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Abstract: Nutritional food supplements and pharmaceutical products produced with vitamin K2

as raw materials a very promising market in the global scope. The main production method of
vitamin K2 is microbial fermentation, but approximately 50% of vitamin K2 synthesized by the main
production strain Bacillus subtilis natto exists in extracellular form, which is not easy to separate and
extract. In order to solve this problem, in this study, we synthesized a novel cellulose flocculant, MCC-
g-LMA, by grafting reaction using microcrystalline cellulose (MCC) and lauryl methacrylate (LMA)
as monomers, and ammonium persulfate as an initiator to flocculate VK2 from the fermentation
supernatant. The flocculant was characterized by Fourier transform infrared spectroscopy (FTIR),
elemental analysis, and scanning electron microscopy (SEM), and the grafting reaction was successful.
When the flocculant dosage was 48.0 mg/L and pH was 5.0, the flocculation rate of the MCC-g-LMA
on the fermentation supernatant reached 85.3%, and the enrichment rate of VK2 reached 90.0%.
Furthermore, we explored the flocculation mechanism of VK2 by the MCC-g-LMA and speculated
that the flocculation mechanism mainly included adsorption bridging, hydrophobic association and
net trapping and sweep effect. In this study, the extraction method for trace high-value biological
products in the fermentation supernatant was improved, which provided a method and theoretical
basis for the efficient separation and purification of VK2 and other terpenoids.

Keywords: cellulose; flocculant; Bacillus subtilis natto fermentation supernatant; vitamin K2

1. Introduction

The efficient and economical extraction of trace high-value biological products from
fermentation supernatant has always been a hot topic [1,2]. As a fat-soluble vitamin, vitamin
K2 (VK2) has a good effect on mitochondrial damage repair, and the prevention and treatment
of osteoporosis, and cardiovascular and neurodegenerative diseases [3,4]. Currently, it is
recommended by the European Food Safety Authority for dietary supplements and the
clinical treatment of several diseases, with a large market demand. Due to the limitations
of the chemical synthesis of VK2 and environmental pollution problems [5], an increasing
number of scholars prefer to use microbial fermentation to obtain VK2 with high activity [6].

The main production strain of VK2 is Bacillus subtilis natto. After fermentation, VK2
mainly exists in bacteria and the fermentation supernatant, and its content in the fermen-
tation supernatant accounted for about 50% of the total. However, the content of VK2 in
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the supernatant of the fermentation supernatant is very low, which hinders extraction and
enrichment. At present, a large amount of n-hexane, isopropanol and other solutions are
required to extract VK2. This method has disadvantages, such as the large consumption of
organic reagents, high cost, and environmental pollution, which render it almost impossible
to apply in large-scale industrial production [7]. VK2 secreted by Bacillus subtilis natto in a
fermentation supernatant was reported to form a water-soluble macromolecular compound
by combining with an amphiphilic polypeptide and dispersing it in the fermentation super-
natant [8]. This study provides the possibility of extracting VK2 secreted by Bacillus subtilis
natto with flocculants.

Cellulose has huge reserves and wide sources in nature. As a natural flocculating
material, it has been used in sewage treatment, pulp production, metal extraction, and other
industries. In addition, cellulose has good biocompatibility and easy degradability, and
many studies reported that cellulose has been used to produce innovative biodegradable
or functional materials [9–11]. So, it has good application prospects in the enrichment
and extraction of biological products [12,13], However, studies have shown that, when
natural cellulose is directly used as the adsorption material, its adsorption capacity and
selectivity are very low because a large number of hydroxyl groups exist in the structure
of cellulose polymer, and hydrogen bonds are extensively formed between and within
the molecular chains, affecting its reaction activity [14]. The direct modification method
can be used to directly introduce functional groups into the cellulose framework as the
binding sites between suspended substances and colloidal particles to prepare cellulose
compounds, and improve the adsorption capacity and selectivity of materials [15–18]. Wei
et al. used acrylic acid and lauryl methacrylate (LMA) to prepare an amphiphilic flocculant
that was used to settle soluble organic matter in water [19]. Wu et al. used LMA to prepare
a polymer material that could absorb various fat-soluble compounds in seawater [20].
Acrylate compounds have good absorption capacity for lipid-soluble compounds [21]. If
such functional groups are introduced into cellulose-based flocculants, it is possible to
improve the extraction of VK2 in the fermentation supernatant.

