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Alzheimer’s disease (AD) is a slowly progressive, neurodegenerative disorder of uncertain

etiology. According to the amyloid cascade hypothesis, accumulation of non-soluble

amyloid β peptides (Aβ) in the Central Nervous System (CNS) is the primary cause

initiating a pathogenic cascade leading to the complex multilayered pathology and clinical

manifestation of the disease. It is, therefore, not surprising that the search for mechanisms

underlying cognitive changes observed in AD has focused exclusively on the brain and

Aβ-inducing synaptic and dendritic loss, oxidative stress, and neuronal death. However,

since Aβ depositions were found in normal non-demented elderly people and in many

other pathological conditions, the amyloid cascade hypothesis wasmodified to claim that

intraneuronal accumulation of soluble Aβ oligomers, rather than monomer or insoluble

amyloid fibrils, is the first step of a fatal cascade in AD. Since a characteristic reduction

of cerebral perfusion and energy metabolism occurs in patients with AD it is suggested

that capillary distortions commonly found in AD brain elicit hemodynamic changes that

alter the delivery and transport of essential nutrients, particularly glucose and oxygen

to neuronal and glial cells. Another important factor in tissue oxygenation is the ability

of erythrocytes (red blood cells, RBC) to transport and deliver oxygen to tissues, which

are first of all dependent on the RBC antioxidant and energy metabolism, which finally

regulates the oxygen affinity of hemoglobin. In the present review, we consider the

possibility that metabolic and antioxidant defense alterations in the circulating erythrocyte

population can influence oxygen delivery to the brain, and that these changes might

be a primary mechanism triggering the glucose metabolism disturbance resulting in

neurobiological changes observed in the AD brain, possibly related to impaired cognitive

function. We also discuss the possibility of using erythrocyte biochemical aberrations as

potential tools that will help identify a risk factor for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a slowly progressing,
systemic neurodegenerative disorder of uncertain etiology.
Clinical manifestation of this disorder usually consists of
cognitive deficits in memory in the elderly. Some estimates
suggest that 50% of the population over the age of 80 years
suffers from this type of dementia. With increases in life
expectancy of our population, AD is already approaching
epidemic proportions with no cure or preventative therapy yet
available. Now, AD affects ∼24 million people worldwide with
4.6 million new cases of dementia every year (one new case every
7 s), and if existing trends continue, 115 million individuals
worldwide will have Alzheimer’s disease (AD) by 2050 (Wimo
and Prince, 2010; Fita et al., 2011).

AD develops sporadically in 95–98% of the AD population
(Bird, 2005; Reddy, 2006; Kaminsky et al., 2010). However, the
genetic-linked cases have provided a great deal of biochemical
insights in the disease process. The research field has been
focused on the role of Aβ in the brain stemming from the
fact that accumulation of these peptides results in aggregation
and formation of insoluble plaques, which trigger a cascade of
deleterious changes, leading to neuronal death and thus causing
AD. This train of events has been called the amyloid-cascade
hypothesis of AD (Hardy and Higgins, 1992). It is significant
that accumulation of aggregated Aβ is the primary abnormality
in AD and that its deposition is required for postmortem
diagnosis. Now, however, a large body of evidence exists, and
new data continues to accumulate indicating that the number
of Aβ deposits in the brain does not correlate well with the
degree of cognitive impairment (Braak and Braak, 1991; Terry
et al., 1991; Giannakopoulos et al., 2003; Guillozet et al., 2003).
Indeed, Aβ deposition may occur in normal non-demented
elderly people (Joachim et al., 1989; Mann et al., 1992; Lue et al.,
1999; Schmitt et al., 2000; Pike et al., 2007), that is in agree
with the fact that virtually all humans start to accumulate Aβ

in the brain upon aging (Funato et al., 1998; Wang et al., 1999;
Morishima-Kawashima et al., 2000). Besides, amyloid plaques
are not specific for Alzheimer’s disease and have been found
in many other pathological conditions, including transmissible
spongiform encephalopathies (Liberski, 2004), Down’s syndrome
(Glenner and Wong, 1984), Lewy body in Parkinson’s disease
(Arai et al., 1992), acute traumatic brain injury with diffuse
axonal damage (Smith et al., 2003) and chronic traumatic brain
injury associated with boxing (Roberts et al., 1990; Jordan, 2000)
and football (Omalu et al., 2005). What is clear from these studies
is that the presence of brain plaques alone is insufficient to
produce cognitive decline in AD (Jack et al., 2009) and that such
studies support the basis for the formation of a new hypothesis.

Recently, a modified Aβ-cascade hypothesis has been
formulated that predicts intraneuronal accumulation of soluble
Aβ oligomers, but not monomer or insoluble amyloid fibrils,
as the first step of a fatal cascade in AD (McLean et al., 1999;
Wirths et al., 2004; Selkoe, 2007). The amyloid oligomerization
is observed to occur intracellularly (Connolly and Volpe, 1990)
and Aβ1−42 oligomers turn out to be potent neurotoxins in
animal brain and neuronal cultures where they are able to

