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Abstract
Recent research involving bats flying in long tunnels has confirmed that hippocampal place cells can be active at multiple locations, with 
considerable variability in place field size and peak rate. With self-organizing recurrent networks, variability implies inhomogeneity in 
the synaptic weights, impeding the establishment of a continuous manifold of fixed points. Are continuous attractor neural networks 
still valid models for understanding spatial memory in the hippocampus, given such variability? Here, we ask what are the noise 
limits, in terms of an experimentally inspired parametrization of the irregularity of a single map, beyond which the notion of 
continuous attractor is no longer relevant. Through numerical simulations we show that (i) a continuous attractor can be 
approximated even when neural dynamics ultimately converge onto very few fixed points, since a quasi-attractive continuous 
manifold supports dynamically localized activity; (ii) excess irregularity in field size however disrupts the continuity of the manifold, 
while too little irregularity, with multiple fields, surprisingly prevents localized activity; and (iii) the boundaries in parameter space 
among these three regimes, extracted from simulations, are well matched by analytical estimates. These results lead to predict that 
there will be a maximum size of a 1D environment which can be retained in memory, and that the replay of spatial activity during 
sleep or quiet wakefulness will be for short segments of the environment.
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Significance Statement

Remembering one’s position on a spatial continuum seemed to require a smooth orderly representation inside the brain, arising from 
a continuous attractor neural network dynamics. Yet, place cells in the hippocampus have been shown to be quite disorderly, when 
recorded in bats flying in a long tunnel. Does it mean they cannot remember where they were? No, disorder still enables a continuous 
quasi-attractive line of dynamical states to emerge, but up to a limit. In fact, simulations show that there is a minimum degree of 
disorder as well as a maximum one enabling spatial memory retrieval. These two values, which we can estimate analytically, coalesce 
when the environment gets larger, implying a maximum size that can be stored in memory.
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Introduction
The study of spatial representations in the hippocampus has been 
extensively conducted by analyzing recordings of place cells in sim
ple laboratory environments. This body of research has consoli
dated the notion that a typical place cell exhibits activity within a 
single defined place field (1). However, this perspective has been in
creasingly questioned in recent years. Studies conducted in larger 
environments (2–6) have demonstrated the presence of multiple 
fields per place cell, while earlier multifield recordings, particularly 
in the dentate gyrus, had already hinted at such complexity (7–9). A 
pivotal contribution to this ongoing debate was made by Eliav et al. 
(10). Their recent study quantified the distribution of the fields ex
pressed by individual CA1 place cells in bats flying in a 200 m long 

tunnel. Place cells were shown to have up to >20 different fields, 
with huge variability in the peak firing rate and in the width. The lat
ter was reported to be well fit by a log normal distribution, which al
lows for small fields from under a meter wide, up to large ones of 
tens of meters. Further, experimental evidence both in bats (10) 
and rats (5) indicates that the same place cell can exhibit a single 
field in small environments and multiple fields in larger ones, 
challenging the notion that some place cells are strictly uni-field 
while others are multifield. For years, associative memory network 
models (11–13) have explored the hypothesis that the hippocampal 
representation of space might be comprised of place cells express
ing predominantly single fields of standard size. Theoretically, with
in a recurrent neural network this assumption facilitates modeling 
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place field storage as continuous attractors being established 
through unsupervised Hebbian learning. In these models, each pos
ition in the spatial environment, whether in one, two, or three 
dimensions—or, equivalently, in abstract continuous spaces of 
any dimensionality—maps to a fixed point on an attractive continu
ous manifold. The fixed points, however, are only marginally stable, 
susceptible to even minimal forces acting along the manifold, and 
then true continuity only arises in mathematical limit conditions. 
Consequently, since the introduction of such (approximately) con
tinuous attractor neural networks (cANN) in a wider neuroscience 
context (14), a significant effort has been dedicated to understand
ing the factors that may drive in practice their neural dynamics and 
determine their stability. “Bumps” of neural activity can slide along 
the manifold due to various factors, such as fast neural noise 
(14–24), firing rate adaptation (25, 26), or quenched disorder, which 
itself can be induced by the storage of multiple maps (27–30), by 
random noise (24, 31–36), by the encoding of additional variables 
(37–40), or by a consistent direction of motion in the synaptic 
weights (24, 41). All these considerations stretch the notion of con
tinuous attractor networks, as they are in practice endowed with 
only a discrete number of true fixed points rather than a genuinely 
continuous attractive manifold. Yet, the precise noise limits at 
which such a notion ceases to be valid remain undefined. This 
poses a significant challenge to considering cANNs as effective 
models for cognitive maps with irregular place field statistics. 
The presence of such irregularity, indeed, implies pronounced 
quenched noise in synaptic weights within the network, leading 
to a small residual number of fixed points. Motivated by the recent 
experiments in bats, we have addressed this question through a 
detailed numerical study grounded in the recorded place field sta
tistics, followed by a first, heuristic mathematical analysis.

We examine three dimensions of variability for place fields: 
their number per cell, their size, and their peak firing rate, follow
ing the distributions reported in Ref. (10), each parameterized by a 
single variable. Next, we encode this variability into the synaptic 
weights of a recurrent neural network through Hebbian learning, 
effectively introducing quenched noise. We then analyze net
works dynamics at different locations in this 3D space, where 
standard cANNs would correspond to the zero-variability point 
(0,0,0), which exhibits a semi-continuous manifold of fixed points 
that approaches continuity as the number of cells N→∞. Our 
study reveals three distinct regions within this “phase diagram,” 
characterized by specific dynamical properties. These regions 
are delimited by abrupt transitions in dynamical behavior, akin 
at least numerically to phase transitions. Importantly, we demon
strate that the coordinates defining the experimental recordings 
fall within the same dynamical region as standard cANNs, the 
only one where memory retrieval can effectively take place.