On the basis of the above research, we attempted to graft LMA onto the surface
of microcrystalline cellulose to prepare a novel cellulosic flocculant, MCC-g-LMA, to
flocculate VK2 in the fermentation supernatant of Bacillus subtilis natto. In addition, we
comprehensively characterized the structure of the flocculant, performed a single-factor
analysis test, determined the key factors, optimized the flocculation process parameters, and
efficiently flocculated VK2 in a fermentation supernatant. Moreover, the main mechanism
of VK2 enrichment by the MCC-g-LMA was investigated, which provided a basis for the
efficient separation, purification, and industrial production of VK2 and other terpenoids.

2. Materials and Methods
2.1. Materials

Microcrystalline cellulose (MCC), ammonium persulfate ((NH4)2S2O8), anhydrous
calcium chloride (CaCl2), diatomite, and other experimental materials were purchased from
Shanghai Sangong Biological Engineering Co., Ltd. (Shanghai, China). Lauryl methacrylate
(LAM), urea (CH4N2O), sodium hydroxide (NaOH), naphthoquinone (menadione), and
squalene (C30H50) were purchased from Shanghai Aladdin Biochemical Technology Co.,
Ltd. (Shanghai, China). Vitamin K2 (MK-7) standard (purity and GT; 99%), methanol,
dichloromethane, acetonitrile and isopropanol chromatographic pure solvents were pur-
chased from Sigma Company in the United States (St. Louis, MO, USA); ethanol, n-hexane,
n-butanol, dichloromethane, isopropanol and other analytical solvents were purchased
from Sinophem Chemical Reagent Co., Ltd. (Shanghai, China).

We used electronic analytical balance BSA124S (Sartorius, Beijing, China), temperature-
controlled magnetic stirrer JB-3 (Jarrel electric, Jintan, China), Fourier transform infrared
spectrometer ALPHA-T (Bruker, Karlsruhe, Germany), Elementar Vario EL Cube (Elemen-
tar, Hanau, Germany), high-performance liquid chromatographer 1260 Infinity (Agilent,
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Palo Alto, CA, USA), scanning electron microscope GeminiSEM 500 (Zeiss, Oberkochen,
Germany), and frozen centrifuge Avanti J-E (Bechman, Brea, FL, USA).

2.2. Preparation of Cellulose Grafted Lauryl Methacrylate Flocculant (MCC-g-LMA)

First, microcrystalline cellulose (2 g) was dissolved in prefrozen 5 wt% NaOH/11 wt%
urea solution at −20 ◦C to obtain a transparent cellulose solution that was added to a four-
mouth flask with nitrogen access equipment, a thermometer, an agitator, and a condenser,
and stirred with nitrogen at a certain temperature for 40 min. Then, ammonium persulfate
solution (2 mg/mL) was added for 20 min, and the water phase of the whole reaction
system was no more than 40 mL. Lauryl methacrylate (4 g) was added and heated to 95 ◦C
for approximately 1.5 h to form a gelatinous substance.

2.3. Characterization

Microcrystalline cellulose (MCC) and cellulosic flocculant (MCC-g-LMA) were charac-
terized by using elemental analysis (EA), Fourier transform infrared (FTIR) spectroscopy,
and field-emission scanning electron microscopy (FESEM). Fourier transform infrared
(FTIR) spectra were recorded on a Bruck Alpha-t FTIR spectrometer. Lyophilized samples
were mixed with potassium bromide for analysis, and after 64 consecutive scans, spectra
were collected at 4 cm−1 resolution. The samples prepared in advance were placed into
scanning electron microscope GeminiSEM 500 to directly observe and study the surface
morphology of the samples. Elemental analysis (Vario Micro Cube, Elementar, Germany)
was used to determine the content % of carbon (%C), nitrogen (%N), hydrogen (%H), and
oxygen (%O) in the samples.

