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Abstract
The emergence of COVID19 pandemic caused by SARS-CoV-2 virus has created a global public health and socio-economic 
crisis. Immunoinformatics-based approaches to investigate the potential antigens is the fastest way to move towards a 
multiepitope-based vaccine development. This review encompasses the underlying mechanisms of pathogenesis, innate 
and adaptive immune signaling along with evasion pathways of SARS-CoV-2. Furthermore, it compiles the promiscuous 
peptides from in silico studies which are subjected to prediction of cytokine milieu using web-based servers. Out of the 434 
peptides retrieved from all studies, we have identified 33 most promising T cell vaccine candidates. This review presents 
a list of the most potential epitopes from several proteins of the virus based on their immunogenicity, homology, conserv-
ancy and population coverage studies. These epitopes can form a basis of second generation of vaccine development as the 
first generation vaccines in various stages of trials mostly focus only on Spike protein. We therefore, propose them as most 
potential candidates which can be taken up immediately for confirmation by experimental studies.
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Introduction

In December 2019, a cluster of pneumonia cases were 
reported in Wuhan, China. The cases were attributed to 
an unidentified coronavirus species, later termed as severe 
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 
due to its similarity with SARS-CoV and the disease was 
called as coronavirus disease 19 (COVID-19). On March 
11, it was declared a pandemic by WHO. As of July 8, 
2022, the total number of confirmed cases are over 546 
million and death toll due to this catastrophic disease has 
reached a whopping 6.3 million globally [1].

SARS-CoV-2 virus primarily affects the respiratory sys-
tem through direct or indirect respiratory exposure. COVID-
19 primarily attacks the lungs, but is reported to also affect 
other organs such as heart, kidney, ileum, and urinary blad-
der [2]. The primary mode of infection is human-to-human 
transmission through close contact via inhaled droplets and 
aerosols generated during cough or sneeze of an infected 
individual and/or via fomites. It has proved to be detrimental 
with major health concerns in the young, elderly, and immu-
nocompromised individuals, as it may lead to exacerbation 
of pre-existing conditions [3]. The virus targets the respira-
tory epithelial lining with a gamut of clinical manifestations 
from asymptomatic, quasi-symptomatic to severe end-stage 
lung disease [4]. The most commonly reported symptoms 
include fever, nonproductive cough, dyspnea, myalgia, 
fatigue, dysgeusia, vomiting, diarrhea, decreased leukocyte 
counts, and pneumonia [5]. The disease severity is likely to 
be a combination of direct virus-induced pathology and the 
host inflammatory response to infection.

The probable incubation period in SARS-CoV-2 var-
ies between 2 and 14 days during which the virus can 
be transmitted [6]. Its rapid spread occurs with a basic 
reproduction number (RO) of 2.2–2.6, which implies that 
on an average each individual has the potential to spread 
the infection to 2.2 other people [7].

Coronaviruses (CoVs) belong to the family Coronaviridae 
which is largely divided into four genera; α (HCoV-229E 
and NL63), β (highly pathogenic—MERS-CoV, SARS-CoV, 
and low pathogenic-HCoV-OC43 and HCoV-HKU1), γ, and 
δ based on their genomic structure [8]. Of these, HCoV-
229E and HCoV-NL63 are known to cause common cold. 
α and β CoVs are known to infect mammals [8] while γ and 
δ CoVs can infect both birds and mammals. Coronaviruses 
are highly prevalent and widely distributed due to efficacious 
host-switching owing to extensive animal reservoirs espe-
cially bats and rapidly increasing human–animal interface 
activities, frequent genome recombination and plasticity of 
their receptors. Therefore, novel coronaviruses are likely 
to emerge episodically in humans owing to frequent cross-
species infections and occasional spill over events [9].

The early genome sequencing performed on viruses iso-
lated from patients revealed SARS-CoV-2 as a member of 
the genus Betacoronavirus and the subgenus Sabecovirus. 
The whole genome sequence of SARS-CoV-2 after the 
Blastn search has revealed that it has ~79% similarity with 
SARS-CoV (a member of subgenus Sabecovirus) and ~50% 
similarity with MERS-CoV (subgenus: Merbecovirus) [10, 
11].