disrupt glutamatergic synaptic function (Lambert et al., 1998;
Hsia et al., 1999; Klein et al., 2001; Hardy and Selkoe, 2002;
Kamenetz et al., 2003; Walsh and Selkoe, 2004; Roselli et al.,
2005) and neuronal calcium homeostasis (Bapat et al., 1983;
Mattson et al., 1992; Demuro et al., 2005), promote abnormal
release of glutamate in hippocampal neurons (Brito-Moreira
et al., 2011), induce oxidative stress (De Felice et al., 2007),
incite tau hyperphosphorylation (De Felice et al., 2008), and
synapse loss (Lue et al., 1999; Selkoe, 2008), inhibit long-term
potentiation in the hippocampus (Walsh et al., 2002), which is
required formemory formation, and in turn leads to the cognitive
deficits in the animal. Using oligomer-sensitive immunoassay,
the soluble Aβ oligomers have been found in brains of AD
patients (Kuo et al., 1996; Lue et al., 1999; Gong et al., 2003). This
confirms the prediction that soluble oligomeric Aβ-forms are
characteristic of AD pathology. However, the soluble Aβ burden
displayed considerable individual variation in the brain of AD
patients. Thus, the mean level of soluble Aβ can increase 3-fold
(McLean et al., 1999), 6-fold, 12-fold (Kuo et al., 1996), and 70-
fold (Gong et al., 2003) in brain of AD patients compared to
age-matched control, at that, the majority of soluble peptides
was Aβ1−42 (Kuo et al., 1996). On the other hand, it was found
that the levels of soluble Aβ1−42 were smallest in the AD brain
(0.7%) and that the soluble pools of Aβ1−40 and Aβ1−42 were
the largest fractions of total Aβ in the normal brain (50 and 23%
respectively, Wang et al., 1999). Other authors also showed that
the Aβ1−42 levels were found in the brains of normal elderly
subjects (Tabaton and Piccini, 2005) and that in subjects with
AD these concentrations increased slightly compared with the
age-matched control (Lue et al., 1999). These studies suggest that
within individual AD subjects, the areas with greater numbers
of soluble Aβ oligomers did not, as a rule, and whether the
levels of these “concentration-jumping” oligomers correlate with
the memory decline in AD remains to be determined. Indeed,
previous studies have shown that these Aβ forms were observed
in the brains of patients with Down’s syndrome (DS) (Teller et al.,
1996; Gyure et al., 2001; Tabaton and Gambetti, 2006) indicating
that the accumulation of soluble oligomers are not specific for
AD. Moreover, in brains of patients with DS, increased levels
of oxidative damage occur prior to the onset of Aβ deposition
(Nunomura et al., 2000). Hence, the formation of diffuse amyloid
plaques may be considered as the message talking about the
disruption of brain homeostasis or as a compensatory response
to remove reactive oxygen species (Atwood et al., 2003). Thus,
these facts provide the opportunity to investigate the pathological
conditions that precede the formation of the Aβ deposits in the
human brain.

It is well known that a characteristic reduction of cerebral
perfusion and metabolism occurs in patients with AD (de
la Torre, 2000b; Aliev et al., 2003a). It was suggested that
capillary distortions commonly found in the AD brain elicit
hemorheological changes that altered the delivery and transport
of essential nutrients, particularly glucose, and oxygen required
for its aerobic oxidation in brain cells (de la Torre andMussivand,
1993; de la Torre, 2002a; Chang et al., 2007; Aliev, 2011)
resulting in an energy metabolic breakdown of the biosynthetic
and synaptic pathways, subsequently leading to the death of
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neurons as a consequence of cognitive deterioration. In fact, it
was proposed that AD may originate as a vascular disorder with
the resultant impairment of oxygen delivery to the brain with the
plaques and tangles found in the brain secondary to the effects of
the vascular pathology (de la Torre, 2002a). Another important
factor in tissue oxygenation is the ability of red blood cells (RBC)
to the binding, transport and delivery of oxygen to tissues that
depends, first of all, on RBC energy metabolism and antioxidant
status (Brewer et al., 1974) that is extremely important for the
functioning and regulation of oxygen affinity to hemoglobin (van
Wijk and van Solinge, 2005).

Surprisingly, despite the main role of RBC metabolism in
the delivery of oxygen to the tissues, no systematic programs
of research have examined the relationship between the breach
of the energy metabolism of these cells in destabilization of
glucose metabolism in the brain pathology and this relationship
is still not sufficiently discussed in the literature. Therefore, our
current hypothesis is that RBCmetabolism plays a key role in AD
brain disorders. We propose that the long-term lack of sufficient
energy, disturbance of glycolytic, antioxidant RBSs pathways, and
sodium potassium pump in oldest subjects [caused by different
reasons and also in contact with Aβ, which is located on the
luminal surfaces of cerebral microvessels (Grammas et al., 2002;
Michaud et al., 2013)] can cause a decrease in the ability of RBC
to transfer oxygen to tissue, leading to inadequate oxygenation
and can result in abnormal glucose/energy metabolism, oxidative
stress and, thereby, increase the susceptibility of neurons to
damage, and reduce mental capacity as a consequence thereof.
We have called this chain of events as “the erythrocytic hypothesis
of Alzheimer disease” (Kosenko et al., 2016). In support of
this hypothesis we also believe that erythrocyte biochemical
aberrations might be used as potential tools in the early detection
of the brain pathology development. This hypothesis provides
ideas for the development of innovative personalized medical
technologies allowing recovering the energy metabolism and the
system of antioxidant defense in erythrocytes.

BRAIN GLUCOSE METABOLISM,
GLUTAMATE TOXICITY, AND Aβ

ACCUMULATION: CAUSE OR EFFECT?

The brain is normally dependent on glucose for oxidative
metabolism and function, therefore it is extremely sensitive to
fluctuation in the blood glucose concentration, and since no
satisfactory brain endogenous substitute exists. In spite of the
fact that under certain conditions such as starvation or diabetes
the ketone bodies can supply up to 50% of the brain’s energy
needs, the rest of the energy anyway must come from glucose.
Therefore, within even just a few minutes glucose and oxygen
deprivation induces significant dysfunction, and a longer time
period can ultimately result in cell death (Blass, 2002). In addition
to ATP production, the oxidation of glucose can produce other
important intermediate such as lactate, which does not enter
necessarily in the tricarboxylic acid cycle, but rather can be
released and transported by the circulation into the liver for
glucose synthesis de novo. Glucose also can be incorporated into

lipids, proteins, and glycogen, and it is also the precursor of
certain neurotransmitters such as γ-aminobutyric acid (GABA)
(Plum and Posner, 1972), glutamate (Hamberger et al., 1979),
and acetylcholine (Gibson et al., 1975). Thus, circulating glucose
regulates many brain functions, including brain vitality, activity,
learning, and memory (Korol and Gold, 1998).

