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Abstract: Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase
able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from
neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation
of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for
cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by “trial
and error testing”. In the last decade, the development of in silico rational drug design has prompted
the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar
range. The screening of big chemical libraries and the optimization of hit compounds by Structure
Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design
to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also
applied to CK2 drug discovery, however they were mainly focused on methodology improvements
rather than being critical for de novo design and optimization. This manuscript provides detailed
description of in silico methodologies whose applications to the design and development of CK2
inhibitors proved successful and promising.

Keywords: CK2; inhibitors; structure based drug design; ligand based drug design; cancer;
hit optimization

1. Introduction

CK2 (formerly called Casein Kinase II), was first detected, together with CK1, as early as in 1954 [1].
The conventional term “casein kinase” originally denoted a group of unrelated ser/thr protein kinases
able to phosphorylate casein. Only one of these, Fam20C/G-CK (Golgi, or “genuine”, casein kinase) is
a bona fide casein kinase in vivo, while CK2 and CK1 share the ability to phosphorylate casein only
in vitro. CK2 is an ubiquitous, highly pleiotropic and constitutively active enzyme, responsible for the
generation of a significant proportion of the human phosphoproteome [2,3]. CK2 is active as catalytic
subunit alone (α and α’) or as tetrameric holoenzyme composed by two catalytic and two regulatory (β)
subunits. The α subunit displays the common structural features of all the other member of the human
kinome; to note that, unlike many other protein kinases, CK2 displays a constitutively active state, as
its activation loop is frozen in an open and active conformation, independently of phosphorylation
events [4,5]. CK2 has been linked to a number of human diseases, such as cancer [6], but also cardiac
hypertrophy [7], multiple sclerosis [8], virus infections [9–11] and cystic fibrosis [12–14]. For this reason
CK2 is intensively studied as a therapeutic target, especially in the treatment of cancer, and one CK2
inhibitor (CX-4945) is currently in Phase II clinical trials [15–17].

Several molecules, belonging to different chemical classes, have shown to inhibit CK2 during
the last 20 years. Most of them have been isolated by traditional drug discovery methods, which rely
on “trial and error testing” of molecules against the isolated enzyme (recombinant or purified from
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tissues). More recently many compounds have been discovered and optimized through rational drug
design approaches, and in particular by computer aided drug design, combined with in vitro and in
cell methodologies supported by crystallographic analysis. Two main groups of techniques should be
mentioned, namely structure based and ligand based drug design approaches. Structure-Based Drug
Design (SBDD) exploits the three dimensional structure of the biological target, obtained from X-ray
crystallography or nuclear magnetic resonance (NMR) spectroscopy, more rarely through Homology
modeling (Figure 1). The final goal of this approach is to predict whether chemical compounds are able
to interact with a biological target and its affinity. The binding conformation of small molecules into
their target, their intermolecular interactions and the structural changes of the drug/target complexes
can be estimated through molecular mechanics and molecular dynamics. On the contrary Ligand-Based
Drug Design (LBDD) exploits the knowledge of compounds able to interact with the biological target in
order to identify a set of chemical features ensuring the molecules activities. This model can be used to
design new potent drug-like entities; the pharmacophore approach and quantitative structure-activity
relationship (QSAR) are the most used ligand-based methods (Figure 1).
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2. Structure and Biological Roles of CK2

The first crystal structure of human CK2 holoenzyme (Protein Data Bank (PDB) code: 1JWH)
revealed a stable tetramer composed by two catalytic subunit (α and α’), belonging to the CMGC
subfamily of the human kinome, and two regulatory β subunit (Figure 2). The two catalytic subunits
differ only at the C-terminal domain, while sharing with all the other protein kinases, the main
structural features (e.g., the P-loop or glycine-rich loop, the catalytic loop, the activation loop and
the substrate binding site). Intriguingly, CK2 is considered a constitutive active enzyme, a rare
property among protein kinases; this peculiarity is driven by its N-terminal domain, which is able
to form a number of stable interactions with the activation loop [4], whose conformational changes
are responsible for the active or non-active state of protein kinases. Normally, the activation loop
of active conformer is triggered by single or multiple phosphorylation events. In the particular
case of CK2 the N-terminal domain is able to block the activation loop in an open and full active
conformation, by its own [4]. CK2 is an acidophilic kinase accepting substrates with the consensus
sequence Xn−1-S/T-Xn+1-Xn+2-E/D/Sp/Yp (Figure 2). Even if an acidic residue at position +3 should be
sufficient for being a CK2 substrate [18,19], at least five residues have been identified on average around
its phosphorylable sites [2]. In fact, the CK2 substrate binding site is characterized by an unique amount
of basic residues, in particular the basic stretch of the α-helix C (Lys74-Arg80) has been recognized
to be important for substrate recognition, together with the amino acidic triplet, namely Arg191,
Arg195 and Lys198 [20]. On the other hand, the mechanism by which the β subunit is able to regulate
the activity of the catalytic subunit is still not clarified; however it is known that the β subunit can
provide a recruitment surface for substrates, up- (e.g., HIV-rev [21] or eif2β [22]) or down-regulating
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(e.g., calmodulin [23]) their phosphorylation (Figure 2). Moreover, the autophosphorylation of the β