2.4. Flocculation Experiment

After the preparation of the flocculant, its performance should be tested first. The
flocculation capacity of microcrystalline cellulose (MCC) and cellulosic flocculant (MCC-g-
LMA) was tested by the centrifugation of the Bacillus subtilis natto fermentation supernatant.
First, six 50 mL fermentation supernatants of Bacillus subtilis natto whose OD value and VK2
concentration were tested were placed in a brown beaker. Three fermentation supernatants
were used as a set of parallel experiments, with the sequence of Nos. 1, 2 and 3. The
fermentation supernatants was stirred for 5 min in advance. Then, 50 mg of anhydrous
CaCl2 was added and stirred for 10 min. The same amounts of microcrystalline cellulose
and MCC-g-LMA were added to different beakers. The suspension was stirred at 250 rpm
for 40 min, and then mixed slowly at 50 rpm for 20 min. Lastly, 1 g diatomite was added as a
filter aid, and the suspension was centrifuged at 1500 rpm for 5 min to leave the precipitate.
At the end of the centrifugal sedimentation time, the OD value of the supernatant was
recorded, and the flocculation rate was calculated. The specific calculation method is shown
in Formula (1).

Flocculation rate = (OD1 − OD2)/OD1 × 100% (1)

where OD1 denotes the OD value of the Bacillus subtilis natto fermentation supernatant
before flocculation supernatant, and OD2 denotes the OD value of the Bacillus subtilis natto
fermentation supernatant broth after flocculation.

2.5. Drawing of Standard Curve and Determination of Vitamin K2

The VK2 (MK-7) standard was accurately weighed, and methanol was used as sol-
vent to prepare VK2 standard solution with concentrations of 120, 110, 90, 70, 50, 30,
20, and 10 mg/L. VK2 was filtered through a 20 µm organic membrane and detected by
Agilent high-performance liquid chromatography (HPLC). The mobile phase consisted
of methanol/dichloromethane mixture (1:4, v/v) at a flow rate of 1.0 mL/min. The UV
wavelength was 248 nm, and the column temperature was 35 ◦C.
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2.6. Determination of Enrichment Rate of Flocculant for Vitamin K2

After flocculation performance experimental testing, each sample of flocculation pre-
cipitation was collected, and after dealing with the flocculation of clear liquid fermentation,
a certain amount of anhydrous ethanol extraction was used in the flocculation experiment
to obtain the settlement of VK2. An n-hexane/isopropanol/n-butyl alcohol mixture was
used in the clear liquid extractive fermentation to remove VK2. After extraction, the content
of VK2 in the flocculation sedimentation product and the remaining amount of VK2 in the
fermentation supernatant after flocculation were calculated, and the enrichment rate was
lastly calculated. The specific calculation method is shown in Formula (2).

Enrichment rate = (M0 − M1)/M0 × 100% (2)

where M0 denotes the total mass of VK2 in the fermentation supernatant before flocculation
in mg, while M1 denotes the remaining mass of VK2 in the fermentation supernatant after
flocculation in mg.

2.7. Determining the Influence of Dosage of Flocculant on Flocculation Effect

Six groups of parallel experiments were prepared. Eight 20 mL fermentative super-
natants with measured OD values and VK2 concentrations were weighed in each group.
Microcrystalline cellulose (MCC) was added in Groups 1, 2, and 3, and cellulosic flocculant
(MCC-g-LMA) was added in Groups 4, 5, and 6. The flocculant dosage in each group was
4, 8, 16, 24, 32, 40, 48, and 56 mg. The effects of different dosages of MCC and MCC-g-LMA
on the flocculation rate and VK2 enrichment rate were compared. After adding different
kinds and amounts of flocculants, the suspension was stirred at 250 rpm for 40 min, and
then mixed slowly at 50 rpm for 20 min. Lastly, 1 g diatomite was added as a filter aid, and
the suspension was centrifuged at 1500 rpm for 3–5 min to leave the precipitation. After the
OD value of each supernatant had been recorded, VK2 in the precipitation was extracted,
and the flocculation rate and VK2 enrichment rate were calculated.