Genome sequencing performed on viruses isolated from 
patients revealed that SARS-CoV-2 has ~79% similarity with 
SARS-CoV and ~50% similarity with MERS-CoV [12]. 
SARS-CoV-2, like SARS and MERS CoVs, is the third 
zoonotic virus known to cross the species barrier. The virus 
RaTG13, identified from bat species Rhinolophus affinis 
sampled in caves of Yunnan province in 2013 is the most 
closely related virus to SARS-CoV-2 [13]. Spike protein 
of the virus shares 76% and 97% of amino acid similarity 
with SARS-CoV and RaTG13, respectively, while receptor-
binding domain (RBD) shares 74% and 90.1% homology 
with SARS-CoV and RaTG13, respectively [14], suggest-
ing that bats play a key role as coronavirus reservoirs [13]. 
However, the possibility and existence of its intermediate 
host is still unknown.

Coronaviruses are enveloped, positive-sense, single-
stranded RNA (ssRNA) viruses with genome size of 
26–30 kb [15] encoding structural and nonstructural pro-
teins. The structural proteins include; Spike (S), Envelope 
(E), Membrane (M), and Nucleocapsid (N) [16]. Spike is a 
transmembrane trimeric glycoprotein protruding from the 
viral surface which determines the diversity of coronaviruses 
and host tropism. It contains an RBD which attaches itself 
to the host cell during its entry. Each monomer of trimeric 
S protein comprises of 2 functional units; S1 responsible for 
binding to the host cell receptor and S2 subunit for the fusion 
of the viral and cellular membranes. The genome of SARS-
CoV-2 consists of at least ten open reading frames (ORFs). 
The ORF1a/b, spanning about two-thirds of viral RNA, is 
translated into two large polyproteins. In SARS-CoV and 
MERS-CoV, these two polyproteins, pp1a and pp1ab, are 
processed into 16 nonstructural proteins (nsp1-nsp16) that 
form the viral replicase transcriptase complex [17].

Since the time COVID-19 was declared as a pandemic, 
numerous SARS-CoV-2 variants have emerged resulting in 
new waves of infections. Genomic surveillance, owing to 
over a million of genome sequences deposited in Global 
Initiative on Sharing All Influenza Data (GISAID), has 
accelerated to monitor the virus evolution and evaluate 
the similarities between the globally circulating variants 
with the vaccine strains. Phylogenetic analysis of GISAID 
sequences has highlighted multiple clades on the basis of 
common mutations. The reference strain belongs to the 
L clade and rest all have been clustered into: S (L84S in 
NS8), V (L37F and G251V in NSP6 and NS3), G (D614G 
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in spike protein), GH (NS3-Q57H), GR (N-G204R), GV 
(S-A222V) [18]. Those, which do not belong to any of the 
above mentioned, are designated the ‘O’ clade. Efforts have 
also been made in the direction of clustering large datasets 
of SARS-CoV-2 genomic sequences more efficiently and at 
a faster rate [19]. Certain computational studies have also 
demonstrated the robust methods to predict the clade and 
VOCs emergence [20, 21].

Recently, Zhou et al. [13] reported that like SARS-CoV, 
SARS-CoV-2 uses human angiotensin-converting enzyme 2 
(hACE2) as one of the cell surface receptors. ACE2 recep-
tor is seen to be highly expressed in nasal epithelial cells, 
goblet/secretory cells and ciliated cells throughout the res-
piratory tract [22]. In lungs, it is highly expressed in res-
piratory and vascular endothelium, alveolar monocytes, 
macrophages and type I and II alveolar epithelial cells [12]. 
ACE2 expression is also widely present in endothelial cells 
of small and large arteries and veins in other organs, such 
as heart, ileum, kidney and bladder [23]. Current observa-
tions indicate CoVs being particularly adept at evading host 
immunity at the early stage of infection leading to dampen-
ing of immune responses. This partly explains why they tend 
to have a longer incubation period, as compared to influenza 
(1–4 days) [24]. As the details of the cellular responses to 
SARS-CoV-2 virus are not well established, a likely course 
of events can be postulated based on the past studies with 
SARS-CoV and MERS-CoV.

The COVID-19 pandemic represents one of the greatest 
health emergencies since the influenza outbreak of 1918, 
providing an unprecedented challenge for prophylactics 
and development of effective therapeutics. As developing 
an effective vaccine becomes a prime concern, immunoin-
formatics methods to identify potential vaccine candidates 
offer a rapid and promising approach in the absence of 
experimental data, reducing both time and cost significantly. 
This review abridges the immunology of SARS-CoV-2 and 
explores the potential of B and T cell epitopes as promising 
immunogenic candidates for development of vaccine. The 
present study reviews the available literature on in silico vac-
cine candidature studies for SARS-CoV-2 and shortlists the 
most potential vaccine candidates. In the wake of importance 
of T cell response to SARS-CoV-2, we further investigate 
their capability to induce either a protective Th1 response 
or immune-suppressive Th2 response using online servers 
of cytokine prediction.