subunit at the N-terminal domain MssSEE (Ser 2 and Ser 3) [24,25] has been suggested to be linked to
the formation of multimers based on CK2 tetrameric units, which could play a role in the regulation of
CK2 activity [26] (Figure 2).
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Protein kinase CK2 is present in many cellular compartments, where it is able to phosphorylate
hundreds of substrates. For this reason it has been linked to several cellular processes, being
implicated in cell cycle, transcriptional control, neuronal function and response to cellular
stress [27,28]. The role of CK2 in many pathologies is well known [27,28]; in particular it is
implicated in cardiovascular pathology (hypoxia [29–32], atherosclerosis [33,34], cardiomyocyte
hypertrophy [7]), neurodegeneration (Parkinson’s [35–37] and Alzheimer’s diseases [38–41]),
inflammation (glomerulonephritis [42], experimental autoimmune encephalomyelitis, systemic lupus
erythematosus [8,43,44], multiple sclerosis [8]), muscle diseases (cardiomyocyte hypertrophy [45,46])
as well as virus and parasite infections [9–11]. Moreover a role of CK2 in Cystic Fibrosis (CFTR) has
been recently proposed [12–14,47]. The pathology where the role of CK2 is best documented and
studied is cancer, where this kinase is almost invariably upregulated [6]; recent studies have clearly
demonstrated that abnormally elevated CK2 level is required for tumor progression, due to its role in
the regulation of almost all the processes essential for cancer development with special reference to the
suppression of apoptosis [48]. This dependency of cancer cells to higher level of CK2 in comparison to
normal cells, is called addiction, and provides a crucial argument for the development of selective CK2
inhibitors in cancer therapy [48].

A huge number of CK2 inhibitors are available, most of them belonging to the class I of
kinase inhibitors, i.e., compounds able to directly target the ATP-binding site. Benzoimidazoles,
anthraquinones, flavonoids, coumarins, and pyrazolotriazines are the most represented families of
CK2 inhibitors [27,28] (Figure 3). Many members of these chemical classes were initially found by
traditional pharmacology, exploiting trial-and error-testing against the isolated enzyme. With the
increasing knowledge of CK2 structure, alone or in complex with different inhibitors, together with the
circulation of novel, fast and optimized protocols for computer aided drug design, the rationalization
of structural modification became of particular relevance in the design of CK2 inhibitors.
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3. Rational Drug Design of CK2 Inhibitors: Structure Based Drug Design