Whereas the cerebral energy status is only slightly decreased
during the normal aging process, glucose metabolism, and
cellular ATP production are severely reduced in sporadic AD
(Kyles et al., 1993; Hoyer, 1996). Certain neuronal populations
are especially vulnerable to cut glucose oxidation, specifically
neurons in the CA1, subiculum, and dentate gyrus of the
hippocampus, and neurons in the outer layers of the cortex
(Auer and Siesjö, 1993). A substantial proportion of neurons
in these regions is glutamatergic and evidence suggests that
hypoglycemic injury in these neurons is initiated almost entirely
by hyperactivation of glutamate receptor (Auer et al., 1985),
followed by the glutamate cascade and oxidative stress. The
numerous studies have provided conclusive proof that glutamate
becomes neurotoxic via the NMDA receptor when intracellular
energy levels are reduced (Novelli et al., 1988; Beal et al.,
1991; Albin and Greenamyre, 1992; Beal, 1992; Storey et al.,
1992; Kosenko et al., 1994; Gonzalez et al., 2015). On the
other hand, there is a direct relationship between disturbances
in energy metabolism and mental disorder. For example,
in 1932 Quastel J. first put forward a general suggestion
that disturbances in energy metabolism would impair the
neurological function, including particularly cognition (Quastel,
1932). During the past decades, a lot of work has proved
Quastel’s theory to be prescient and showed that the cause-effect
relation is nonspecific as impairing cerebral energy metabolism
can induce mental disorders to varying degrees (confusion,
mental fatigue, agnosia, or dementia) in different pathological
situations. Thus, impaired mental function has been reported in
association with hypoglycemia (Bruce et al., 2009), inadequate
transportation of glucose across the blood-brain barrier (Klepper
and Voit, 2002; Pascual et al., 2004), defective astroglial glutamate
transportation (Rönnbäck and Hansson, 2004), hypoxia (Gibson
et al., 1981), diabetes (Richardson, 1990), heart failure (Riegel
et al., 2002), reduced glucose tolerance (Vanhanen et al., 1997),
bradycardia, hypotension (Ackerman, 1974), high intracranial
pressure (Yoshida et al., 1996), stroke (van der Zwaluw et al.,
2011), hypothermia, alcohol intoxication, thiamine and vitamin
C deficiency, sedative-hypnotic drugs, opioids consumption
(Martindale et al., 2010), general anesthesia (Parikh and Chung,
1995; Xie et al., 2006b), hypocapnia (Dodds and Allison, 1998),
chronic stress (Conrad et al., 1996; Conrad, 2006), chronic
noise stress (Arnsten and Goldman-Rakic, 1998; Manikandan
et al., 2006), mixed brain pathologies (Schneider et al., 2007),
hepatic encephalopathy (Butterworth, 2003), hyperammonemia
(Llansola et al., 2007), trauma (Brooks et al., 2000), and so forth.
Interestingly, after trauma, a large number of Aβ positive neurons
appeared in human (Chen et al., 2004; Uryu et al., 2007) and
animal brain (Kamal et al., 2001; Kasa et al., 2001; Papp et al.,
2002; Hamberger et al., 2003). APP (amyloid precursor protein)
accumulation is also observed following rat (Li et al., 1995) and
human spinal cord injury (Ahlgren et al., 1996; Cornish et al.,
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2000). Long-term presence of APP and accumulation of Aβ in the
rat thalamus were observed after middle cerebral artery occlusion
(van Groen et al., 2005) and in cultured cells that had been treated
with spirochetes or bacterial lipopolysaccharide (LPS) (Miklossy
et al., 2006) and other infectious agents (Balin and Appelt, 2001).

A number of studies have also demonstrated that abnormal
activation of β-adrenergic receptors (β-ARs), which mediate the
effect of stress, might contribute to Aβ peptides production
resulting in accelerating amyloid plaque formation in vitro and
in vivo by enhancing γ-secretase activity (Ni et al., 2006) and
that blocking β-ARs attenuates acute stress-induced Aβ peptide
production (Yu et al., 2010). Indeed, the common inhalation
anesthetic isoflurane has been reported to increase brain Aβ

protein levels in vitro (Xie et al., 2006a) and in vivo (Xie et al.,
2008; Zhang et al., 2008; Dong et al., 2009). Hypocapnia can
also increase Aβ production in H4 human neuroglioma cells
(Xie et al., 2004). Nanoscale particulates, a major component
airborne pollution, inducing the blood-brain barrier disruption
and neuroinflammation (Murr et al., 2006), result in AD-
associated Aβ1−42, accumulation in the brains of children living
in the high-pollution area (Calderón-Garcidueñas et al., 2008a,b).
Upon careful analysis of these pathologies, one can see that
there is a steady disruption of brain aerobic metabolism and
the subsequent increase in APP processing and the formation of
amyloids (Gabuzda et al., 1994; Webster et al., 1998; Velliquette
et al., 2005). Thus, according to positron emission tomography
(PET), isoflurane anesthesia can cause a 50% decrease in the
rate of glucose uptake by the brain (Alkire et al., 1995, 1997),
which leads to a sharp inhibition of aerobic oxidation in the cells
and development of severe hypoxia, decreased neuronal activity
(Hodes et al., 1985), and the appearance of amyloid in the brain 6-
24 h after application of the anesthetic (Xie et al., 2006a, 2008). In
ischemia-reperfusion, in addition to increasing oxidative stress,
there is a decrease in the rate of blood flow, since migration of
neutrophils to the site damaged by hypoxia can cause blockage
of capillaries (Simpson et al., 1988), which impairs the entry of
glucose and oxygen into the brain and promotes the formation
of amyloids in damaged brain structures (van Groen et al., 2005;
Tesco et al., 2007). In hypoglycemia, the limited supply of glucose
from the blood to the brain also contributes to the accumulation
of amyloids in the brain (Shi et al., 1997).

Altogether, these findings suggest that a transient insult, e.g.,
trauma, ischemia, neuroinflammation, anesthesia, or infectious
agents could lead to secondary and persistent brain injuries and
that the initial production of Aβ and its precursor, perhaps,
are associated with physiological compensatory mechanisms
for repair or protection of neurons exposed to significant
disturbances in homeostasis (Smith et al., 2000; Lee et al.,
2004). These facts are consistent with the numerous data
showing that amyloid exhibits trophic and neuroprotective
(Whitson et al., 1989; Koo et al., 1993; Singh et al., 1994; Luo
et al., 1996), antioxidant (Smith et al., 1998, 2002a; Kontush
et al., 2001; Atwood et al., 2002) properties and accumulates
in the tissue after impairment of the energy metabolism
with non-specific stimulus (Gabuzda et al., 1994; Webster
et al., 1998; Velliquette et al., 2005), while under physiological
conditions the diurnal fluctuation of brain Aβ levels is strictly

regulated (Kang et al., 2009). Additionally, scores obtained
on mini-mental state examination in AD subjects correlate
highly with reductions of glucose metabolism (Blass, 2003),
suggesting that the metabolic lesion precedes the development
of neuropsychological abnormalities (Gibson and Huang, 2002)
and support the conclusion that sporadic AD is a hypometabolic
disorder which is provoked by a dysfunctional cerebral energy
metabolism (Hoyer et al., 1988; Blass and Gibson, 1991; Meier-
Ruge and Bertoni-Freddari, 1996; Perry et al., 1998; Smith et al.,
2002b; Aliev et al., 2003b, 2004; Zhu et al., 2007). Obviously,
the detection of mechanisms of disturbance of aerobic glucose
metabolism in the brain is one of the most pressing tasks
which will facilitate further progress on to determine not only
to the midlife AD risk factor, but also on the lifespan of
the older persons. Therefore, any pharmacological intervention,
directed at correcting the chronic hypoperfusion state would
possibly change the natural course of development of dementing
neurodegeneration (Aliev et al., 2003a).