2.8. Determining the Influence of pH on Flocculation Effect

Six groups of parallel experiments were also prepared. In each group, 6 samples of
20 mL fermentation supernatant with measured OD values and VK2 concentrations were
weighed, and the 6 samples of fermentation supernatant in each group were configured
with pH values of 4, 5, 6, 7, 8 and 9. Groups 4, 5, and 6 were added with cellular flocculant
(MCC-g-LMA), and the addition amount of microcrystalline cellulose (MCC) and cellular
flocculant (MCC-g-LMA) was 48 mg per sample to explore the influence of pH on the
flocculation effect. The specific operations of the following steps are basically consistent
with those in Section 2.7.

2.9. Study on the Mechanism of VK2 Enrichment by MCC-g-LMA

In addition to the above experiments, we also partially explored the mechanism of
vitamin K2 enrichment by flocculant. First, 50 mg vitamin K3 and 10 mg squalene were
added to 100 mL ultrapure water and stirred at 250 rpm for 10 min to form a uniform
vitamin K3 suspension solution and squalene suspension system. An appropriate amount
of flocculant was added to the suspension and stirred at 250 rpm for 40 min; then, diatomite
was added as a filter aid for 1 g, centrifuged at 1500 rpm for 3–5 min, and the precipitation
was left. The enriched vitamin K3 and squalene in the precipitation of the two systems
were each extracted with the mixed solution of n-hexane/isopropanol/n-butanol. Vita-
min K3 and squalene were determined by high-performance liquid chromatography. An
acetonitrile/water (70/30, v/v) solution was used as the mobile phase in the HPLC test
with a flow rate of 0.85 mL/min. The detection wavelength was 265 nm, and the column
temperature was 40 ◦C [22]. The mobile-phase system of methanol/isopropanol (70/30,
v/v) was adopted for the detection of squalene by HPLC. The detection wavelength was
205 nm, the flow rate was 1 mL/min, and the column temperature was 30 ◦C [23]. After
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the test, the enrichment rate of vitamin K3 and squalene by the flocculant was calculated
by using the standard curve.

3. Results and Discussion
3.1. Preparation of Flocculant

The colloidal products were washed three times with an ethanol solution (70%) and
then washed with ultrapure water. The washing process is shown in Figure 1A. After
natural drying, a MCC-g-LMA solid was obtained that was ground into powder, sealed for
preservation, and used as the experimental flocculant. The flocculant powder is shown in
Figure 1B.
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Figure 1. Washing and drying of flocculated products. (A) Flocculant washing process; (B) flocculant
after drying.

3.2. Characterization of MCC-g-LMA
3.2.1. FTIR Spectra

MCC-g-LMA and microcrystalline cellulose (MCC) samples were dried and ground
into fine powder with potassium bromide for Fourier transform infrared spectroscopy
(FTIR). Results show that the proportion of the LMA in the reaction product was effectively
increased. The NIR characteristic absorption peaks of some functional groups of flocculant
are shown in Table 1. Figure 2A shows the FTIR spectrum of the MCC. Wavenumber
3400 cm−1 is the infrared characteristic absorption peak of hydroxyl (O–H), and wavenum-
ber 1020 cm−1 is the infrared characteristic absorption peak of the –C–O– bond, indicating
that the contents of hydroxyls and –C–O– bonds were high in MCC [12]. Figure 2B shows
the FTIR spectra of the MCC-g-LMA. Wavenumber 880 cm−1 in the figure shows the
stretching vibration absorption peak of the R2C=CHR functional group bond, which is
unique to LMA. The wave at 1020 cm−1 was the stretching vibration absorption peak of
the –C–O– functional group bond, showing a significant increase in the number of –C–O–
functional groups. Wavenumber 1465 cm−1 is the stretching vibration absorption peak
of the –CH2– functional group bond. The absorption peak of MCC-g-LMA was higher
than that of MCC because the proportion of –CH2– bonds was higher in the flocculant of
LMA with a long carbon chain. The new peak with a wavenumber of 1660 cm−1 was the
absorption peak of ester carbonyl (C=O), which is unique to LMA. These results prove that
LMA was added to the main chain of cellulose [19,24,25].
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Table 1. Infrared characteristic absorption peaks of different functional groups.