While a multifield multiscale neural code has been suggested 
to be advantageous in terms of decoding error (10), whether a dis
orderly arrangement of place fields could be the basis for a stable 
memory representation of an environment had remained unclear. 
Here, we show that highly irregular place fields can indeed be ef
fectively stored and retrieved within a continuous quasi-attractor 
(CQA) neural network. We identify, however, specific boundaries 
of quenched disorder, for which we provide analytical heuristic 
estimates, that delimit the region of existence for such a CQA re
gime. We note the challenging nature of the analytical evaluation, 
due in part to the out-of-equilibrium character of the dynamical 
phenomena we find numerically. Conventional analysis methods 
based on the study of fixed points are not sufficient, and thus we 
hope to stimulate future endeavors aimed at achieving a more 
rigorous analytical understanding of these boundaries.

Results
Model definition
We first introduce a neural network model incorporating the ac
tivity statistics observed in bats by (10). The network includes N 
pyramidal cells, labeled i = 1, . . . , N and modeled as threshold- 
linear units (42). Recurrent connections among these N units are 
taken to be dense (as they are known to be in CA3, not in CA1), 
for simplicity all-to-all, and to be endowed with Hebbian plasti
city, through which the network is assumed to have stored a re
presentation of a tunnel of length L—and only of that tunnel.

With these assumptions, as a result of a learning phase not 
explicitly modeled here, and discretizing the tunnel of length L 
into spatial bins of width W = L/S centered in su = u × W, with 
u = 1, . . . , S, the connectivity matrix between the neurons is given 
by the Hebbian covariance rule:

Jij =
1

NS

􏽘S

u=1

􏼢
ηi(su)
〈η〉

− 1

􏼣
ηj(su)

〈η〉
− 1

􏼢 􏼣

, (1) 

where ηi(s) is the reproduced recorded activity of cell i when the 
bat is at position s in the tunnel. Here, 〈η〉 denotes the average ac
tivity over all cells and all positions.

The distribution of activity {ηi(s)} is chosen to replicate the sta
tistics observed in bats flying in a long tunnel. The recorded place 
maps, of which we report two samples in Fig. 1A,  were indeed 
shown to have an overall high variability as reported in the ob
served distributions, shown in Fig. 1B–F. We focus on reproducing 
the variability in the number of fields, reported in Fig. 1B, the one 
in the width, reported in Fig. 1C and D, the correlation between 
width and peak firing rate, reported in Fig. 1E, and the one of the 
maximal peak firing rate, reported in Fig. 1F. To model the ob
served sources of variability, we assume that (1) Each unit is taken 
to have, along the tunnel, a variable number M ≥ 1 of place fields. 
We consider, in agreement with experimental data, that the distri
bution of M is exponential: P(M) ∝ exp ( − M/ζ ) where ζ > 0 controls 
the average number of fields 〈M〉, see Fig. S1 for details. The case of 
a single field per neuron, i.e. P(M) = δ(M, 1), is formally associated 
with ζ = 0. (2) Each field k is centered at a random location uni
formly distributed along the tunnel and has a Gaussian shape of 
width dk = 2σ, truncated at ±σ, and peak rate pk; with both param
eters drawn from log normal distributions, which fit quite well the 
experimental data. In detail, for each k, we draw dk such that 
ln (dk) is normally distributed with mean μd and variance σd and 
then pk such that ln (pk) is normally distributed with mean μ̃p(dk) ≡ 
μp + γ ln (dk/〈dk〉) and variance σp. A factor γ > 0 introduces a correl
ation between field widths and peak rates, with γ = 0.5 reprodu
cing the observed correlation, as shown in Fig. 1E&M. We will 
see at the end of the analytical section estimating the quasi- 
circular boundary that taking into account this correlation is im
portant. Furthermore, Burak and colleagues were recently able to 
show that precisely this degree of correlation would arise natural
ly in a model in which the place fields result from random 
Gaussian processes (43). This construction procedure for the fields 
is summarized in Fig. S2 and leads to firing rate profiles and distri
butions similar to those observed experimentally, as shown in 
Fig. 1G–N; For additional details, see SI Section 1. The network 
evolves under its recurrent connectivity in Eq. 1 only (no external 
input after the initial cue, and learning is taken to have been con
solidated). We call Vi(t) the activity of cell i at time t, during such 
recurrent dynamics. The discrete time evolution equation for 
neural activity reads

Vi(t + 1) = e−1/τVi(t) + (1 − e−1/τ)g[hi(t)]
+, (2) 
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where [h]+ = max (0, h), g is a fixed gain parameter and τ is the time 
scale for collective firing rate dynamics, in units of the discrete 
simulation time steps. In recurrent networks of spiking units, τ 
is, according to mean-field theory, related to the time needed for 
synaptic conductances to close (44), and can be smaller close to 
a discrete attractor state (45, 46). Although the case of continuous 
attractors is less clear and likely depends on their smoothness, it 
can be argued that τ should correspond to at most 10 ms of real 
time. In the simulations, we use τ ≥ 9.5 time steps, which implies 
that a time step corresponds to at most 1 ms of real time. Finally,

hi(t) =
􏽘

j≠i

JijVj(t) − T
1
N

􏽘

j

Vj(t)

⎛

⎝

⎞

⎠ (3) 

is the input current to unit i at time t, relative to a threshold T in
corporating fast activity-dependent inhibition. We choose 

T(v) = 4ω(v − v0)3, where v0 is the target mean activity, which we 
keep constant, and ω the strength of this inhibitory feedback, 
also a constant. See the Methods section for the setting of simula
tion parameters. Note that these dynamics are associated with an 
energy (Lyapunov) function, as described in SI Section 2.