THE POSSIBLE ROLE OF RBC IN
PATHOGENESIS OF AD

The pathologic causes of brain glucose metabolism disorders
in AD may vary in signs and symptoms, which are as
follows: desensitization of the neuronal insulin receptor (Hoyer,
2000), a decrease in the enzymes of the tricarbonic acid cycle
activities (Meier-Ruge et al., 1984; Marcus et al., 1989; Marcus
and Freedman, 1997; Bubber et al., 2005), impaired glucose
transporter at the blood-brain barrier (Kalaria and Harik, 1989),
depressed glucose transport into neurons (Simpson and Davies,
1994; Simpson et al., 1994), hippocampal region atrophy (Jobst
et al., 1992; Villain et al., 2008) neuronal loss in the affected areas
(McGeer et al., 1990), NO-dependent endothelial dysfunction
and degeneration (De Jong et al., 1999; de la Torre, 2000a, 2002b)
in brain capillaries that affect the capillary blood flow and optimal
delivery of glucose and oxygen to neuronal cells (de la Torre,
2000b; Aliev et al., 2003a).

Another important factor in tissue oxygenation is the
ability of RBC to bind, transport and release oxygen to
tissues. For this, the RBC requires several essential metabolic
pathways such as (i) anaerobic glycolysis, which is the only
source of energy (ATP production) for sustaining cell structure
and function; (ii) maintenance of the electrolyte gradient
between plasma and red cell cytoplasm through the activity
of adenosine triphosphate (ATP)-driven membrane pumps;
(iii) pentose phosphate shunt (PPS) that controls the anti-
oxidant pathways by produced NADPH, which plays an
important role in maintaining glutathione in the reduced
state; (iv) antioxidant pathways necessary for the protection
of RBC proteins and hemoglobin against oxidation; and (v)
nucleotide metabolism for the maintenance of the purine
and pyrimidine homeostasis. Moreover, erythrocytes possess a
unique glycolytic bypass, Rapoport-Luebering shunt to produce
2,3-diphosphoglycerate (2,3-DPG), a crucial metabolite in the
regulation of hemoglobin affinity for oxygen (Cho et al., 2008).
Thus, the mature erythrocyte retains a strictly regulated system
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of soluble enzymes, structural proteins, carbohydrates, lipids,
anions, cations, cofactors, metabolites, antioxidants all of which
are required in balance for effective metabolism and functioning
of the cell. A change of at least one component of this system
will lead to an imbalance and loss of RBC functional capacity.
Indeed, a significant loss in ATP (Rabini et al., 1997), Mg2+, Na+,
and ATP-ase activity (Ajmani and Rifkind, 1998) all of which
may decrease erythrocyte deformability (Sakuta, 1981; Kucukatay
et al., 2009), changes morphology (Gov and Safran, 2005)
and increases RBC volume (Kowluru et al., 1989; Kucukatay
et al., 2009). Extensive diminution of intracellular antioxidant
GSH promotes oxidative damage of protein and lipids and
compromises structural integrity of the RBC (Morris et al.,
2008). Decreased 2,3-DPG, operating as a regulator of the oxygen
affinity of RBC (Duhm, 1971) reduces the ability of RBC to
release oxygen, resulting in tissue hypoxia (MacDonald, 1977;
Nakamura et al., 1995; Figure 1). Considering the cause-effect
relationship between various intracellular metabolic pathways
and RBC function, it may be inferred that intact biochemical
intracellular pathways are a major factor controlling the
paramount RBC function associated with the ability to bind,
transport, and release oxygen to tissues.

Recently, we measured some parameters of adenine
nucleotide metabolism, glycolysis, pentose phosphate pathway,
2,3-DPG shunt (Kaminsky et al., 2013), oxidant and antioxidant
enzymes and metabolites (Kosenko et al., 2012) in RBCs samples
from Alzheimer’s subjects (AD) and non-Alzheimer’s dementia
(NA) patients. We found that activities of all glycolytic, pentose
phosphate pathway and 2,3-DPG shunt enzymes, Na+, K+-
ATPase, as well as NAD/NADH ratio, pyruvate and lactate levels
evidently decreased in aging and increased equally in AD and
NA to levels or above levels of the YC (young controls) group
indicating an increase in RBC glycolysis and ion fluxes. Elevated
Na+, K+-ATPase activity and decreased ATP levels imply that
ATP loss was mostly based on energy-expending redistribution
of Na+ and K+ across the plasma membrane in erythrocytes
from AD patients. These results confirm the fact that in AD, as
in certain other diseases the balance between ATP formation
and ion pumping may be disordered resulting in a decrease in
intercellular energy charge, and an increase in lactate formation
and catabolism of adenylates (Ronquist and Waldenström,
2003). These defects were accompanied by a significant decrease
[relatively to both age-matched controls (AMC) and young
adult controls (YC)] in the 2,3-DPG concentration that was
accompanied by increases in the activity of diphosphoglycerate
phosphatase (DPGP-ase), an enzyme that converts 2,3-DPG
to 3PG (Kosenko et al., 2016). Of course, other factors besides
of 2,3-DPG may affect the affinity of oxygen to hemoglobin
(Samaja et al., 2003), but the relationship between the 2,3-
DPG concentration in RBC as a biological indicator of tissue
hypoxia in diabetic neuropathy (Nakamura et al., 1995), as well
as in preterm infants with perinatal problems (Tsirka et al.,
1990; Cholevas et al., 2008), in patients with the nondeletion
genotype of hemoglobinopathy (Papassotiriou et al., 1998), with
hypertension (Resnick et al., 1994), in experimental endotoxin
shock (Matsumoto, 1995), severe hypophosphatemia (Larsen
et al., 1996), and some types of glycolytic enzymes disturbances