Pathogenesis of COVID‑19

Upon binding to the host receptors, the virus gains entry 
through endocytosis or membrane fusion. As the viral 
contents are released inside the host cells, replication and 
biosynthesis of viral proteins occur which is ensued by 

assembly and release of new particles [13]. Coronavirus S 
protein has been reported as a significant determinant of 
virus entry into host cells [25]. Spike glycoprotein binds to 
its cellular receptor, ACE2 and a C-type lectin, also called 
L-SIGN (CD209L) in SARS-CoV [26, 27], ACE2 in case 
of SARS-CoV-2 [28], and Dipeptidyl-peptidase 4 (DPP4) 
in MERS-CoV [29] infections. Coronavirus entry into 
susceptible cells is a complex process which requires the 
concerted action of receptor binding and proteolytic pro-
cessing of the S protein to promote virus−cell fusion [30]. 
Following the binding of SARS-CoV-2 to the host protein, 
the spike protein undergoes a two-step sequential protease 
cleavage eventuating the activation of S proteins [31, 32]. 
The S1 subunit binds to a cellular receptor while the S2 
subunit mediates fusion of the viral and host membranes 
[33]. Activation of S protein for membrane fusion takes 
place through cleavage at the S1/S2 and the S2′ sites by host 
cell proteases such as furin, trypsin, cathepsins, transmem-
brane protease serine protease-2 (TMPRSS-2), TMPRSS-4, 
or human airway trypsin-like protease (HAT) [32, 34–36]. 
However, there are indistinct but functionally relevant dif-
ferences between SARS-CoV and SARS-CoV-2 receptor 
binding due to which SARS-CoV-2 RBD has a significantly 
higher hACE2-binding affinity [37]. The high infectivity of 
SARS-CoV-2 is attributed to the ubiquitous expression of 
furin. Preactivated-furin aids the entry of SARS-CoV-2 in 
host cells even with low expression of TMPRSS-2 and lyso-
somal cathepsins [25].

Innate Response Activation

Upon gaining entry into the host cell through ACE2 and 
TMPRSS2 receptors, SARS-CoV-2 undergoes active repli-
cation during which pathogen-associated molecular patterns 
(PAMPs), such as single and double-stranded RNAs (ssRNA 
and dsRNA) are recognized by pattern recognition recep-
tors (PRRs) like endosomal Toll-like receptors (TLR) 3 and 
7, cytoplasmic receptors like retinoic acid-inducible gene I 
(RIG-I) like receptors (RLRs) and melanoma differentia-
tion-associated protein 5 (MDA5) [4, 38]. PRRs present on 
immune cells such as dendritic cells (DCs) and macrophages 
lead to activation of type I interferon (IFN) genes [39–42].

TLR-3 senses dsRNA and complexes with the intracel-
lular adapter proteins like TIR domain-containing adapter 
protein inducing IFN-beta (TRIF) and TNF receptor-asso-
ciated factor 3 (TRAF3) to activate TANK-binding kinase 1 
(TBK1) and inhibitor of NF-kappa B kinase epsilon (IKKε). 
Phosphorylation of IFN regulatory factor 3 (IRF3) by TBK1 
and IKKε induces transcription of type I IFN genes [43]. 
TLR-7, on the other hand, senses ssRNA, via adaptor pro-
teins myeloid differentiation primary-response protein 88 
(MyD88) and TRAF3 to activate IKKα [44] resulting in 
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phosphorylation of IRF7. TLR-7-MyD88 complex stimu-
lates NF-κB resulting in transcription of downstream proin-
flammatory cytokines and IFN gene expression [43].

RIG-I and MDA5 recognize short and long dsRNAs 
respectively [45, 46]. Both recruit and activate adaptor 
protein mitochondrial antiviral signaling protein (MAVS), 
which initiates the production of IFN signaling by TRAF3 
and TRAF6 [47], thereby activating TBK1 complex [48, 
49]. Phosphorylation and homodimerization of IRF3 and 
IRF7 by TBK1 complex, induces transcription of type I IFN 
genes. TRAF2/5/6-mediated activation of IKK complex 
activates NF-κB inducing transcription of proinflammatory 
cytokines [50, 51].

Increased expression of type I and III IFNs accompanied 
by other pro-inflammatory cytokines like tumor necrosis 
factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, and IL-18 
constitute the first-line innate immune response and further 
activate adaptive immune response [25, 42, 52]. Type I IFN 
response is sufficient to control the spread and replication 
of virus at an early stage. But, the “smart pathogen” has 
evolved several immune evasion mechanisms to escape pat-
tern recognition and downstream signaling [42, 53, 54].