Numerical results: three different regimes
To assess whether the network activity 􏿻V(t) at time t, evolving 
without external inputs, reinstates the population vector 􏿻η(s) en
coding during learning a specific position s, we initialize it at 
some location s0, i.e. 􏿻V(t = 0) = 􏿻η(s0), acting as an initial cue, and 
then measure the cosine similarity

O(􏿻η(s), 􏿻V(t)) =
􏽐N

i ηi(s) · Vi(t)
����������������������������
􏽐N

i (ηi(s))2
·
􏽐N

i (Vi(t))
2

􏽱 , (4) 

for all positions along the tunnel.
The set of overlaps O(􏿻η(s), 􏿻V(t)) for all s defines the overlap pro

file at a given time t. If it is a bump-like profile peaked in s∗, we can 
say that the network is reactivating or retrieving the code for this 
position. Conversely, when the profile is not spatially tuned, 

network activity is not representing any position along the 
tunnel—it has left its attractive manifold. Monitoring this profile 
over time, we therefore characterize the spatial memory ex
pressed in high-dimensional neural dynamics.

Three scenarios are observed, depending on the parameters: 

• Continuous quasi-attractor (CQA): the profile shows a bump-like 
shape, with width small compared to the tunnel length, at all 
times, Figs. 2A and B. The bump slides with time until a fixed 
point is reached (Fig. 2A).

• Fragmented Manifold (FM): the bump deforms, gradually 
spreads out, see Figs. 2C and D. After some time, the bump re- 
localizes, as if teleported elsewhere, until it reaches a fixed 
point (Fig. 2D). Informally speaking, the neural activity transi
ently leaves the manifold.

• Nonlocalized (NL): the bump rapidly grows in width and 
ceases to be localized (Fig. 2E) until a spatially noninformative 
fixed point is reached, spread over the whole environment 
(Fig. 2F).

By spanning wide ranges of values for the quenched parame
ters ζ , σp, σd, as depicted in Fig. 3A (with a sample realization in 
Fig. 3B), we locate the boundaries of regions associated to the 
CQA, FM, and NL regimes. To do so, we consider four estimators 
of the bump-like nature of the activity, see Methods: 

• the percentage of vanished manifold, quantified as the per
centage of initial positions from which the neural population 
activity leaves the manifold;

• the tangent overlap 〈Otang〉, characterizing the alignment of 

the direction of instability of the fixed points with the direc
tion of the presumed 1D manifold;

• the bump width at the fixed points, indicating whether the re
trieved stable activity is localized on the manifold.

• the number of fixed points, indicating the number of different 
positions on the manifold encoded as fixed points.

These estimators vary with the parameters ζ , σp, σd.

Fig. 1. Experimental and model place field profiles and distributions Top (A–E): Experimental results of (10), reproduced with permission; F) was obtained 
from the experimental data in E), kindly given to us by the authors. Bottom (G–N): analogous plots obtained with the field generating algorithm we design, 
introduced in the main text. A) Firing rate profiles of two neurons in CA1, different colors represent different flying directions (bottom: raster plots across 
multiple back and forth flights). B) Distribution of the number of place fields in one direction. The bar at 20 includes all values above 20, and the average 
number of fields is 〈M〉 = 4.9. C) Distribution of the smallest and largest field sizes per neuron (including those with at least 2 fields). D) Distribution of fields 
sizes, the parameters of the log normal fit, in red, are eμd = 4.8 m, σd = 0.575. E) Scatter plots of field size versus peak firing rate for each field. The Spearman 
correlation coefficient is ρ = 0.29. F) Distribution of peak firing rates, the parameters of the log normal fit, in red, are eμp = 4.7 Hz, σp = 0.884. G) Two sample 
activity profiles of two different units, as obtained from our algorithm. We model only one flying direction. H–N same as B–F but for the field distributions 
sampled from a random realization of the field generating algorithm for N = 331 units (with parameters: ζ = 4.7, μd = 1.57, μp = 1.549, σd = 0.575, σp = 0.884, 
γ = 0.5).

Schönsberg et al. | 3

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae525#supplementary-data


In particular, we observe that when the dispersion σd of place 
field widths increases, at some point, as shown in Fig. 3C–E, the 
percentage of vanished manifold abruptly increases and the dir
ection of instability of the fixed point also gets abruptly orthogonal 

to the direction of the manifold, while the number of fixed points 
decreases only smoothly. This large-σd effect is thus visible in the 
dynamical behavior towards fixed points. Further, we observe that 
when the dispersion σp of place field peak firing rates increases, 

Fig. 2. The three dynamical regimes of the neural activity and their spatial correlates. Top row: overlap profiles O(η(s), V(t)) vs. position s at different steps 
t of the dynamics; selected steps t are indicated by gray levels ranging from light gray (initial condition) to black (fixed point). Bottom row: bump width (see 
Methods) of the overlap profile as a function of the number t of steps; same gray level code as in the top row. A, B) Continuous Quasi-Attractor regime: A) 
the bump slides on the manifold—the inset shows a zoom-in—B) maintaining a constant width at all times, and stops at a fixed point, which reflects the 
initial condition. Dark gray in A) corresponds to the profile at the 200th time step. C, D) Fragmented Manifold regime: C) the activity “jumps” outside the 
manifolds and re-enters at a different location elsewhere, accordingly D) the bump width transiently increases. Dark gray in C) corresponds to the profile 
at the 38th time step. E, F) Non Localized regime: E) the initial bump rapidly vanishes and the activity is not clearly related to any position in space, F) the 
smeared overlap is reflected in a bump width ≈ 1 . Dark gray in A) corresponds to the profile at the 30th time step. Parameters: N = 8000, g = 2.5, τ = 9.5; A, 
B) ζ = 1, σd = σp = 0.4 ; C, D) ζ = 1, σd = σp = 0.9; E, F) ζ = 4.7, σd = σp = 0.2.