(McCully et al., 1999) was well established. Thus, the results
generated the hypothesis that chronic enhancement in the rate
of active transport in AD (Ronquist and Waldenström, 2003)
leading to the increase in ATP and 2,3-DPG hydrolysis and
can increase in Hb affinity to oxygen, loss of adequate oxygen
delivery to tissues that may be one of the factors contributing
to brain hypoxia (Aliev et al., 2004), glucose hypometabolism,
and memory dysfunction in AD. It should be noted, however,
that RBC of even cognitively stable aging persons (AMC) was
characterized by a slight but significant decrease in 2,3-DPG
when compared with the young adult control group. The
tendency for the ATP production, adenylate energy charge,
adenine nucleotide pool size, and ATP/ADP ratio (Kosenko
et al., 2016) was a decrease in aging with no notable changes
in dementia. There were no differences between AMC, AD,
and NA groups in GSH levels, as well as in GSSG levels and
the GSH/GSSG ratio in RBCs (Kosenko et al., 2012). Activities
of calpain and caspase-3 in RBCs from aged subjects, on the
contrary, were three times higher than those in young controls
and were equally high in both dementia types (Kaminsky
et al., 2012). The trend for the hydroperoxide generation was
an increase in aging with no dramatic changes in dementia.
There were no significant differences between AC, AD, and NA
subjects in H2O2, organic hydroperoxide and the sum of H2O2

plus organic hydroperoxides content of RBC (Kaminsky et al.,
2013). The results suggest that oxidative stress to some extent
is already present in the RBC of the AMC subjects (Kosenko
et al., 2012) and that together with the disturbances of glycolytic
and transport processes and proteolysis increasing are a general
feature of aging and not a feature of dementia. This view is
supported by data comparing AD with normal aging, where
was documented the same profile of damage (Smith et al., 1991;
Moreira et al., 2006) suggesting that RBC oxidative damage is no
longer an end stage but rather a signal of underlying changes of
state (Moreira et al., 2006).

Although endogenous oxidative stress may damage the RBC
itself the mass effect of large quantities of free radicals leaving the
red cell has a prodigious potential to damage other components
of the circulation (Johnson et al., 2005) including endothelial cells
resulting in the microvascular pathology (Kiefmann et al., 2008).
The combined effects of these damages most likely contribute to
the morphological changes in oldster subjects (Richards et al.,
2007), which may result in decreased erythrocyte deformability
(Kuypers et al., 1990) and alter rheology and reduce the threshold
for the development of neuropathology (Ajmani et al., 2003). We
propose that the long-term lack of sufficient energy, disturbances
of glycolytic pathway and sodium/potassium pump in aged
subjects can decrease the ability of RBC to transfer oxygen,
leading to inadequate tissue oxygenation and abnormal glucose
metabolism in the brain and thereby reducing mental capacity
and cognition. Thus, the reduced mental capacity may be, to a
large extent, due to the imbalance in the metabolic processes in
RBC. Obviously, other factors may be operative, but the role of
RBC biochemical alterations as possible preclinical indicator of
mental disorders must be critically examined. During the last 10
years, numerous biochemical abnormalities in RBC of subjects
suffering from various mental disturbances have been detected
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FIGURE 1 | Normal aging diminishes RBC functions, including a detectable decrease in the activity of glycolytic and antioxidant enzymes. The combined effects of

these damage together with a slight but significant decrease in 2,3-DPG are most likely contributor to the morphological changes in oldster subject which may result

in decreased erythrocyte deformability, alter rheology, loss of adequate oxygen delivery and reduce the threshold for the development of neuropathology. The left part

of the scheme: Amyloids possess gramicidin D-like action and upon contact with erythrocytes rapidly increase the concentration of sodium in the cells causing rapid

activation of the Na+, K+-ATPase leading to the increase in ATP and 2,3DPG hydrolysis and can increase in Hb affinity to oxygen, that may be one of the factors

contributing to brain hypoxia which lead to glucose hypometabolism and memory dysfunction in AD. The right part of the scheme: Prolonged contact with

erythrocytes depletes ATP stores, causing Na+, K+-ATPase pumps and Na+- dependent ion channels to stop working and, consequently, the erythrocytes to swell

and lyse. RBCs release hemoglobin, which is a source of iron. In turn, this metal catalyses the formation of toxic reactive oxygen species that mediate neuronal injury.

(Danon et al., 1992; Rifkind et al., 1999; Ponizovsky et al., 2003;
Pankowska et al., 2005; Lang et al., 2015; Pretorius et al., 2016).
We believe that obligatory measurement of RBC biochemical
parameters in peoples older than 50 years in the dynamics will
help identify the risk factor for AD.

The problem is clear, but a number of questions arise in
connection with the above-mentioned. If oxidative stress is more
or less present in the erythrocytes of all elderly people and is
a risk factor for dementia, why does this risk factor “work” for
some people, while others, with the same risk factor, live to a very
old age, maintaining “bright mind” and working capacity? The
same question arises with regard to the concentration of 2,3-DPG
reduction and the energy metabolism rate in the erythrocytes
in general. It is obvious that the answers to these questions
can only be obtained after identification of the reasons causing
a global energy metabolism disorder, an increase of oxidative
stress that are the basis of quick aging, affection of erythrocytes
and that lead to a disruption of their functional capacity and

early death. In other words, it is necessary to find out, under
what influence factors (endogenous and exogenous) the reserve
capacity of erythrocytes to withstand the stress that they are
constantly exposed to, which circulate from the lungs to the
tissues, decreases too soon.