The CK2 structure has been intensively studied through X-ray crystallography and homology
modeling techniques. Currently a long and growing list of crystal structures is available from the
Protein Data Bank (PDB); in particular, as summarized in the Supplementary (Table S1), a consistent
group of structures is represented by the catalytic subunit α alone, both in its apo form or in complex
with ATP analogs or inhibitors. On the contrary, only a couple of structure of the α’ (PDB codes:
3E2B, 3OFM) and of the entire tetramer are present in PDB (PDB codes: 1JWH, 4NH1, 4MD7,
4MD8, 4MD9, 4DGL). Noteworthy, among the species crystallized, CK2 from Zea mays was the
most commonly deposited till 2010 (28/40); At a later time, human CK2 has represented the first choice
for crystallization (63/75). This abundance of CK2 structures, represents an outstanding resource for
in silico drug design and in particular structure based drug design. In fact, these structures provide:
(a) high resolution representations of the active site of CK2, useful to design and optimize novel
drug-candidates; (b) detailed information about the interactions between CK2 and its inhibitors, which
have been demonstrated of particular significance in the training of in silico protocols and scoring
functions. The most commonly used SBDD approaches are represented by virtual screening, molecular
docking and molecular dynamics (Figure 1). Virtual screening and in particular structure based virtual
screening is able to evaluate large libraries of compounds by directly docking the candidates against a
structure of interest. Fast molecular docking algorithms are a central part of the procedure together
with scoring function protocols able to extract the most promising molecules from the database of
millions of compounds. To note that, despite the large number of compounds screened in silico, only a
few of them (top selection) will be actually tested and even fewer will be able to achieve a reasonable
affinity to the target molecule (see Section 3.2). More accurate molecular docking approaches are
exploited in the optimization phase of hit compounds coming from in silico or in vitro screenings, better
when combined with crystallographic data. Molecular dynamics simulations have been introduced
at a later stage of in silico drug design, with aims of confirm the stability of ligand/target complexes
generated from docking studies, and to estimate the free energy of binding between small molecules
and their biological targets.



Pharmaceuticals 2017, 10, 26 5 of 23

3.1. Protein and Ligand Preparation

SBDD approaches require on one side an accurate 3D structure of the target of intent and on the
other a small set or a large library of compounds correctly prepared for in silico calculations. The
preparation of the target structure generally starts with the addition of hydrogen atoms to the available
3D system [49,50]; this is particularly the case when crystallographic information is used to describe
the biological target, while is not necessary in the case of NMR or homology models. Hydrogen
atoms are consequently minimized to avoid contacts, keeping the heavy atoms fixed at their original
positions [49,50]. This step can be performed using different types of Force Fields, which represent
a set of parameters used to describe atoms and molecules properties (atom types, charges) and to
calculate the potential energy of a system. The Force Fields commonly used during protein preparation
and during SBDD calculations are generally based on molecular mechanics equations (e.g., Amber [51],
CHARMM [52], MMFF [53], OPLS [54]) even if some examples of quantum mechanics or hybrid Force
Fields are also available. Unwanted molecules (e.g., ions, ligands, water molecules) are generally
excluded in the preparation process, but, in special cases, some of them are considered constitutive
of the tridimensional system studied [49,50]. For example during CK2 protein structure preparation,
a constitutive water molecule located in the ATP binding site is often maintained in all the in silico
calculations [50,55]. Moreover, the selection of the most suitable CK2 crystal structure(s) for SBDD
experiments strictly depends on several factors: first of all the SBDD technique applied, the in silico
protocols involved, the crystal structure conformations, resolutions etc. In other words the target
structure selection must be performed dependently to the computational problem addressed. However,
based on the public materials available for SBDD studies on CK2, some general observations can be
made. Even if crystal structures of both CK2 α and the tetramer are available, virtual screening and
molecular docking procedures are generally based on the structures of the isolated catalytic subunits,
because of a better crystallographic resolution and the presence of several inhibitor co-crystallized,
missed, instead, in the crystal structures of the tetramer. To note that, even if recently several crystal
structures of human CK2 α are available, earlier the in silico analysis on CK2 were exclusively based
on Zea mays crystal structures. This lack in human CK2 tridimensional information was overtaken by
building the human CK2 model through homology modeling technique, exploiting the high similarity
between the ATP binding sites of Zea mays and Homo sapiens CK2 (>98%) [56]. Nowadays crystal
structures of the human catalytic subunit are generally selected for virtual screening purpose; this can
be done by testing the available protocols to isolate the most suitable structure(s) where the in silico
algorithm is able to efficiently reproduce the compounds crystallographic pose. However, Zea mays
structures remain important to retrieve the binding motif of several known inhibitors of CK2. In some
cases, to address specific computational problems, the crystal structure of CK2 tetramer has been
also considered. This is the case, for examples of protein-protein docking studies [22,57] or molecular
dynamics simulation experiments [5].