Fig. 3. Dynamical changes between regimes. A) The distribution of the fields is defined by three quenched order parameters, as described in the main 
text. The vertical and horizontal dashed lines represent the values explored in the subplots C, D) and F–H) respectively. B) Place fields profiles of two 
sample units (gray/black), as generated from our procedure, for the labeled value of ζ , σp, σd. C) 〈Otang〉 profile, the curves indicate the 0.25 quantile (75% of 
the overall data lie above the line). D) Percentage of vanished manifold and E) Average number of fixed points for increasing σd when maintaining ζ and σp 

fixed at their experimental values, as labeled, for increasing N. F) Averaged bump width of the fixed points G) Percentage of vanished manifold and H) 
Average number of fixed points for increasing σp maintain ζ and σd fixed. The vertical lines in C–E) and F–H) correspond to the analytical predictions, σd = ���������

ln (3/2)
􏽰

and σp extracted from the numerical solution of Eq. 10, respectively. For further comparison refer to Fig. S3; see Methods for details over the 
measurements and model parameters. Each data point is averaged over 20–50 different quenched realizations of the network, each probed with 50 
different runs initialized from equidistant η(s) along S.
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with ζ > 0 and σd fixed, at some point, as shown in Fig. 3F–H, the 
stable states start to be localized on the manifold, the percentage 
of vanished manifold abruptly decreases and the number of fixed 
points abruptly increases. This effect of σp is thus visible in the 
fixed points themselves. The simultaneity and the abruptness of 
both these types of change are compatible with sharp changes 
of regime, reminiscent of phase transitions in physical systems. 
For more comparisons, refer to Fig. S3.

The results of an exhaustive exploration of parameter space 
are summarized in Fig. 4 in the form of empirical phase diagrams, 
locating the regions associated with the CQA, FM, and NL regimes. 
We note some general features of this summary of the simulation 
results, see also Fig. 3: 

• The CQA regime is found in a central region of the (σd, σp) 

plane, when ζ > 0.
• For σd above a critical value that appears to be almost inde

pendent of σp and ζ, the network abruptly transitions to the 

FM regime, becoming effectively unable to represent, based 
on memory, almost any position along the tunnel (Fig. 4A–C).

• When units have multiple fields, and both σd and σp are small, 

approximately within a circular boundary (which depends on 
ζ), population dynamics always delocalizes, and the network 
can be said to have entered, again abruptly, the NL regime 
(Fig. 4D–F).

The boundary between the CQA and FM regimes seems to be at 
a value of σd above, but close to the experimental value from CA1 
recordings, σd = 0.575. We emphasize that its exact location is not 
sensitive to the precise form of the initial conditions, see Fig. S4, 
nor to the parameters regulating, in our network model, its dy
namical evolution, such as the gain or the global inhibition 
term, nor to those related to the discretization of the tunnel 
length, see Figs. S5 and S6. Note the contrast between the sharp 
increase with σd in the proportion of starting positions from which 

activity is eventually teleported and the smooth decrease in the 
number of fixed points (see Fig. 3D and E), which in itself would 
not suggest that the network enters a distinct phase.

Analytical estimates
A rigorous analytical treatment of the model, estimating the dy
namical evolution of the network, as a function of the connec
tions, could provide solid explanations regarding the nature of 
the transitions between the regimes we described numerically. 
Yet, a rigorous approach is challenging, due to the nonindepend
ent distribution of the interaction terms Jij and, for the CQA-FM 
boundary, due to the nonstationarity of the phenomenon. 
Nevertheless, we can derive precise estimates of the boundaries, 
using signal-to-noise analyses, reported below.

Quasi-circular boundary of nonlocalization.
When units have multiple fields and limited variability in their 
width and peak rate, the network activity gets “smeared” over the 
entire length of the tunnel, as shown in Fig. 2E, Fig. 3F and in 
Fig. 4D–F. This indicates that the competition among the fields fails 
to produce a winning location. Intriguingly, adding variability in the 
distribution of width and peak rate promotes localization, as if 
noise allows the network to better differentiate among the different 
fields, restricting the retrieved activity to a fraction of the units. To 
derive the boundary we make three concatenated ansatzes: 

1. that the “strength” of each field k of each unit is proportional 
to the product of its width and peak rate

sk = dk · pk; (5) 

2. that per each unit only one “strongest” field, say k∗ = 1, effect
ively matters to create the signal while all others contribute 
as noise

Fig. 4. Phase diagrams in the σp-σd plane. Both numerical and analytical results are shown for three σp − σd sections at increasing average number of fields 
(ζ = 0, i.e. M ≡ 1 for A–D); ζ = 2.85, 〈M〉 ≈ 3.4 for B–E); ζ = 4.7, 〈M〉 ≈ 4.9 akin to the experimentally observed value for C–F)). A–C) show the percentage of 
vanished manifold D–F) show the average bump width of the fixed points (see Methods for details about the measures). Green crosses in C–F) indicate the 
σp, σd values giving rise to distributions as the experimental results. White curves are derived analytically, as reported in the analytical estimates 
subsection. Parameters: plots where obtained by interpolation (with 13 × 13 data points). A data point is averaged over 3–5 different quenched 
realizations of the network, each probed with 50 different runs initialized from equidistant η(s) along S, N = 5,000.
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SNL
ignal ∝ 〈d1 · p1〉 , (6) 

N
NL
oise ∝

􏽘

k>1

dk · pk

􏼪 􏼫

. (7) 

3. that localization can only occur when the overall signal is lar
ger than the overall noise scaled by some quantity C(σp, σd), 

i.e. that the boundary occurs when

SNL
ignal

N
NL
oise

= C(σp, σd). (8) 