Another problem is the lack of absolute knowledge of the
hemopoiesis status in older people and especially in stressful
situations that require intensification of the formation of blood
cells. Numerous data indicate that the functions of basal
hemopoiesis, which maintains the number of blood cells within
the norm, changes insignificantly with age (Sansoni et al., 1993;
Bagnara et al., 2000), whereas the reserve capacity of the bone
marrow to resist stressful situations requiring its activation, even
in healthy elderly people, reduces significantly with age (Williams
et al., 1986; Globerson, 1999). For example, during bacterial
infection or other periods of high hematopoietic demand, the
formation of blood becomes “flaccid” and badly regulated,
paradoxically (Rothstein, 1993), which makes it possible to
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FIGURE 2 | The effects of Aβ25-35 on the parameters of the adenylate system, concentration of 2,3–DPG and activities of some glycolytic and antioxidant enzymes

activities in young and old erythrocytes (RBCs). (A) ATP, (B) ADP, (C) ratio ATP/ADP, (D) total adenine nucleotide pool size, (E) energy charge, (F) 2,3DPG, (G–K)

activities of phosphofructokinase, glucose-6-phosphate dehydrogenase, superoxide dismutase, glutathione peroxidase, glutathione transferase, respectively. ATP and

AN are expressed as micromol/g Hb, ADP as nmol/g Hb. AN, total adenine nucleotide pool size; EC, adenylate energy charge [EC = (ATP + 1/2ADP)/AN];

phosphofructokinase (PFK), glucose-6-phosphate dehydrogenase (G-6PDH), glutathione peroxidase (GP), glutathione transferase (GT) activities are expressed as IU/g

hemoglobin (Hb); superoxide dismutase (SOD) is expressed as units/min per g Hb. One unit of SOD activity is defined as the amount of enzyme required to produce a

50% inhibition of the rate of p-nitrotetrazolium blue reduction. The results are the mean±SEM of 16 rats. Cells were incubated at 25◦C for 30min in 10 mmol/L

potassium phosphate buffer, pH 7.4, containing 0.9% NaCl, 5 mmol/L KCl, and 10 µmol/L Aβ25-35. Control was incubated with nontoxic Aβ35-25. Significant

differences are indicated: *P < 0.05, **P < 0.01, and ***P < 0.001 as compared to young cells; +P < 0.05, ++P < 0.01, and +++P < 0.001 as compared to the old

control (one-way analysis of variance [ANOVA] with Bonferroni’s multiple comparison test). Aβ indicates amyloid β.

assume that there is a hidden defect in the achievement of
hematopoietic equilibrium in older people. Hence, the main
question arises. Is such a hidden bone marrow defect typical
for people with dementia? And does this defect lead only to
the disruption of cellular equilibrium, or does it also cause the
appearance of defective cells in the circulation that have not
received adequate “strength reserve” in the bone marrow, and

therefore they quickly age and get damaged in the bloodstream?
It is clear that without the answers to these questions, it
is impossible to evaluate the contribution of the impaired
functional capacity of erythrocytes to the clinical symptoms of
AD and other types of dementia. However, when dementia is
exclusively referred to brain diseases, the attention of scientists
is concentrated only on neurological symptoms, whereas all
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possible “defects” of erythrocytes, which cause pathological
consequences for the brain, remain unexplored. We found only
a few literature sources discussing the role of morphological
changes that characterize the violation of the architecture of
the erythrocyte membranes in the development of neurological
symptoms characteristic of dementia (Mohanty et al., 2008). In
particular, it has been shown that the appearance of atypical
cells with altered morphological features, that is giant elongated
erythrocytes with a nonhomogeneous membrane (acanthocytes
or erythrocytes with numerous random spur-like cytoplasmic
outgrowths) (Brecher and Bessis, 1972; Lan et al., 2015), occurs in
advance (for several years) before the onset of memory disorders
(Goodall et al., 1994). The mechanism of the acanthocytes
emergence in the bloodstream is unknown, but since atypical
cells are only a small part of the general population of normal
erythrocytes, it has been suggested that the cause of their
formation is related to a disruption in the synthesis of membrane
structural proteins that occurs in the stage of erythrocyte
formation in the bone marrow, although the possibility of the
cell damage under the influence of unknown factors immediately
after they come out from the bone marrow into the blood
is not ruled out. Soluble amyloid peptides that are found in
various cerebral vessels of the patients with AD [cerebral amyloid
angiopathy (CAA)] and which, on the one hand, are capable to
contact the cellular elements of blood, on the other—to damage
the walls of blood vessels and cause a hemorrhage in the brain
(Thanvi and Robinson, 2006), have recently been recognized as
one of these factors. However, it is possible that the appearance
of erythrocytes of the atypical form is associated with amyloids
that circulate in the bloodstream and bind to the cell membrane
(Kuo et al., 2000; Kiko et al., 2012) leading to its damage.

THE ROLE OF AMYLOID ANGIOPATHY IN
ERYTHROCYTE DAMAGE

The fact that AD is a systemic disease has been known for a long
time, dating back to the last century, when amyloid peptides were
first detected in small vessels of the brains of patients with AD
(Scholz, 1938). For the sake of justice, it is worth mentioning
that the existence of amyloid peptides was known back in 1878
when Atkins discovered amyloids in the brain and blood vessels
of the brain in a young patient with dementia caused by a head
injury (Atkins, 1878). At that time, it has been also identified
that amyloids accumulate in the brain vessels in patients with
syphilis (Atkins, 1875), and epilepsy (Blocq andMarinesco, 1892)
indicating that cerebral amyloidosis and CAA are accompanying
a number of diseases.

As it is nowwell known, in patients withDA, amyloids (mainly
Aβ1−40) are found in the capillaries (Attems and Jellinger, 2004),
arteries, arterioles, veins, and venules (Thal et al., 2002), which
penetrate the leptomeningeal, cortical and subcortical areas of the
brain (Weller et al., 2009), as well as in blood vessels supplying
the hippocampus (Masuda et al., 1988). Localized in various
structures of blood vessels (Wisniewski and Wegiel, 1994) and
in contact with numerous cells (myocytes, pericytes), amyloids
cause their damage (Vonsattel et al., 1991; Dalkara et al., 2011),