On the other side, to optimize in silico processes, special care must be taken also to the preparation
of chemical libraries; this event is primarily a manual process which starts from the direct building of
3D structure of molecules or from the 2D into 3D conversion of entire database of compounds [49,50].
Protonation states, tautomers and stereochemistry must be taken into account for all the molecules
of the chemical library, as well as any desired geometric restraints (distances, angles, dihedrals), if
necessary. Finally, partial charges are calculated and applied to the molecules together with an energy
minimization protocol with a suitable force field [49,50]. At the end of the preparation process a
database of potential candidates is ready to be tested in silico against a biological target. To note that
the chemical library is commonly “contaminated” by compounds with known activity against the
target of interest. This is of particular relevance during in silico screening campaigns, providing on
one side an internal evaluation of the computational approach, on the other an idea of how a scoring
function predicts the novel candidates activities in comparison to known ligands [49,50].
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3.2. Virtual Screening Approach

Structural-based virtual screening approaches (also defined as high-throughput docking) exploit
large libraries of compounds to identify those structures which are able to bind a biological target.
The aim of this computational technique is not necessarily linked to the number of hits found during
the process; on the contrary, the identification of novel interesting scaffolds is clearly preferable. For
this reason two important and connected steps of virtual screening approach must be mentioned: the
search algorithm and the scoring function (Figure 4) [58,59]. The search algorithm is able to explore all
the possible orientations and conformations of a small molecule within a target binding site. Most of
the protocols explore the conformational space of flexible ligands, while the protein structure remains
fixed; each final ligand conformation docked inside the protein target is called “pose”. Several search
algorithms are available based on different principles: genetic algorithm (Autodock [60], Gold [61],
MOE [62]), geometric matching (DOCK [63]), exhaustive search (Glide [64], FRED [65], eHits [66]),
incremental search (FlexX [67]). However, defining the best search protocol for virtual screening
in general, is not that easy; an evaluation of the available protocols for every case studied, instead,
is a mandatory step to identify the best solution for the virtual screening procedure. Since search
algorithms are potentially able to generate a huge number of conformations and poses, a procedure
suitable to evaluate favorable and not favorable protein/inhibitor complex and to rank one ligand
relative to another is required. This procedure is based on scoring function [58,59], which represent
an approximate mathematical method used to predict and evaluate the strength of non-covalent
interactions between small molecules and target proteins. During virtual screening, it is quite common
to use more than one scoring function for the evaluation of the best candidates [49,50]; this procedure
is known as “consensus scoring” and it is performed by combining different type of scoring functions
in an intersection-based consensus approach. The main advantage of this method is to reduce the
numbers of false positives identified by individual scoring functions and to increase the ability to
discriminate between active and inactive ligands [49,50] (Figure 4).
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discovery of ellagic acid (left); on the (right) hit optimization of ellagic acid. Inhibition constant (Ki)
and PDB (Protein Data Bank) codes have been reported.
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3.2.1. Virtual Screening Example 1: The Discovery of Ellagic Acid

A very first example of a structure based drug design technique used to identify novel inhibitors of
CK2, was provided by the virtual screening process leading to the identification of the tannin derivative
ellagic acid as the most potent CK2 inhibitor at that time [50] (Figure 4). Starting from a relatively small
database of natural compounds (2000 molecules), enriched with 15 known CK2 inhibitors to calibrate
the high-throughput screening protocol, the authors have set up a consensus screening procedure
involving four principal steps (Figure 4). First of all the library was processed with OMEGA, adding
hydrogen atoms/Gasteiger partial charges and generating the conformers for the second phase: the
rigid body shape fitting. During this step FRED generates a pool of different rigid body poses able to
interact with CK2 binding site without generating clashes; this poses were scored and ranked with a
Gaussian shape function. Compounds, selected by FRED, that potentially fit CK2 catalytic cleft were
subjected to a flexbile docking step, using three different program, namely MOE, Glide and Gold (third
step). In the fourth and last phase, the poses generated from the docking procedure were ranked by
five scoring function (MOE-Score, GlideScore, GoldScore, ChemScore and Xscore) [50]. A cut-off value
for the top 5% compounds ranked by all possible combinations of flexible-docking/scoring functions
was selected (consensus docking and scoring), prioritizing 73 molecules for biochemical evaluation [50]
(Figure 4). Ellagic acid was selected, among others, as the best compound, resulting the most potent
ATP-competitive inhibitor isolated at that time (Ki value of 0.020 µM) [50]. From a small selectivity
panel, including 12 representative protein kinases, ellagic acid resulted to be quite selective [50]; this
selectivity profile was recently enlarged by testing the residual activity of 70 protein kinases treated
with 10µM ellagic acid (Table 1). At this concentration, ellagic acid is able to inhibit, more than 50%,
the activity of 21 protein kinases, however only 9 are remarkably affected (residual activity <25%).
Beside CK2 (13%), p38-regulated/ activated kinase (PRAK) is the most inhibited (3%) followed by
Sphingosine kinase 1 (SPK1) and dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3)
(9%), DYRK2 (12%), p21-activated kinase 4 (PAK4) (14%), maternal embryonic leucine zipper kinase
2 (MELK2) (17%), BR serine/threonine-protein kinase 2 (BRSK2) (18%) and Pim-3 proto-oncogene,
serine/threonine kinase (PIM3) (21%). The moderate promiscuity of ellagic acid is not so rare among
drug candidates from natural sources and could represent the driving force of their activity against
diseases like cancer. Indeed, a cytotoxicity profile demonstrated that ellagic acid inhibited the growth
of leukemic cells SUDHL1 and FEPD with a DC50 (Death Concentration 50) around 30–50 µM after
48-h exposure to the inhibitor [50].