Adaptive Immune Response

Various studies on SARS-CoV and other viral diseases have 
exhibited the clearance of pathogen by development of pro-
tective immunity [55]. This highlights the fact that optimum 
activation of CD4+, CD8+ T cells and neutralizing antibod-
ies could possibly eliminate the infection and also produce 
long term immunological memory [56, 57].

As the first line of response gets activated, antigen pre-
senting cells (APCs) like DCs, acquire the pathogen, carry 
out antigen processing and migrate to the draining lymph 
nodes (DLNs) [58]. In the DLNs, they are presented via 
major histocompatibility complex (MHC) to circulating 
naïve T cells [59–61] causing activation of virus-specific 
effector T cells. Several MHC polymorphisms are reported 
to be associated with disease susceptibility. For example, 
human leukocyte antigen (HLA) polymorphisms such as 
HLA-B*4601, HLA-B*0703, HLA-DR B1*1202 correlate 
to the susceptibility of SARS-CoV [62] whereas, HLA-
DR0301, HLA-Cw1502 and HLA-A*0201 alleles are related 
to the protection from SARS infection [63]. Antigen pres-
entation to T cells leads to production of antiviral cytokines 
(IFN-γ, TNF-α, IL-2), chemokines (CXCL-9, CXCL-10 and 
CXCL-11) and cytotoxic molecules (perforin and granzyme 
B) [64]. These inhibit viral replication, enhance antigen 
presentation [65], employ more immune cells at the site of 
infection and directly kill infected cells [66–69].

Both cell mediated and humoral immunity play a key 
role in clearance of infection. Humoral immunity functions 

through antibody production and complement activation [70, 
71]. CD4+ T cells facilitate production of virus-specific anti-
bodies via B cells. Detectable levels of IgM antibodies have 
been observed after 4 days of infection, peaking at day 20 
and subsequently declining whereas, IgG antibodies have 
been detected after 7 days of infection, peaking at around 
day 25 and remaining for more than 30 days of infection 
[72]. CD8+ T cells trigger T cell-mediated cytotoxicity and 
T helper (Th) cells release proinflammatory cytokines. How-
ever, coronavirus can inhibit T cell functions by inducing 
their apoptosis [73].

The immune modulation of adaptive response by SARS-
CoV-2 through manifestation of lymphocytopenia and dys-
functional surviving T cells triggers a cascade of hypercy-
tokinemia also called as “cytokine storm” which reportedly 
causes an inflammatory injury to the lungs and subsequently 
respiratory insufficiency, leading to life-threatening acute 
respiratory distress syndrome (ARDS) and multiple organ 
failure [4]. The hyperinflammatory cytokine response com-
prises of excessive blood plasma levels of IL-2, IL-6, IL-7, 
IL-8, IL-10, granulocyte colony-stimulating factor (G-CSF), 
IP-10, Monocyte chemoattractant protein-1 (MCP1), mac-
rophage inflammatory protein 1α (MIP1α), TNF and 
chemokines (CXCL8, CXCL9, CXCL10, CCL2, CCL3, 
CCL5) in SARS-CoV-2 infected patients [5, 74–79]. The 
dysregulated T cell makeup, especially increase in numbers 
of naïve T cells and decrease of memory and regulatory 
T cells is observed to be the prime reason of the result-
ing cytokine storm and as reported in several cases, may 
also be associated with relapse of infection [80, 81]. It is 
therefore, crucial to control the cytokine storm at early 
stages and restore the T cell balance. Interestingly, CD4+ T 
cells were seen to increase in recovering patients, indicat-
ing their prominent role in pathogen clearance [82–84]. All 
these findings prove to be a basis for the development of an 
effective multiepitope vaccine consisting of both B and T 
cell epitopes.