as a result of which the membrane of the vessels seems to loosen,
becoming unstable, which can eventually lead to the formation
of an aneurysms, its rupture and cerebral hemorrhage (Thanvi
and Robinson, 2006), that is, a condition that usually occurs with
strokes and which irrespective of AD causes the formation of
hematoma, lysis of erythrocytes, brain edema (Xi et al., 2006),
local cell death, and memory damage (Pfeifer et al., 2002).
Interestingly, the multiple microvascular pathology, mediated by
the presence of amyloids in different structures of the blood
vessels, was confirmed not only at postmortem examination, but
also in life in virtually all patients with AD (Kalaria and Hedera,
1995; Farkas and Luiten, 2001; Bailey et al., 2004; Smith and
Greenberg, 2009) regardless of the presence of atherosclerotic
changes in the vessels. It should be noted, however, that CAA
in AD patients is observed in 90–100% of cases, while brain
zones with hemorrhage are detected only in 20–25% of patients
with AD (Urbach, 2011). This means that brain damage in
AD can occur for reasons not associated with CAA-induced
hemorrhage. Indeed, a significant accumulation of amyloids in
the brain vessels can cause their occlusion, thereby blocking
blood flow, supplying the brain with oxygen and glucose (de
la Torre and Stefano, 2000), and causing neurodegeneration of
neurons and memory impairment (Thal et al., 2008, 2009). In
addition, localized in endothelial cells lining the lumen of blood
vessels (Michaud et al., 2013), amyloids are constantly in contact
with erythrocytes circulating in the bloodstream, causing, on the
one hand, their adhesion to endothelial cells, thereby violating
the blood flow (Ravi et al., 2004), on the other—interacting with
themembrane of erythrocytes, cause its modification and damage
(Nicolay et al., 2007).

It was true that some studies have demonstrated that AD
patients have increased RBC membrane injury suggesting the
increased capability for erythrocyte lysis in vivo (Bosman et al.,
1991; Goodall et al., 1994; Mattson et al., 1997; Solerte et al.,
2000; Kosenko et al., 2009), as evidenced by the accumulation
of free hemoglobin and iron in the brain of AD patients
(Wu et al., 2004; Perry et al., 2008). The consequences of
RBC lysis for the brain are well known (Xi et al., 1998). It
has been shown that the appearance of free hemoglobin in
the brain leads to rapid destruction of the hemato-encephalic
barrier, DNA fragmentation, increased lipid peroxidation and
global oxidative stress, development of the inflammatory process,
vasoconstriction, hypoperfusion, brain atrophy (Alexander and
LoVerme, 1980), memory impairment and death (Hackett and
Anderson, 2000).

The lytic effect of amyloids was confirmed on the general
population of erythrocytes. In vitro Aβ induces rapid lysis of
human and rat erythrocytes that can be either attenuated by
antioxidants (Mattson et al., 1997) or amplified in the presence
of inhibitors of glycolytic and antioxidant enzymes or Na+,
K+-ATPase (Kosenko et al., 2008a), and suggested the role of
RBC glycolysis, ion pumping capacity and antioxidant status
in the bioactivity and erythrotoxicity of amyloids. Given the
above, we assumed that the constant contact of erythrocytes
with amyloids can cause not only the change and damage
on the membrane structures, but also the metabolic/energy
metabolism in the erythrocytes underlying the aging, integrity,
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and functional ability of the cells. This assumption does not
contradict the known pathological consequence of chronic
brain hypoperfusion, leading to reducing oxygen delivery to
the brain (de la Torre, 2017). On the contrary, it clearly
points to the possible existence of additional unspecified
mechanisms, restricting the oxygen supply to the brain and,
therefore, participating in the development of hypoxia and
neurodegenerative processes specific to AD (Thal et al., 2009).
However, the population of erythrocytes is not homogeneous,
and the facts that the least resistance of old erythrocytes to
endogenous and exogenous pathological factors caused by a
reduced rate of energy metabolism, antioxidant defense, and
strengthening of catabolic processes (Bonsignore et al., 1964;
Shinozuka et al., 1994) are well established.

Data on the effect of amyloid peptides on erythrocytes of
different ages at present are currently not available and are of
special interest, since patients with AD are characterized by
accelerated aging of erythrocytes in the bloodstream (Bosman
et al., 1991). We have recently showed that sensibility of RBC to
βA-induced hemolysis was in proportion to both cell age and βA
concentration (Tikhonova et al., 2014). The inhibition of glucose
consumption and lactate production by βA was found to occur
in both cells type. However, greater demand for ATP of the Na+,
K+ -ATPase, in combination with a more reduced capacity of the
glycolytic pathway and 2,3-DPG levels in old cells lead to more
pronounced imbalance between ATP and 2,3-DPG formation,
total nucleotide changes and ion pumping in aging erythrocytes
exposed to the amyloid. Interestingly, the decline in the levels
of antioxidative, glycolytic enzymes, 2,3DPG, ATP, adenine
nucleotide pool and the adenylate energy charge in young cells
treated with amyloid were similar to that we found as occurring
during in vivo red cell aging (control old erythrocytes). Thus, our
data obtained show that even a limited contact of amyloid with
erythrocytes is sufficient to transform young erythrocytes into old
ones and that similar biochemical mechanisms can underlie the
accelerated aging of cells in the bloodstream of patients with AD
(Bosman et al., 1991) (Figure 2), that may be one of the main
reasons of both inadequate supply of oxygen to the brain, and
lysis of cells in circulation.

NOVEL THERAPEUTIC STRATEGY:
PROBLEMS AND POSSIBLE SOLUTIONS

At present there are no medical drugs which are able to increase
and improve perfusion of the brain of AD patients, since due to
the absence of early diagnostics the use of any drug therapy, when
the brain tissue is irreparably damaged, is late and inefficient
(Hachinski and Munoz, 1997). Thus, it is very problematic “to
repair” chronically damaged blood vessels of the brain and to
restore their functional state with the preparations available,
as well as it is hard “to cure diseased erythrocytes.” This is
connected, first of all, with the fact that real causes of “chronic
disease” of erythrocytes during natural aging of the organism
are unknown. One of the important problems, as noted above,
is the absence of total knowledge on the hematopoietic status

of the elderly, especially during long bed rest, accompanied by
undernourishment, leads to a decrease in metabolism rate.