Table 1. Selectivity profiles of ellagic acid on a 70 kinase panel. Residual Casein kinase II (CK2) activity
(determined at 10 µM Ellagic Acid concentration) is expressed as a percentage of the control activity
without inhibitor. Activities <25% of control are highlighted in grey. Conditions for the activity assays
are described in [68].

Kinase % Activity Kinase % Activity Kinase % Activity

PRAK 3 PDK1 66 Lck 101
SRPK1 9 PKC zeta 67 HIPK3 102
DYRK3 9 MSK1 68 ERK1 103
DYRK2 12 S6K1 68 PRK2 105

CK2 13 ROCK 2 68 JNK3 106
PAK4 14 PKA 69 P38b MAPK 107
MELK 17 PKBb 71 EFK2 111
BRSK2 18 CSK 73 CHK2 117
PIM3 21 PLK1 76 CAMKKa 118

DYRK1A 26 Src 76 SmMLCK 127
MAPKAP-K2 26 JNK1 78

PAK5 29 SGK1 80
CAMKKb 29 PKBa 80

GSK3b 30 PKCa 81
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Table 1. Cont.

Kinase % Activity Kinase % Activity Kinase % Activity

IKKb 36 CHK1 81
MAPKAP-K3 39 NEK7 82

PIM1 40 PHK 82
PAK6 42 CAMK1 82
ERK8 46 ERK2 84

AURORA C 46 AMPK 86
MARK3 47 JNK2 87

PKD1 48 HIPK2 89
PLK1 51 NEK6 91
RSK2 51 MNK2 94
CK1 58 p38s MAPK 98
RSK1 58 p38a MAPK 100
MKK1 62 MNK1 100

AURORA B 64 p38g MAPK 101
NEK2a 65 MST2 101
PIM2 65 CDK2-Cyclin A 101

3.2.2. Virtual Screening Example 2: The Discovery of Quinalizarin

An implementation of the virtual screening procedure adopted in the case of ellagic acid, led
to the identification of quinalizarin as the best anthraquinone inhibitor of CK2 [49]. Starting from
an enlarged molecular database (3000 molecules), implemented with 21 known CK2 inhibitors for
the calibration phase, a flexible ligand-docking step with four different programs (MOE, Glide, Gold
and FlexX) was performed in combination with the five scoring functions described above (cut-off
for final selection: 10%) [49]. Quinalizarin, prioritized for biochemical evaluation, resulted to be an
ATP competitive inhibitor with a Ki value of 0.052 µM (Figure 5), definitely lower as compared to
other anthraquinone derivatives previously identified through traditional pharmacology, namely
emodin (6-methyl-1,3,8-trihydroxyanthraquinone, Ki = 1.5 µM) [56], MNA (1,8-dihydroxy-4-nitro-
anthracene-9,10-dione, Ki = 0.78 µM), MNX (1,8-dihydroxy-4-nitroxanthen-9-one, Ki = 0.80 µM), DAA
(1,4-dihydroxy-5,8-diaminoanthracene-9,10-dione, Ki = 0.42 µM) [69]. Moreover, the first selectivity
evaluation of quinalizarin against a panel of 70 protein kinases disclosed a promising specificity
for CK2 [49], confirmed by a second assay against an enlarged panel of 140 protein kinases [70].
In particular, while CK2 residual activity, after treatment with 1 µM quinalizarin, resulted to be only
10%, none of the other 140 protein kinases displays a residual activity less than 50%, 132 of them
being almost unaffected [70]. Several crystal structures of quinalizarin have been solved firstly by
co-crystallization with Zea mays CK2 (PDB code: 3FL5 [10]), later with human CK2 (PDB codes: 3Q9Z
and 3Q9Y [29]). These structural resources are exploited to disclose on one side the molecular features
underlying quinalizarin selectivity and, on the other, its preference for CK2 holoenzyme over the CK2
α alone [70]. To note that, quinalizarin is readily cell permeable and very effective as pro-apoptotic
agent, having been successfully used in many studies concerning CK2 physiological and pathological
roles, as well to disclose proteomics perturbations caused by CK2 down regulation [71].
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discovery of quinalizarin (left); whose activity is shown in comparison with the previous discovered
anthraquinone inhibitors (right).