Immune Evasion Mechanisms of SARS‑CoV‑2

In addition to the immune pathways, SARS-CoV-2 has 
undefiable characteristic of evading immune system espe-
cially the innate immune response and dampening human 
defences. SARS-CoV and MERS-CoV putatively use several 
mechanisms to escape the pattern recognition and down-
stream signaling for better survival, which are presumed to 
be employed by SARS-CoV-2 owing to their comparable 
genomic sequence. As discussed previously, IFNs play a 
key role in controlling the infection. CoVs are known to 
employ multiple ways to evade the antiviral IFN responses. 
This includes inhibition of IFN induction, suppression of 
IFN and antiviral action of interferon stimulated gene (ISG) 
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products and avoidance of IFN response. Subsequently, it 
also downregulates MHC class I and class II molecules 
in infected macrophages or dendritic cells, resulting in 
impaired antigen presentation and diminished T cell activa-
tion [53]. Both SARS and MERS CoVs are known to express 
proteins that interfere with downstream signaling cascades 
[25]. The nucleocapsid protein of SARS-CoV is involved 
in immune evasion as it is seen to suppress RNAi in mam-
malian cells [85]. In the early stage of signaling cascade, N 
protein further antagonizes IFN induction [86]. SARS and 
MERS-CoVs circumvent the host detection of their dsRNA 
by replicating in the double membrane vesicles which are 
devoid of PRRs [87]. SARS-CoV ORF3b inhibits the pro-
duction of type I IFN and ORF6 blocks the nuclear trans-
location of STAT1 [88, 89]. ORF4a, ORF4b, ORF5, and 
membrane proteins of MERS-CoV inhibit nuclear transport 
of IFN regulatory factor 3 (IRF3) and activation of IFN B 
promoter [90]. These viral proteins, except for ORF5, inhibit 
the expression of IFN-stimulated response element (ISRE) 
regulated genes. ORF4a downregulates the expression of 
NF-κB-stimulated genes whereas, ORF4b suppresses the 
interaction between IKKε and MAVS thereby, inhibiting the 
activation of IRF3 [91]. The membrane protein of SARS-
CoV impedes the formation of IKKε complex which further 
suppresses the activation of IRF3 and 7, ultimately reducing 
the expression of type I IFN [90].

Non-structural proteins also play a role in immune eva-
sion. For instance, nsp-mediated capping of the viral mRNA 
inhibits SARS-CoV detection by MDA5 and interferon 
induced protein with tetratricopeptide repeats 1 (IFIT1) 
[92]. Viruses elude adaptive immune responses by either 
conformational masking such as burying their RBDs in can-
yons [93] or recessed pockets [94]; or by glycan shielding, 
where components of spike proteins are hidden behind gly-
can clusters [95]. Therefore, understanding and overcoming 

the immune evading mechanisms is essential in developing 
treatment methods which are rapid, simple and efficient.

In Silico Studies for Identification 
of Probable Vaccine Candidates

Protection against SARS-CoV-2 is vastly associated with B 
cells producing persistent neutralizing antibodies and acti-
vation of virus-specific CD4+ and CD8+ T cells [96]. The 
strategy of an epitope-based vaccine is to include both B 
and T cell peptides owing to their role in antibody produc-
tion, direct killing of infected cells and generation of long-
term memory [55]. Owing to the rapid spread of COVID19 
worldwide within a span of 6 months, experimental studies 
demonstrating T cell response are limited. Therefore, in sil-
ico analysis of SARS-CoV-2 proteome becomes all the more 
important to identify potential vaccine candidates. Several 
approaches are being used to identify potential regions in 
the SARS-CoV-2 proteome by scientists all over the world. 
Genomic similarities between SARS-CoV and SARS-CoV-2 
have enabled identification of immunodominant regions 
in SARS-CoV-2. In addition, inclusion of experimentally 
validated conserved sequences between them, and de novo 
scanning of the entire proteome of SARS-CoV-2 comprises 
a full-proof approach to provide a more comprehensive list 
of potential vaccine candidates [55].

In silico approaches use bioinformatic tools which begin 
with mining the proteome for identification of antigenic pep-
tides based on the sequence homology [97]. They further 
involve (Fig. 1): (a) prediction of strong-binding cytotoxic 
T cell lymphocyte (CTL), helper T cell lymphocyte (HTL), 
and B cell epitopes; (b) removal of self-peptides and anti-
genicity prediction; (c) population coverage analysis to take 
under consideration the polymorphisms of HLA; (d) epitope 

Fig. 1  Steps involved in a 
conventional in silico vaccine 
design approach
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linker designing and multiple epitope vaccine construction 
followed by molecular docking and molecular dynamic 
simulation. Immunoinformatic tools mostly rely on the 
availability of in vitro assay data of MHC−peptide binding 
and cytokine assays. These methods have advantages over 
traditional vaccinology as they reduce both time and cost 
[98, 99].

Here, we have reviewed the different in silico vac-
cine design-based studies and gathered the immunogenic 
epitopes reported in such studies. We then looked out for the 
epitopes that were overlapping in different studies (Fig. 2). 
The accumulated epitopes were subjected to cytokine analy-
sis to look for the epitopes having a preferential cytokine 
profile (Fig. 3). The epitopes with the preferred cytokine 
profile, that were also common in multiple independent stud-
ies, were shortlisted (Table 1).