It is interesting to note that the problems in relation to
the “disease” of erythrocytes arise during transfusion of the
whole donor blood or packed RBC to the patients with different
diseases in order to restore oxygen transport to the tissues and
release carbonic acid from them. The main challenge is that all
intracellular indices of erythrocytes change very quickly during
the storage period of the donated blood leading to rapid cell aging
(Lang et al., 2016). And if these indices are not corrected before
blood transfusion this may result in irreparable consequences
(Beutler et al., 1969). It has been shown, for example, that if
during red blood cell transfusion intracellular ATP concentration
of erythrocytes was lower by 40% compared to the normal cells,
these erythrocytes were lysed to an excessive degree in blood
flow of the recipient (Hamasaki et al., 1981). Transfusion of
erythrocytes with low intracellular content of 2,3-DPG did not
allow for quick restoration of adequate delivery of oxygen to the
tissues. Taken together, these observations require development
of the ways to increase the concentrations of ATP and 2,3-
DPG in erythrocytes immediately before RBC transfusion to
the patient (Beutler et al., 1969). Further studies in this field
are actively undertaken, and multiple developments directed
toward restoration of energy exchange in the stored erythrocytes
are successively utilized by the physicians to save the patients
life (Valeri and Hirsch, 1969). The main components restoring
energy exchange in erythrocytes are glucose, adenine, ascorbate-
2-phosphate, phosphoenolpyruvat or the cations and activators
of glycolysis, which can penetrate into erythrocytes (Moore
et al., 1981). It has been shown that different activators of
enzymes introduced into the medium, where erythrocytes are
stored, maintain normal concentration of ATP and 2,3-DPG
for 1,5 months (Vora, 1987). However, although the scientists
have made a considerable progress in solving the problems
with regard to restoration of energy exchange disturbed during
storage of erythrocytes, all the developments use modulators and
activators, which are able to quickly and easily pass through
the cell membrane of erythrocytes. This is a limitation for the
use of the wider class of active compounds that are unable
to be transported into the cells. We tried to circumvent this
problem and developed a technology of the encapsulation of
substrates and high molecular enzymes in erythrocytes under
hypotonic conditions leading to the formation of pores in the
membranes of erythrocytes (Seeman et al., 1973), enabling the
enzymes with great molecular mass (Baker, 1967; Kosenko
et al., 2008b; Godfrin et al., 2012; Kaminsky and Kosenko,
2012; Alexandrovich et al., 2017) to pass through the cells.
For instance, we developed an approach on how to introduce
regulatory glycolytic enzymes into erythrocytes, where the
activity of these enzymes in erythrocytes of old animals and
in the elderly decreased by 30–50% (Kaminsky et al., 2013).
The data obtained showed that the encapsulation of even
one regulatory enzyme in erythrocytes stimulated glycolysis to
considerable extent. The signs of it were the increased rate of
glucose consumption and the formation of lactate. Moreover, the
erythrocytes obtained circulated in the animal’s blood flowwithin
many days, sustaining the activity of encapsulated enzymes, the
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normal level of ATP, 2,3-DPG and other metabolites of energy
exchange and antioxidant defense (data not shown). These results
obtained are important by two reasons. First, such technology
can be applied to restore ATP, 2,3-DPG and other metabolites
of energy exchange, the concentration of which is decreased
sharply in erythrocytes in aging of the organism. Transfusion
of own erythrocytes, possessing encapsulated enzymes, should
theoretically reduce the risk of the onset of inadequate oxygen
supply to the brain both in the elderly and in patients with AD.
Secondly, investigations make the basis for further development
of innovative personalized therapeutic strategy.

CONCLUSIONS

Presently, non-genetic Alzheimer’s disease is classified as a
neurodegenerative disorder. However, there is an impressive
body of evidence indicating that AD is a systemic metabolic
disease (Perry et al., 2003), and it has originated as a vascular
disorder with the resultant impairment of the delivery and
transport of essential nutrients, particularly glucose and oxygen
resulting in an energy metabolic breakdown with the plaques
and tangles found in the brain secondary to the effects of the
vascular pathology (de la Torre, 2002a). Since erythrocyte serve
as the only oxygen carrier and their ability to the binding,
transport, and delivery of oxygen to tissues depends, first of
all, on the energy metabolism and antioxidant status there is
therefore a strong possibility that the disturbance of energy
metabolism and oxidative enhancement in these cells may
have a dramatic impact on destabilization of aerobic glucose
metabolism in the brain and AD development. With regard
to RBC-controlled brain vital activity there is incontrovertible
evidence that even just a few minutes of oxygen deprivation
(together with glucose) initiate significant brain dysfunction and
chronic effect can ultimately result in the irreversible brain
damage and permanent impairment of cognition. This implies
that the cerebrometabolic abnormalities are the most common
form of dementia (Chibber et al., 2016; Gonzalez-Reyes et al.,
2016). However, although major mechanisms involved in brain
damage due to metabolic abnormalities resulting from the
oxygen deprivation including alterations in neurotransmission,
defect of mitochondrial oxidative phosphorylation, disturbance
of Ca2+ homeostasis, oxidative stress and eventually apoptotic
or necrotic cell death are profound and obvious (Barreto et al.,
2011; Cabezas et al., 2012, 2015; Avila Rodriguez et al., 2014;

Toro-Urrego et al., 2016; Baez et al., 2017; Baez-Jurado et al.,
2017a,b;Martin-Jiménez et al., 2017a,b; Shevtsova et al., 2017), no
systematic programs of research have examined the relationship
between the breach of the energy metabolism of erythrocytes
in the causing of leading to cerebrometabolic abnormalities and
dementia. One of the reasons of this paradox is the large number
of reports stating that brain atrophy and degeneration of nerve
cells, observed with dementia, can occur without cerebrovascular
pathology, but only through the amyloid fault, leading to the
struggle with amyloids, and not with the causes that “gave birth
to them,” and made the AD a permanently incurable disease
with unknown etiology. In our view, a careful examination and
reversing age-relatedmetabolic/energetic changes in erythrocytes
is an achievable goal and will provide these cells as a marker of a
risk of inadequate brain oxygen supply, resulting the irreversible
brain damage and permanent impairment of cognition. We also
strongly believe that biochemical erythrocyte indicators (ATP,
2,3DPG, glucose, lactate and others), as well as the enzymes
of glycolysis, pentose phosphate and Rapoport-Luebering shunt,
antioxidant pathways all of which are responsible for interrelated
metabolism and functional capacity of RBC should be studied
(especially in people over 50 years, and in the dynamics) not
only in research laboratories, but also in clinical settings that
may provide a basis for innovative personalized therapeutic
strategies.

The development of technologies to assist in restoration
of erythrocyte energy metabolism must form an integral part
of new therapeutic strategies in the treatment of a great
variety of disorders accompanied by inadequate oxygen delivery.
Similar studies just are gathering pace but have already
marked a turning-point in our knowledge regarding AD and
amyloid peptides that cannot be the only pharmacological
target in the struggle against this devastating illness of human
beings.
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