3.2.3. Virtual Screening: Other Examples

One of the first examples of a successful virtual screening procedure applied to the identification of
CK2 inhibitors was performed by Novartis Pharma: a fast high-throughput screening protocol (DOCK
software), combined with a pharmacophore filter, was used to screen a database of 400,000 compounds.
A dozen compounds were retrieved from the in silico procedure; of particular interest was a quinazoline
derivative (compound 4, 5-oxo-5,6-dihydroindolo- [1,2-a]quinazolin-7-yl, later named IQA), displaying
an IC50 (half maximal inhibitory concentration) of 0.080 µM against CK2 and a good selectivity towards
a small panel of 21 representative protein kinases [72]. Hereafter, IQA was profiled against 44 kinases,
confirming its selectivity and prioritized for in cell assays, showing remarkable efficacy in Jurkat
cells [73]. The crystal structure of IQA and Zea mays CK2 was solved (PDB code: 1OM1), paving the
way for further optimization of this promising scaffold [73].

Another example of a virtual screening application exploited the chemical structure of CX4945,
the only CK2 inhibitor in clinical trials; a two-steps shape based virtual screening approach was used to
retrieve novel compounds able to inhibit CK2 [74]. Firstly, a shape-based model derived from CX-4945
was built, and used to screen a database of molecules with the OMEGA/ROCS software, leading to
the identification of one quinazoline derivative (SHP01, IC50 = 4.23 µM), whose interactions with CK2
active site were later clarified through molecular docking (GOLD software). Based on SHP01 scaffold,
a second shape based model was built and a new set of compounds from the screening analysis
have been prioritized for molecular docking and biochemical evaluation. The three best compounds
SHP19, SHP26 and SHP27 (IC50 = 0.46 µM, 0.69 µM and 0.55 µM respectively) were also assayed for
their cytotoxicity in several cell lines, displaying a DC50 values around 30 µM [74]. Although this
strategy proved promising for the optimization of SHP01 inhibitory activity, it was not able to retrieve
compounds as effective as CX4945. Moreover, the selectivity of the hit molecules identified in the
virtual screening procedure remained undetermined, as well as the real contribution of CK2 to the
cytotoxic effect of these chemical entities.

Finally an in silico screening application, called Cross-Docking-based Virtual Screening, was used
to explore a database of over 300,000 compounds previously resized to around 80,000 using specific
druglike property filter [75]. Ninety six compounds were retrieved from the screening procedure and



Pharmaceuticals 2017, 10, 26 10 of 23

submitted to a toxicity prediction procedure; only seven of them were assayed in vitro, compound g
resulting to be the best inhibitor, with an activity in the micromolar range [75].