Functional
Groups

Characteristic Peak
of IR Spectrum

Functional
Groups

Characteristic Peak
of IR Spectrum

O–H 3400 cm−1 R2C=CHR 880 cm−1

–CH2– 1465 cm−1 C=O 1660 cm−1
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3.2.2. SEM Analysis

FTIR results were verified with scanning electron microscopy (SEM) observations.
The surface morphology of MCC and MCC-g-LMA was studied with SEM. The SEM
photographs of the MCC and MCC-g-LMA are shown in Figure 3, and specific experimental
details of SEM analysis are shown in Table 2. The SEM analysis of MCC and MCC-g-
LMA shows that the MCC had a rodlike multigap and multilayer structure, and a rough
surface. After grafting, the structure of the MCC-g-LMA still had rodlike and multigap
characteristics, but the surface became relatively smooth, and the layers were no longer
distinct. SEM analysis shows that the original structure of the MCC was changed by
polymerization, surface smoothness was improved, and the gap structure still existed with
a considerable specific surface area [26].

Table 2. SEM specific parameters.

SEM Order Working Distance Beam Energy Magnification

A1 5.9 mm 3.0 kV 1.0 K ×
A2 6.3 mm 3.0 kV 5.0 K ×
B1 5.7 mm 3.0 kV 500 ×
B2 5.7 mm 3.0 kV 5.0 K ×
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3.2.3. Elemental Analysis

On the basis of the elemental analysis of MCC and MCC-g-LMA, the contents of
nitrogen, oxygen, and carbon in the MCC and MCC-g-LMA are shown in Table 3. According
to the molecular formulas of MCC and LMA, the content of the C element in MCC was
lower than that in LMA, and the content of the O element in MCC was higher than that
in LMA. Whether the LMA is directly attached to the cellulose chain can be determined
by observing the contents of the C and O elements in the grafted product. Results show
that the contents of C, O and H elements in the grafted product significantly increased,
verifying the successful grafting of the LMA onto the main chain of cellulose.

Table 3. Elemental analysis results of MCC and MCC-g-LMA.

Sample

Element Content
%N %C %H %O

MCC 0.04 40.23 5.919 50.887

MCC-g-LMA 0.03 47.68 7.137 44.794

3.3. Flocculation Performance Experiment

Two groups of parallel experiments were set. MCC and MCC-g-LMA were separately
added to the fermentation supernatants of the two groups, and flocculation rates were
calculated. Results are shown in Table 4. Compared with MCC, MCC-g-LMA significantly
increased the flocculation rate of the fermentation supernatant. MCC could be used for
flocculation because a small number of colloidal particles contains a small amount of
cellulose surface hydroxyls and other active groups, and some metal ions and organic
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compounds can be adsorbed on the active sites. However, due to the formation of a
relatively large number of molecule-to-molecule hydrogen bonds within the hydroxyls on
its molecular chain, the reactivity of other active groups is not high [15], leading to a poor
flocculation effect.

Table 4. Experimental results of flocculation performance of MCC and MCC-g-LMA.