Recently, Grifoni et al. identified regions in the COVID19 
genome using two independent methods of homology and 
epitope prediction. B cell epitope prediction identified two 
regions from membrane protein (1–25 and 131–152) which 
also showed substantial IgM and IgG responses; and three 
regions from nucleoprotein (43–65, 154–175, and 356–404) 
[100]. 45 conserved T cell epitopes were also identified, 
most of which belonged to spike glycoprotein and nucleo-
protein [100]. These epitopes can be further investigated for 
vaccine development.

In another study by Grifoni et al. peptide-mega-pools 
were created and tested in experimental studies [101]. This 
gives a glimpse of the T cell response of patients against 

SARS-CoV-2. Peripheral blood mononuclear cells (PBMCs) 
were taken from patients who had recently recovered from 
COVID19 infection, and stimulated with these peptide 
mega-pools synthesized for each of the 25 proteins of SARS-
CoV-2. The CD4+ T cell response generated by membrane, 
nucleocapsid and spike were found to be co-dominant 
which is in contrast to other CoVs where only spike protein 
is responsible for maximum CD4+ T cell activation [101]. 
Significant CD4+ T cell response was also observed against 
nsp3, nsp4, ORF3s, ORF7a, nsp12, and ORF8. Although 
activation of CD8+ T cell response was observed by spike 
and membrane proteins, a more dominant CD8 response was 
generated by nsp6, ORF3a, and nucleocapsid proteins [101]. 
It can be inferred that spike as a vaccine candidate would be 
able to generate only adequate CD4 response suggesting that 
a cocktail of spike along with membrane, nsp6 and ORF3a 
is more likely to ensure optimum CD4 as well as CD8 
response. The study also showed positive CD4 response in 
40–60% of unexposed population reflecting some level of 
cross reactivity which still requires further validation [101]. 
Although the study was conducted on a small sample of 
hospitalized patients, it still provides missing insights into 
the actual T cell response of patients and can be exploited to 
identify T cell specific epitopes by various in silico methods.

In a study performed by Ahmed et  al. homology 
between SARS-CoV-2 and SARS-CoV was analyzed 
extensively to find conserved epitopes between the two 
[16]. 49 B cell epitopes, most belonging to spike and 
nucleocapsid proteins were identified [16]. In order to 
efficiently narrow down the search for vaccine candidates 
for a high global population coverage, only those T cell 
epitopes were selected that were experimentally deter-
mined by positive T cell assays. 87 T cell epitopes were 
identified by this approach [16].

Fig. 2  Analysis of overlap of epitopes in all published studies to 
narrow down most potential candidates of SARS-CoV-2. The total 
of 443 epitopes retrieved from independent studies. After removing 
duplicates, 340 unique epitopes were found. Of these 70 were found 
common in at least 2 studies. Further down, 21 were common in at 
least 3 studies, 9 were common in at least 4 studies and 3 were com-
mon in at least 5 studies. Overlap of epitopes between independent 
studies using a variety of approaches illustrates their high potential of 
being most promising vaccine candidates

Fig. 3  Cytokine assessment studies of the 340 unique epitopes 
revealed 136 epitopes to be positive inducers of IFN-γ, 269 were non-
inducers of IL-10 and 116 were noninducers of IL-4. 33 epitopes had 
all the three combinations i.e. IFN-γ inducer (Th1-inducer), IL-10 
and IL-4 noninducers (Th2 noninducers). These 33 epitopes are pre-
dicted to be most favorable vaccine candidates based on cytokine pre-
dictions
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Based on the epitope homology with SARS-CoV, Lee 
et al. identified epitopes which showed similarities with 
immunogenic peptides in the Immune Epitope Database 
(IEDB). These peptides also exhibited evidence of positive 
T cell assays and broad population coverage [102]. Wang 
et al. in their study, suggested the cross reactivity between 
experimentally confirmed immunodominant epitopes of 
SARS-CoV and SARS-CoV-2. 20 potential T cell epitopes 
were identified by them [103]. Similarly, sequence homol-
ogy studies were also utilized by Kumar et al. to predict 
potential T cell candidates [104].