The analytical steps to evaluate SNL
ignal and NNL

oise are reported in SI 
Section 4, and they relate, in practice, to the statistics of the popu
lation vectors η(s), leading to a closed set of equations for units 
having the same number of M fields. We then perform the 
weighted average 〈〉̇M for both quantities at each specific ζ. We 
find heuristically that the quantity C(σd, σp) can be approximated 
by

C(σd, σp) =
〈pk〉

A
���������
Var(pk)

􏽰 . (9) 

The equation for the boundary, as derived in the SI Section 4
writes then as

〈SNL
ignal(M)〉M

〈N
NL
oise(M)〉M

=
1
A
〈pk〉
���������
Var(pk)

􏽰 =
1

A
����������������������
exp [γ2σ2

d + σ2
p] − 1

􏽱 , (10) 

Whichever value one chooses for the factor A, it can be verified 
numerically that this equation produces a quasi-circular bound
ary for γ = 0.5, see Fig. S7; and its effective radius increases with 
ζ, Fig. S8. The boundary, for A = 3, is reported as a white quasi- 
circular line in the subplots of Fig. 4 and as dashed vertical lines 
in Fig. 3F–H. Numerically, this solution is indeed close to the crit
ical values estimated from the simulations.

As a validation of our analysis we performed simulations with 
other correlation values, γ ≠ 0.5, between peaks and diameters. 
This leads to a different shape of the region of nonlocalization, 
whose boundary is still defined by Eq. 10, see e.g. Fig. S7 for γ = 0.

Vertical boundary of the Fragmented-Manifold regime
The location of the vertical boundary, as shown in Fig. 4A–C, ap
pears to be independent of the value of ζ and nearly independent 
of σp. Based on this observation, we introduce a simplified model: 
each unit is characterized by a single field (Mi = 1, ∀i), the fields 
have purely Gaussian shapes and the different fields are 

uniformly distributed across the environment. As we consider 
σp = 0, i.e. the same peak rate p = 1/

���
2π
√

for each field, the only 
source of variability among the units lies in the widths of their 
fields, which follow a log normal distribution as in the realistic 
model reproducing experimental data. In Fig. 5A, we show a few 
sample activity profile of different units for a given σd for this re
duced model. As reported in Fig. 5B–D, to be compared with 
Fig. 3C–E, simulations of this reduced model reveal a qualitatively 
and also quantitatively similar dynamical behavior as that ex
pressed by the realistic model, giving us the possibility to study 
analytically the reduced version in order to get an understanding 
of the realistic one.

What makes the network activity suddenly “jump elsewhere” 
during the dynamics, for σd > σc

d? The cause must be the disparity 
in the width of the fields. When some of the widest fields happen 
to be centered far away from the current position s, but still get ac
tivated, they can start suppressing the narrower units centered 
around s, and the self-reinforcing process can lead to a jump. 
Critical to the self-reinforcing nature of the process is that the lar
gest fields exert a disproportionate influence with respect to the 
narrow ones; this is because in the Hebbian plasticity rule (Eq. 1) 
the normalization of both pre- and post-synaptic factors is by 
the average activity level across units, 〈η〉. To find the boundary 
we make, again, a set of ansatzes: 

1. given a unit, the average incoming signal from all other units, 
as a function of the distance d of their fields, is proportional to 
the average of the corresponding connectivity weight, and the 
noise square to their variance, i.e.

SFM
ignal(d) ∝ 〈J(d)〉, (11) 

[N FM
oise(d)]2 ∝ 〈

(
J(d)

􏼁2
〉 −

(
〈J(d)〉

􏼁2
. (12) 

2. the activity bump can remain localized only if the incoming 
signal from the furthest unit is larger than the incoming noise 
scaled by some quantity D(σd), namely assuming d→∞, the 
boundary corresponds to the values at which

limd→∞ S
FM
ignal(d)

����������������������

limd→∞ [N FM
oise(d)]2

􏽱 = D(σd). (13) 

The calculation of the above quantities is reported in SI Section 5, 
and it reflects, in practice, only the statistics of the connections J. 
We find, also in this case heuristically, that the quantity D(σd) is 
actually a constant, namely

D(σd) ≡ D = 1. (14) 

Fig. 5. Dynamical change between CQA and FM regimes, with M ≡ 1 and σp = 0. A) Single fields of 10 sample units obtained from the reduced model 
introduced in the text, with σd = 0.87 (See SI Section 1.4 for details). B–D) Same as Fig. 3 B–D).
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Setting the equality in 13 the value corresponding to the estimate 
for the boundary location is then:

σc
d =

���������

ln (3/2)
􏽱

≃ 0.637. (15) 

This value is reported as a white vertical line in the subplots of 
Fig. 4 and as dashed vertical lines in Fig. 3C–E and Fig. 5B–D. 
Also in this case, numerically, this solution is indeed close to the 
critical value estimated from the simulations.

As a validation of our analysis we show that its predictive 
power extends beyond the standard Hebbian rule and is able to 
locate the boundary along the σd-axis for a class of plasticity 
rules. To do so we design an additional model, identical to the re
duced model introduced above except for the couplings, given in
stead by

Jij =
1

NS

􏽘S

u=1

􏼢
ηi(su)
〈ηi〉

ϵ〈η〉1−ϵ − 1

􏼣
ηj(su)

〈ηj〉
ϵ〈η〉1−ϵ − 1

􏼢 􏼣

, (16) 

where 0 ≤ ϵ ≤ 1. For ϵ = 0, the original Hebbian rule in Eq. 1 is re
covered. For ϵ ≠ 0, instead, the normalization of the coupling Jij 
depends on the neurons i and j through their average activities 
〈ηi〉 and 〈ηj〉. We run numerical analysis using this model and, 

as reported in Fig. 6A, we show that the critical level of noise 
characterizing the passage between the QCA and FM regime in
creases with ϵ. We consider small positive values for ϵ. The ana
lytical calculation of the critical σc

d(ϵ) is reported in SI Section 5

and the result is indicated by a black line in Fig. 6B. We consider 
the agreement between this analytical estimate and the crosses 
in Fig. 6B, corresponding to the numerically estimated level of 
noise at which 50% of the manifold has disappeared, as a valid
ation of our analysis.