Flocculation Rate (%)
Sample Number

1 2 3

MCC 26.7% 25.3% 30.1%
MCC-g-LMA 72.4% 71.3% 69.2%

3.4. Vitamin K2 Standard Curve Drawing and Content Determination

The sample of each standard solution was tested by high-performance liquid chro-
matography (HPLC). Then, the peak areas of the standard solutions with different concen-
trations were recorded to draw the standard curves. Results are shown in Figure 4. The
curve fitting equation was Y = 33.5428X − 6.6749, and R2 = 0.99964.
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3.5. Extraction and Enrichment of Vitamin K2 from Flocculation Sedimentation Products

Ethanol was used to extract VK2 from the fermentation supernatant after flocculation
treatment and flocculation precipitation. HPLC was used to detect the content of VK2 in the
extraction solution of each sample. Then, enrichment rates were calculated, and results are
shown in Table 5. According to the experimental results, after treatment with MCC-g-LMA,
nearly 70% VK2 in the fermentation supernatant could be enriched, proving the good
enrichment effect of the newly prepared flocculant on VK2 in the fermentation supernatant.

Table 5. Extraction and enrichment of vitamin K2 from MCC and MCC-g-LMA flocculation products.

Flocculation Rate (%)
Sample Number

1 2 3

MCC 26.7% 25.3% 30.1%
MCC-g-LMA 72.4% 71.3% 69.2%
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3.6. Influence of Dosage of Flocculant on Flocculation Effect

The fermentation supernatant of Bacillus subtilis natto was flocculated with CaCl2 as
a coagulant, and MCC and MCC-g-LMA as flocculants. Relevant studies show that the
amount of CaCl2 used is 300.0 mg/L, which is pretreated to promote coagulation [27]. A
parallel experiment was prepared. In each experiment, 20 mL of fermentation supernatant
was weighed, and the dosages of the flocculant were 4, 8, 16, 24, 32, 40, 48, and 56 mg.
Figure 5A shows the flocculation rates of different dosages of MCC or MCC-g-LMA on the
fermentation supernatant of Bacillus subtilis natto. The figure shows that the flocculation
rate first increased and then decreased with the increase in flocculant dosage after reaching
the peak value. This phenomenon is consistent with the bridging flocculation mechanism,
and the increase in flocculant dosage is conducive to full bridging with the particles.
When the flocculant covered nearly 50% of the particle surface, the flocculation effect
was the best [28]. However, an excessive dosage causes adsorption saturation and the
formation of a covering layer on each colloidal particle so that the colloidal particles are
stabilized again. Therefore, too-high or too-low flocculant dosages in the system lead
to poor flocculation effects. We added 1 g of diatomite as a filter aid, centrifuged the
flocculating products, measured the contents of VK2 in the flocculating products and the
supernatants of the fermentation supernatant, and compared the effects of the flocculant
dosages on the enrichment rates of VK2. Results are shown in Figure 5B. With the increase in
flocculant dosage, the concentrations of VK2 in the fermentation supernatant first increased
and then decreased, which may have been related to the flocculant dosage related to the
influence of the flocculating rate in the fermentation supernatant. When the dosage of the
flocculant was 48 ppm, the enrichment rate of VK2 in the supernatant of fermentation was
the highest, which could reach more than 90%. The main form of VK2 in the fermentation
supernatant is a colloidal complex with other protein substances, and the increase in
flocculation rate leads to the increase in colloidal particles such as protein and VK2, so the
enrichment rate of VK2 changes with the change in flocculation rate.
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3.7. Influence of pH on Flocculation Effect

In the preliminary stage, we performed the flocculation experiments under the con-
ditions of pH > 4.0 and pH > 9.0 of the fermentation supernatants. Results show that the
flocculation effect was poor, which may have been because the molecular extension and
dissolution of the flocculant were affected when the pH was relatively low or high. Figure 6
shows that, within the range of pH 4.0–9.0, the flocculation effect was the best, with a
flocculation rate of approximately 85.3% and an enrichment rate of VK2 of 90% when the
pH of the flocculation system was 5.0.
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3.8. Discussion on the Mechanism of Vitamin K2 Enrichment with Flocculant