Abdelmageed and group used immunoinformatics 
approach for construction of a T cell-based vaccine. Out of 
all four structural proteins, envelope protein was found to 
be most antigenic [105]. 10 MHC class I and II restricted 
peptides with a significant global population coverage of 
88.5% and 99.99% respectively, were identified as promis-
ing candidates [105]. Peele et al. constructed an in silico 
vaccine containing overlapping B and T cell epitopes from 

spike glycoprotein. Probable T cell epitopes were selected 
by studying antigenicity, allergenicity, toxicity, molecular 
docking and stability predictions. 18 T cell epitopes were 
finally included in the vaccine construct and their CD4+ and 
CD8+ T cell responses were confirmed by in silico immune 
simulations [106]. A vaccine construct containing highly 
antigenic HTL, CTL and B cell epitopes from nucleocapsid, 
membrane and spike proteins was modeled by Kalita et al. 
[107]. In a similar development of a vaccine design by Ojha 
et al. 6 B cell epitopes, 12 HTLs and 18 CTLs were selected 
using various computational tools. In another vaccine con-
struct by Ahmad et al. shared B and T cell epitopes were 
selected. 2 epitopes from nsp8, 2 from 3C-like proteinase, 
and 1 from spike glycoprotein were considered to be the 
most promising candidates [108]. A similar multiepitope 
vaccine construct was also developed by Ismail et al. [109]. 
This kind of in silico multiepitope vaccine design can prove 
to be highly useful in the present times when experimental 
evidences are lacking.

Table 1  List of 33 epitopes that 
are positive inducers of IFN-γ 
and noninducers of IL-10 and 
IL-4

26 of these are found only in 1 study, 5 are found common in 2 studies and 2 are found common in 3 stud-
ies

Occurrence of epitopes in number of studies 
(Total 33 epitopes)

Peptide sequence References

26 Found in only 1 study NLDSKVGGNYNYLYRLFR
QSIIAYTMSLGAENSVAY
DSLSSTASALGKLQDVV
GDAALALLLL
ILLLDQALV
SLPGVFCGV
TLMNVLTLV
FLAFVVFLL
VLLFLAFVV
VTLAILTALRLCAYC 
VVVLSFELLHAPATV
IGMEVTPSGTWLTYH
WNPDDY
TWLTYHGAIKLDDKDPQF
DEVNQI
LLLTILTSL
VNVLAWLYAAVI
YLNTLTLAV
NPAWRKAVF
GETALALLLL
ISNSWLMWLIINLVQ
LTENLLLYIDINGNL
WADNNCYLATALLTL
MPYFFTLLL
CLGSLIYSTAALGVL
NQHEVLLAPLLSAGI

[100]
[102]
[100]
[100]
[100]
[100]
[100]
[127]
[127]
[128]
[106]
[102]
[102]
[102]
[102]
[102]
[129]
[102]
[120]
[130]
[114]
[114]
[114]
[131]
[114]
[114]

5 Found in exactly 2 studies SVLLFLAFV
RRPQGLPNNTASWFT
YTNSFTRGV
GIYQTSNFR
YQTQTNSPR

[102, 105]
[16, 102]
[113, 132]
[113, 133]
[113, 115]

2 Found in exactly 3 studies LALLLLDRL
WTA GAA AYY 

[100, 134, 135]
[16, 100, 102]
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Surface glycoproteins were studied by Baruah and Bose 
where 5 T cell and 8 B cell epitopes were obtained by in sil-
ico analysis. Interaction of CTL epitopes with MHC class I 
was seen to indicate their strong immunogenic nature [110]. 
A T cell epitope from spike protein showing maximum pop-
ulation coverage was proposed as a potential vaccine candi-
date by Joshi et al. [111]. Vashi et al. predicted 24 conserved 
immunogenic regions on the spike protein, 20 of which were 
found to be exposed on surface and could be promiscuous 
vaccine candidates [112]. Bhattacharya et al. identified 34 
B and 38 T cell epitopes from spike protein using immuno-
informatics approaches [113]. In silico epitope predictions 
have also been conducted by several other groups which are 
not yet peer-reviewed [114–119].

Understanding the population demographics, socio-
economic status, general immunity of the population and 
polymorphisms of HLA alleles are important issues to be 
addressed in developing an effective vaccine to vanquishing 
the global challenge of COVID19. In studies by Kiyotani 
et al. and Feng et al. epitope prediction was conducted spe-
cifically for Japanese and Chinese populations respectively 
[115, 120]. Apart from the conventional in silico vaccine 
design strategy, a recent study by Yang et al. has also pro-
posed an artificial intelligence(AI)-based vaccine discovery 
framework. The group utilized it to design a multiepitope 
vaccine containing 16 B cell epitopes, 82 CTL epitopes and 
89 HTL epitope from the spike protein of SARS-CoV-2 
[121]. Similarly, the subsets of epitope hotspots were iden-
tified by another AI-based strategy that could be utilized 
in vaccine formulation [122]. Although scientists world-
wide are looking for vaccine candidates with broad popu-
lation coverage, a population-specific strategy could also 
be exploited. In the absence of tangible data of the actual 
immune response, computational approaches despite their 
limitations, continue to be our best shot to accelerate vaccine 
candidature studies [123].