Discussion
It has long been understood that storing multiple regular place 
maps within a single connectivity matrix creates quenched dis
order, which roughens each continuous attractor—i.e. each map 
—without completely erasing it, up to a certain capacity limit 
(11, 21, 27, 29, 30, 47). Instead, the impact of quenched noise ori
ginating from irregularity, even within a single map, had never 
been explored, leaving unclear the extent to which the continuous 
attractor model is relevant for spatial memory, now that significant 

irregularity is reported, in particular in experiments conducted in 
large, semi-ecological environments. Inspired by the bat hippocam
pal recordings in a long tunnel, in Ref. (10), we have characterized 
numerically the dynamical behavior of a recurrent neural network 
in which connections self-organize, through Hebbian learning, 
from realistically irregular place fields along the tunnel. We identify 
three dynamical behaviors of the isolated network, not driven by 
external inputs, depending on the level of irregularity. In two of 
them, NL and FM, activity either delocalizes or dynamically viola
tes, by jumping, the topology of the tunnel. Only in one, CQA, pre
vailing in a region of parameters which includes the irregularity 
reported in Ref. (10), the activity is localized at the fixed points as 
well as throughout the dynamical evolution. We have derived nu
merically a 3D phase diagram, sketched in Fig. 7, spanning the vari
ability in the number, width and peak firing of the fields, which 
shows the regions expressing each of the three behaviors. 
Further, we have developed an initial analytical approximation of 
the boundaries between these regions.

Assessing the implications of our study for spatial memory in 
the hippocampus requires some qualifications. First, although in
spired by recordings in CA1, the recurrent model we have consid
ered is only, if at all, appropriate to the CA3 network, noted for its 
extensive collateral connectivity. One critical assumption, then, is 
that forthcoming recordings from CA3 will show qualitatively, if 
not quantitatively similar irregularity to those from CA1, support
ing the applicability of the same model. We are also assuming that 
the details of the connectivity (which in the real CA3 is far from 
the all-to-all scheme considered in the model), the actual biophys
ics, the operation of inhibitory circuits, etc., do not alter much the 
scenario with the three dynamical regimes indicated by our sim
plified model. In order to obtain general insights into the dynam
ical properties expressed by the hippocampus, we also assume 
that the recordings we took under consideration in the model 
are representative of other mammalian species for which neural 
data on place fields are not available.

Second, the three dynamical behaviors are expressed, in the 
model, when the recurrent network is only initially driven by spa
tially selective external inputs and then is isolated. One of them, 
the CQA regime, implies effective spatial memory retrieval also 
when external inputs are initially incomplete, conflicting or noisy, 
and later subside or are suppressed relative to reverberations 
along the recurrent connections, which structure attractor dy
namics. Indeed, in the CQA regime, although only a limited 

Fig. 6. Numerical and analytical results for the ϵ expansion of Jij. (Left) Percentage of vanished manifold for simulations with J as in Eq. 16 and ϵ as labeled. 
Horizontal dashed line indicates 50% of the curves, which we take as an estimate of σc

d(ϵ). Right) Crosses represent σc
d(ϵ) calculated from the numerical 

simulations on the left, black line corresponds to the analytical estimate introduced in the text (see SI Section 5). Parameters: N = 4,000. Each data point is 
averaged over 20–50 different quenched realizations of the network, each probed with 20 different runs initialized from equidistant η(s) along S.
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number of fixed points are present, the entire trajectories that link 
these fixed points exhibit quasi-attractive behavior, meaning they 
are unstable solely along the direction of the trajectory itself. 
Therefore, we can expect mild external inputs to suffice to keep 

neural activity localized at many arbitrary locations along the 
quasi-attractive trajectory; or at worst, if they are too mild, to 
let it flow to a nearby fixed point, which would come to represent 
a segment of the trajectory. In rodents, but not in bats, a partial 

Fig. 7. Sketch of the 3D phase diagram and its insights into memory. A) Rough sketch of the 3D phase diagram, with axes labels as in C), schematizing the 
results reported in Fig. 4. Three regimes are separated by two boundaries. In the continuous quasi-attractor regime (red), the manifold of solutions, 
representing different locations along the tunnel, is strongly attractive to all directions but one: following an external cue network states are attracted to 
the manifold, and spatial memory is expressed as a bump of activity, perhaps sliding a bit along the nonattractive direction. In the teleportation or 
Fragmented Manifold regime (purple), the manifold effectively vanishes: external cues can only drive the dynamics towards a few residual fixed points, 
unable to represent space, as dynamics do not smoothly flow along the manifold. In the nonlocalized phase (yellow), the fixed points are not localized: 
hence no cue can retrieve spatial memory. B) Sketch of the idealized continuous attractor (right) which can only emerge, in the continuous 
quasi-attractive phase, at the origin, i.e. in the unrealistic condition of single, equal and regularly positioned fields. The parallel lines on the bottom right 
of the cANN symbolize a 1D track: each fixed point in the continuous attractor neural network (dark red cross) represents a memory of one position in the 
environment (matching dark red cross in the track). The presence of mild noise (its effects on the cANN are schematized in the two left sketches) 
downgrades the precision of spatial memory. C) Sketch of the three regimes in a plane corresponding to the distribution in the number of fields observed 
in the recording in bats (10). Memory retrieval is preserved as long as the dynamical flow is aligned with the manifold. This occurs in the red region, which 
includes also the firing rate and field width statistics observed in the recordings (green cross). Memory capability suddenly deteriorates beyond each 
boundary (determining the inability to retrieve anything, or possibly only a few locations). In C) and B), the closed curves (red/yellow) are intended to 
sketch the energy of the quasi-attractive continuous manifold. Gray–black bumps indicate the overlap profile which one can calculate with the {η(s)} at 
each step of the dynamics. The yellow dashed manifold, instead, represent a phantom manifold which the dynamics cannot reach.
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alternation between externally driven and attractor-driven dy
namics may be paced by the Theta rhythm (48). In the NL and 
FM regimes, instead, either neural activity is not localized in the 
isolated network, or the manifold is broken into fragments, with 
jumps between them, which wash away positional information; 
and thus we expect spatial memory to be poor. In this context, 
the closeness of the parameter values corresponding to experi
mental observations in bats (green cross in Fig. 7) to the boundary 
separating the CQA and FM regimes seems to suggest that the op
eration point of the network tries to be at a safe distance from the 
NL boundary, which expands in large environments and would 
imply a disabled spatial memory. Alternatively, one might specu
late that the closeness of the operation point to the FM boundary 
suggest that the network implements a trade-off between the 
variability intrinsic to a random process and the need for effective 
spatial memories.