3.3. Molecular Docking, Molecular Dynamics and Hit Optimization (Hit to Lead)

Compounds selected from a virtual screening procedure (for example ellagic acid or quinalizarin)
are generally defined as hits and evaluated by means of binding affinity for their biological target as well
as for their selectivity toward unwanted off-targets. After their efficacy is validated in cell environment,
to assess their cell permeability and ability to perturb biological functions. Co-crystallization of hits and
the target protein is a crucial step in hit evaluation, since it provides significant information about the
molecular interactions and may confirm or not the poses obtained from the in silico high-throughput
screening procedure. Hit to lead represents a stage in early drug design where hits undergo a
rational optimization of their chemical scaffold to improve, among others, chemical and metabolic
stability, affinity and selectivity towards the biological target, as well as efficacy in cellular assays. Hit
optimization is generally performed by exploiting optimized docking protocols as well as molecular
dynamics simulations; these approaches are especially useful when coupled with crystallographic
information about hit/target complexes. The design of novel compounds starting from existing hits
can be evaluated through molecular docking which is able to predict the binding motif of optimized
molecules and their affinity towards the biological target, using different scoring functions. The
comparison between hit compounds binding affinity and the ones of novel designed candidates, helps
to direct new synthesis of optimized molecules. On the other hand, molecular docking can be useful to
determinate the Structure Activity Relationship (SAR) of a family of compounds variably active against
a target. In fact the knowledge of the relationship between the chemical or 3D structure of a molecule
and its biological activity, is critical to understand which kind of chemical substitutions are expected
to improve the activity of hit compounds. Similarly, molecular dynamics simulation can be used to
estimate the free binding energy of small ligands to biological macromolecules. In particular molecular
dynamics calculations are used to study target/ligand complexes, to rationalize experimental findings
and to improve the results of virtual screening and docking. Molecular mechanics (MM) energy
coming from molecular dynamics experiments are coupled with PBSA and GBSA (Poisson Boltzmann
or generalized Born and surface area continuum salvation) methods to estimate ligand binding affinities
to the biological target [76]. To note that many attempts to improve these methodologies have been
performed by exploiting for example Quantum Mechanics (QM) approaches. Liner Interaction Energy
(LIE) is another method for hit optimization coupled with molecular dynamics simulations: it consists
in a semiempirical approach that combines the advantages of Free Energy Perturbation (FEP) and
Thermodynamic Integration (TI), by calculating binding free energies of the bound and the free state
of ligands [77].

After hit optimization, the newly generated molecules are generally called lead compounds;
they are further improved in a lead optimization phase, exploiting the acquisition of Adsorption,
Distribution, Metabolism, Excretion, Toxicity (ADMET) properties, till the development of drug
candidates ready for in vivo testing. This issue will not be considered in this paper because, although
many inhibitors of CK2 have reached in vivo studies, in silico lead optimization of this molecules has
not been performed.

3.3.1. Hit to Lead: Ellagic Acid

The optimization of the CK2 inhibitor ellagic acid is a telling example of a hit to lead
strategy starting from a compound retrieved by a virtual screening technique. Starting from the
crystallographic structures of ellagic acid and the cumarin derivative DBC (3,8-dibromo-7-hydroxy-
4-methylchromen-2-one, Ki = 0.06 µM ) in complex with the α-subunit of CK2 (PDB codes: 2ZJW and
2QC6, respectively [78,79]), an analysis of the interactions of the two compounds with CK2 catalytic
site was performed (Figure 4). Ellagic acid and DBC display a similar binding mode; however, while
ellagic acid is able to interact with both CK2 hinge region and the phosphate group binding area, DBC
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is able to directly bind only the hinge. To note that in 2008, a LIE model approach was performed on
DBC and more than 60 coumarins derivatives, to define and understand the importance of different
energy contributions to the binding free energy of this class of compounds [79].

From these observations, a molecular simplification of the ellagic acid scaffold has been proposed
leading, among others, to an hydrolysable tannin, urolithin A (IC50 = 0.39 µM) [55] (Figure 4).
Interestingly, the molecular docking experiments of urolithin A inside CK2 catalytic site, demonstrate
that ellagic acid and urolithin A share the same binding motif characterized by the two crucial
hydrogen-bonding interactions [55]. This was also confirmed by methylating, individually or
together, the hydroxy groups at position 3 and 8, resulting in two molecules with low affinity
(compound 9, IC50 = 3.5 µM) or completely inactive (compound 10, IC50 > 40 µM) [55]. Moreover, being
urolithin A a benzocoumarin derivative, it was suggested to represent a bridging scaffold between
ellagic acid and DBC (Figure 4). For this reason, the effect of electron-withdrawing substituents
(nitro and bromine), was investigated through molecular docking approach [55]. Among various
derivatives proposed in silico and prioritized for chemical synthesis and biochemical evaluation,
4-bromo-3,8-dihydroxy-benzo[c]chromen-6-one (compound 21, Ki = 0.007 µM) resulted to be even
more efficacious than ellagic acid and DBC (Figure 4) [55].

