overview using the currently
available genetic markers, generating testable hypotheses and
providing insights into the distribution of iron genes in
subsurface biomes across the world.
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Supplementary Figure 1 | Cryptic iron cycling on the surface of an olivine mineral
incubated within the Juan de Fuca aquifer (borehole 1301A). The green trapezoid
represents the olivine mineral with the chemical formula (Mg2+, Fe2+)2SiO4.
Oxidation of reduced iron within the olivine mineral by iron-oxidizing bacteria
(FeOB) results in the formation of iron(III) oxyhydroxides, and chemical formula
Fe(OH)3, a by-product of microbial iron oxidation. The iron oxyhydroxides can then
be used as terminal electron acceptors by iron-reducing bacteria (FeRB), releasing
reduced iron from the mineral. Cyc2 and GACE_1847 are shown as putative iron
oxidases and iron reductases, respectively, in this schematic.
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