In addition, following this reasoning, we expect in the near total 
absence of external inputs—during sleep or quiet wakefulness— 
the actual network operating in the CQA regime to replay only 
those fixed points that exist, and the close surrounding regions 
in their basin of attraction—the segments. Only segments of the 
tunnel adjacent to the fixed points—those more stably stored in 
memory—might be reached during spontaneous, rambling dy
namics. The phenomenon of a segmented replay of very large en
vironments has in fact been reported in the analysis of CA1 resting 
state recordings (49).

The analytical estimates presented here, although preliminary, 
yields some initial insights into the neural mechanisms under
lying the storage of individual irregular maps and illustrate 
some computational constraints. With respect to the NL-CQA 
boundary, our analysis highlights the effect of a dominant field as
sociated to each unit. Such a field always exist, given nonzero vari
ability, but when the average dominance decreases below a 
critical value—the quasi-circular boundary—suddenly it is unable 
to lead to localized activity. Turning to the CQA-FM boundary, our 
simulations and analysis indicate that the “teleportation” is a dy
namical effect due to fluctuations beyond the mean-field descrip
tion. When, during the initial widening of the activity bump, a few 
units are activated with very wide fields, as often occurs with large 
values of the field width variability parameter σd, they can re
inforce each other irrespective of the original position of the 
bump, maintained by units with narrow fields that give now a di
minishing contribution. The latter are eventually suppressed, and 
the bump is repositioned at the location that best matches the 
wide fields of the units winning the competition. Apparently, 
such self-reinforcing amplification, with respect to the position 
signal, of the noise due to the units with wide fields is guaranteed 
to occur somewhere, in a system with many units, whenever σd 

exceeds the critical level σc
d. While this effect warrants further in

vestigation through analyses of out-of-equilibrium dynamics, and 
it remains to be examined whether it generalizes to maps in high
er dimension, e.g. in 2D, it is remarkable that our analytical esti
mate for σc

d is a pure number, σc
d ≃ 0.637, independent of any 

parameter. With all the necessary caveats, including those men
tioned above, this implies that we can extrapolate a maximum 
length of a tunnel, or of a general 1D environment, that can be 
stored in memory by the recurrent network. The variability in 
the number of fields (ζ) is in fact expected to scale linearly with 
the length of the tunnel, or in general the size of the environment, 
whether in CA1 or in CA3. As a result, the NL-CQA boundary ex
pands away from the origin and for any given level of peak rate 
variability σp (and correlation parameter γ) there is a value ζ where 
this boundary meets the CQA-FM boundary. This would imply, if 

σp is set e.g. by biophysical constraints, the disappearance of the 
viable CQA region and hence a maximum size of the environment 
that can be stored in memory. Indeed, the relation

ln (3/2) + σ2
p = (rc

σ(ζ ))2 (17) 

defines when the two boundaries converge and the “acceptable” 
range for σd diminishes to zero. Using parameters from CA1 re
cordings in (10), this yields 〈M〉 ≃ 30, see SI Section 4.1 for details, 
corresponding to L ≃ 1.4 km, indicating a surprisingly low limit for 
the length of a memorable tunnel.

The validity of this result remains to be verified, particularly in 
relation to applying the network model to infer conclusions beyond 
the specific conditions in which it was developed. First and fore
most whether the model is really relevant for the CA3 network 
should be assessed on the basis of measurements of neural activity 
and its variability in the CA3 region, and also in light of quantitative 
estimates of the connectivity in CA3, in this or that species (50), 
which could be incorporated in an extended model. Second, the 
analysis should be applied to the case of 2D environments, and per
haps to higher dimensions and nonstandard geometries, which are 
relevant for different experimental settings than that of bats flying 
in a long narrow tunnel; this should be straightforward, if main
taining a simple mathematically clean structure, that ideally cor
responds to the empty, featureless environment we have assumed 
in our analysis. Experimental research is however moving towards 
analyzing neural activity and memory behavior in more ecologic
ally plausible environments, in which objects, landmarks, and oth
er features are known to “attract” place fields (51, 52), and the 
effects of their presence on the different dynamical regimes we 
have studied here, and whether there is still a capacity limit on 
the size of the environment that can be stored in a recurrent net
work, remain an avenue for future research.