VK2 in bacteria is mainly enriched through the flocculation of bacteria, and this
mechanism has been fully studied. However, there are few studies on the mechanism
of extracellular VK2 adsorption. Through the survey, we found that the LMA used in
the experiment had been used in the oil absorption material, and the prepared acrylic
resin could adsorb and hydrophobically associate to fix some fat-soluble compounds.
Therefore, we explored whether MCC-g-LMA had adsorption and hydrophobic association
effects on VK2, which is a fat-soluble compound. VK2 is a type of terpene composed of
naphthoquinone rings and isoprene side chains. As shown in Figure 7, in this section,
we selected vitamin K3 (VK3), which is only composed of naphthoquinone rings, and
squalene, which is only composed of isoprene side chains, as the research objects to
explore the enrichment effect of MCC-g-LMA on naphthoquinone rings and isoprene side
chains, respectively [29,30]. Figure 8A shows the enrichment effect of the flocculant on
VK3 containing the naphthoquinone rings only. Results show that the enrichment rate
of the flocculant on the naphthoquinone rings was approximately 45% after flocculation.
Figure 8B shows the enrichment effect of the flocculant on squalene containing isoprene side
chains only, illustrating that the enrichment rate of the flocculant on isoprene side chains
is approximately 65% after flocculation. These results indicate that MCC-g-LMA had a
hydrophobic association effect on the naphthoquinone rings and isoprene side chains, thus
enriching VK2 in the fermentation supernatant. Moreover, the flocculant could flocculate
polypeptide or protein molecules containing VK2 by adsorption bridging, and the relatively
large flocs could be further strengthened by the net trapping and sweep.
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4. Conclusions

In this study, a novel cellulosic flocculant, MCC-g-LMA, was synthesized by the
grafting reaction of MCC and LMA as monomers. MCC-g-LMA was characterized by
elemental analysis, FTIR, and SEM. The results of structural characterization show that the
preparation was successful. Compared with traditional cellulose, the flocculation effect
of MCC-g-LMA on the fermentation supernatant was remarkable. When the flocculant
dosage was 48.0 mg/L and the pH was 5.0, the flocculation rate of the Bacillus subtilis
natto fermentation supernatant could reach 85.3%, and the enrichment rate of VK2 in the
fermentation supernatant could reach more than 90%.

In this study, the enrichment effect and main mechanism of the novel flocculant on
the VK2 in fermentation supernatant were investigated. Using VK3 containing naphtho-
quinone rings in VK2 only and squalene containing isoprene side chains in VK2 only as the
flocculation objects, the enrichment effect of MCC-g-LMA was explored. Results show that
the enrichment rates of MCC-g-LMA on naphthoquinone rings and isoprene side chains
were approximately 45% and 65%, respectively. We speculated that the main enrichment
methods for VK2 in the fermentation supernatant by the MCC-g-LMA were as follows:
(1) MCC-g-LMA played an adsorption bridging role on the compounds formed by VK2 and
polypeptide molecules, and then enriched the VK2; (2) MCC-g-LMA had a hydrophobic
association effect on naphthoquinone rings and isoprene side chains, thus enriching the
VK2 in fermentation supernatant; (3) MCC-g-LMA formed large flocs in the flocculant, and
enriched the VK2 in the fermentation supernatant through the net trapping and sweep
effect. Figure 9 shows the flocculation mechanism of MCC-g-LMA.

In this study, a green and efficient extraction method for extracellular VK2 from Bacillus
subtilis natto was designed using a flocculant and a safe solvent, ethanol, which eliminated
the previous limitation of liquid-liquid extraction of VK2 from fermentation supernatants
using toxic solvents. The prepared flocculant was environmentally friendly and had good
flocculation performance. This study provided theoretical and methodological basis for
the efficient separation and purification of terpenoids such as VK2. At present, the new
flocculant can only extract about 90% of VK2 from the fermentation supernatant. In the
next work, we plan to design several different bases of flocculant, continue to optimize the
flocculation conditions, and try to achieve the one-step extraction of all intracellular and
extracellular VK2 from a fermentation liquid.
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