As discussed earlier, in COVID19 patients, depletion of 
T cells and cytokine storm shift the equilibrium towards 
a disbalanced adaptive immune response. To restore the 
balance, optimal levels of CD4+, CD8+ T cells along with 
protective Th1 cytokines must be released for clearance of 
pathogen [55]. In our literature survey, we found a total of 
443 immunogenic T cell epitopes. Out of 443, 340 were 
unique epitopes. Of these, 70 occurred in at least 2 inde-
pendent studies, 21 occurred in at least 3 studies, 9 occurred 
in at least 4 studies and 3 occurred in at least 5 independent 
studies (Fig. 1, Supplementary Table S1). All 340 epitopes 
were passed through online servers—IFN epitope, IL4pred, 
and IL-10pred to assess their potential to induce IFN-γ, 
IL-4, and IL-10, respectively [124–126] (Supplementary 
table S1). Out of the 340, 136 were positive inducers of 
IFN-γ (protective Th1 response) and 204 were negative 
inducers (Fig. 2). 224 epitopes were seen to induce IL-4 

(Th2 type) and 116 were noninducers (Fig. 2). 71 epitopes 
were found to induce IL-10 whereas 269 were noninducers 
of IL-10 (Fig. 2). Total 33 epitopes were found to be posi-
tive inducers of IFN-γ and negative inducers of IL-4 and 
IL-10 (Table 1, Fig. 3). Further, it was found that 7 of these 
epitopes overlapped in multiple independent studies making 
them the top most potential vaccine candidates (Table 1).

As discussed earlier, there have been multiple SARS-
CoV-2 strains circulating globally and a vaccine should ide-
ally provide protection across all the variants. The epitopes 
shortlisted in this reviewed study after cytokine analysis 
were found to be conserved across the different recognized 
variants of concern (alpha, beta, gamma, delta and omi-
cron). This conservancy of epitopes relieves the pressure 
of vaccines getting ineffective with new emerging strains. 
Moreover, an epitope-based vaccine consisting of immuno-
genic portions from multiple proteins is expected to provide 
a broad spectrum protection.

Globally, several studies have been carried using in silico 
approaches, this review shortlists most potential candidates 
for development of COVID19 vaccine.

Conclusion

Occurrence of novel coronavirus SARS-CoV-2 has alarm-
ingly raised a global public health and socio-economic 
emergency. Its catastrophic nature has set even the most 
developed economies with the best health care facilities 
rolling into a downward spiral. According to the Inter-
national Monetary Fund, the global economy will take 
a plunge by 1–3% in the coming year due to COVID19. 
This unprecedented situation has set the world’s scientific 
fraternity to race against time in order to contain the dis-
ease and find a cure. Advancements in technology, inter-
national collaborations and previous knowledge of SARS 
and MERS have remarkably expanded our understanding 
of the immune-pathogenesis of the virus within a short span 
of time. However, the biological complexity of the virus, 
various mechanisms of immune evasion and rapid mutation 
are major challenges that need to be addressed. Further, the 
high infectivity and long incubation period along with the 
burden of unidentified asymptomatic carriers also hamper 
disease containment. Therefore, it is imperative to elucidate 
the pathophysiology of SARS-CoV-2 for development of 
therapeutic strategies. Vaccine development strategies are 
directed with an aim to generate robust neutralizing antibod-
ies coupled with a balanced cell-mediated response along 
with the desired milieu of cytokines. Therefore, developing 
a multiepitope-based vaccine seems a promising solution. 
Various groups of scientists have recently identified several 
epitopes which are capable of stimulating optimal levels of 
B cells, CD4+ and CD8+ T cells that can confer immunity 
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and long term memory. This review gives an account of the 
available literature of potential vaccine candidates obtained 
by in silico approaches. The study encompasses identifica-
tion of antigenic T cell epitopes and the kind of immune 
response generated by them through their cytokine release. 
These particular epitopes in conjunction with an evidence of 
immunoprotective Th1 response can be treated as the most 
favorable candidates to be utilized in challenge studies and 
trials. We further propose them to be the strongest candi-
dates of second generation of vaccines against COVID19 as 
they are derived from various different proteins as opposed 
to the first generation vaccines currently under trials which 
primarily focus only on spike protein.
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