Methods
Assessment of the quality of the attractor
We consider the following estimators:

Percentage of vanished manifold
For a given realization of the network we run ≥ 50 neural dynamics, 
each starting from a “position” s0, i.e. 􏿻V(t = 0) = 􏿻η(s0), spanning regu
larly the tunnel. We locate, at each dynamical step t, the center st

c 

of the bump from the overlap profile (Eq. 4). If the bump has moved 
between steps t and t + 1, say, to st+1

c > st
c, we focus on the overlap 

profile O(􏿻η(s), V(t + 1)) for s ∈ [st
c, st+1

c ]. If this quantity varies mono
tonically with s or undergoes nonmonotonic changes only on a short 
sub-interval of less than 5L/S, we consider that the dynamics has 
stayed within the neural manifold; otherwise, the dynamics is con
sidered to have jumped outside the manifold. Note that choosing 
the particular value 5L/S does not really affect the result, as shown 
in Fig. S5C. We repeat this procedure for every time step t up to the 
convergence to the fixed point. The “percentage of vanished mani
fold” is defined as the percentage of different runs across various ini
tial conditions and realizations undergoing at least one jump.

Tangent overlap 〈Otang〉

Consider a given realization of the network. For each fixed point of 
the dynamics 􏿻VFP = 􏿻V(sc), we first estimate the center of the bump 
sc maximizing the overlap profile. We then run new dynamics, 
starting from an initial condition 􏿻V(t = 0) = 􏿻η(s̃) where s̃ is close 
to, but distinct from sc. As the dynamics converge towards 􏿻V(sc), 
in order to obtain a good approximation of 􏿻V(sc ± 1) we identify 
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the intermediate step t at which the overlap between 􏿻V(t) and 
􏿻η(sc ± 1) is maximal and take an average (similar results are ob
tained by taking the last value 􏿻V(t) having maximal overlap with 
􏿻η(sc ± 1) before the maximal overlap shifts to the position of the 
fixed point sc). The direction of the neural manifold around the 
fixed point is then defined as 􏿻D = 􏿻V(sc ± 1) − 􏿻V(sc) or equally as 
􏿻D = 􏿻V(sc + 1) − 􏿻V(sc − 1).

In addition, we calculate the eigenvector 􏿻Emin corresponding to 
the smallest eigenvalue of the Hessian matrix (SI Eq. (6), restricted 
to active neurons) at the fixed point. The overlap between 􏿻Emin and 
􏿻D (restricted to active neurons) gives a measure of the alignment 
between the direction of instability of the fixed point and the pu
tative manifold. This overlaps varies between 1 (the two vectors 
are aligned) and 0 (they are orthogonal). This quantity is then 
averaged over all fixed points and realizations of the network, 
with the result denoted by 〈Otang〉.

Bump width
Given a configuration 􏿻V(t) of size N we define for all discretized po
sitions s the overlap Os ≡ O(􏿻η(s), 􏿻V(t)) as in 4. We thus obtain the 
overlap profile: a vector 􏿻O of entries between 0–1 of size S, describ
ing how similar is V(t) to the different configurations of activity 
along the tunnel during the learning phase. We compute the dis
persion of the center of mass of the overlap profile, keeping in 
mind periodic boundary conditions as follows: (a) we set all values 
smaller than 0.2 to zero to remove noise; (b) we change variables 
to polar coordinates and calculate the cosine

co =

􏽐S
s Od · cos

2πs
S

􏼒 􏼓

􏽐S
s=1 Os

(18) 

and sine

si =

􏽐S
s=1 Os · sin

2πs
S

􏼒 􏼓

􏽐S
s=1 Os

(19) 

coefficients of the overlap profile; (c) we calculate the angle that 
represents the orientation of the center of mass using the com
puted cosine and sine coefficients as

ϑ = arccos
co

����������
co2 + si2
√

􏼒 􏼓

(20) 

and if the si is negative we take ϑ = 2π − ϑ; (d) we calculate the pos
ition of the center of mass along the length of the profile based on 

the angle as cm=Sϑ/2π; (e) we find the difference 􏿻d between each 
discretized position index and the one corresponding to the center 
of mass, keeping in mind periodic boundary conditions; (f) we fi
nally calculate the dispersion as this mean square difference 
weighted by the corresponding overlap

Bump width =

������������􏽐
s Osd2

s

S2

12
􏽐

s Os

􏽶
􏽵
􏽵
􏽵
􏽴

. (21) 

Note that we normalize the dispersion by dividing by the sum of 

the overlaps and scaling by an “angular momentum” factor of 1
12. 

Bump widths close to 0 correspond to localized configurations of 
activity, while widths close to 1 indicate that the activity is spread 
over the manifold.

Number of fixed points
For a given realization of the network we run ≥50 neural dynam
ics, each starting from a “position” s0, i.e. 􏿻V(t = 0) = 􏿻η(s0), with s0 

spanning regularly the tunnel. We let each dynamics to conver
gence to the fixed point, evaluate the overlap profile of the fixed 
point with {η(s)} and estimate the location corresponding to the 
maximum of the overlap profile. The number of fixed points is 
the average across simulations of the number of different loca
tions in the tunnel corresponding to a fixed point.

Simulations: parameters and implementation
In all simulations, unless otherwise specified, we have used the nu
merical values μd = 1.570 and μp = 1.549 extracted from the experi
mental distributions (10), which correspond to a typical field width 
of exp (μd) = 4.7 m along the L = 200 m long tunnel, and to a typical 
peak rate of exp (μp) = 4.8 Hz. We then discretize the length of the 
tunnel into S = 1,000 bins. The gain g is set to 17, the threshold con
stant ω to 300, and the target mean activity v0 to be equal to the 
average of the learned profiles 〈η〉; these three values were chosen 
to be in a (rather broad) regime where neural activity does not di
verge. We show in Fig. S5 that the particular choice (like the values 
of L and S) does not influence the dynamical results we report. The 
neural time scale τ > 9.5 was sometimes “increased” (which means 
we used shorter time steps) to facilitate reaching fixed points (in 
Fig. 2, τ ≡ 9.5). All simulations where left to run until they reached 
the fixed points, i.e. when V(t + 1) − V(t) < 10−8.
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