3.3.2. Hit to Lead: Benzimidazole Scaffold

The optimization of chemical entities in drug discovery can be also performed starting from
a scaffold recognized as a hit compound, even if not selected by high-throughput screening. One
of the first family of compounds identified as inhibitors of CK2 is represented by polyhalogenated
benzimidazole derivatives. DRB (5,6-dichloro-1-(β-D-ribofuranosyl)benzimidazole, Ki = 23 µM) [80],
TBB (4,5,6,7-tetrabromobenzotriazole, Ki = 0.40 µM) [81], and the first generation of benzimidazole
derivatives were discovered by traditional pharmacology (“trial and error testing”) [82]. Several
experimental data were collected for this first series of compounds, in particular focusing on the
determination of their in vitro (e.g., K25 Ki = 0.04 µM) and in cell potency, their mechanism of action
and their selectivity towards different kinases panels, as well as on the co-crystallization of some of
them with CK2 catalytic subunit (Figure 6). Such as amount of data was essential to determinate a SAR
for this starting group of compounds, and to perform additional modifications of the benzimidazole
scaffold, exploiting the crystallographic informations available. First of all, the role of different halogen
substitutions (Figure 6) was evaluated through molecular docking analysis combined with biochemical
assays, proving that tetraiodined compounds present, on average, IC50 one of magnitude lower than
the corresponding brominated ones (e.g., K88 Ki = 0.023 µM; K93 = 0.019 µM; K100 Ki = 0.027 µM) [83].
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Secondly, the benzimidazole scaffold was further optimized to design a molecule able to inhibit
CK2 together with other protein kinases implicated in the same human disease [84] (Figures 6 and 7).
The goal of such a strategy, called Multi Target Drug Design (MTDD), is to block redundant
compensatory pathways in diseases like cancer or neurodegeneration, with consequently increase of
efficacy and the reduction of drug resistance. Compounds able to target two or more protein kinases
are called Multi Kinase Inhibitors (MKI); several example of MKI are present in literature, some of
them have been also approved by FDA, like imatinib (Gleevec) [85] and lapatinib (Tykerb) [86,87]. The
crosstalk between CK2 and PIM1 (kinase of the Proviral Integration of Moloney virus) [88] has been
recognized in a number of tumors (e.g., prostate cancer, and hematologic malignancies) where they
are implicated in the resistance to apoptosis [84]. The design of a specific dual and cell permeable
inhibitor of CK2 and PIM1 was obtained through an in silico rational optimization of the benzimidazole
scaffold, in particular by exploiting a structure based pharmacophore approach [84] (for details about
pharmacophore model see Section 4 ). Even through this method can be used also with apo protein
structures, in this case it was used to obtain pharmacophores from CK2 and PIM1 structures in complex
with different inhibitors (Table 2). In fact, beside CK2, several co-crystal structures of PIM1 and its
inhibitors are also available. Once collected, the structural data from both CK2 and PIM1 were divided
into two groups; the first one representing the training set for the pharmacophore selection, the second
one representing the test set to validate the pharmacophore model (Table 2). For both CK2 and PIM1,
one single structure was chosen to generate the pharmacophore model taking into account all the
interactions performed by CK2 and PIM1 ligands into the respective binding site, according to the
training set. At the end of the procedure a set of chemical features was retrieved and clusterized into
hydrogen donor, hydrogen acceptor, hydrophobic and aromatic features (Figure 7). Only the most
recurring features retrieved from the protein ligand interaction pattern, were selected and included in
the final generation of the pharmacophore models of CK2 and PIM1. These models were validated by
using molecules from the test set; to note that all the inhibitors of CK2 and PIM1 present in the test set
have not been used for the pharmacophore model determination, being, however, positively selected
by the two final pharmacophore models, in the validation procedure. Couriously the pharmacophore
models of CK2 and PIM1 resulted to be geometrically and qualitatively quite similar, being composed of
two acceptor features, five hydrogen/aromatic feature, while four donor features were present in CK2
instead of three in PIM1 (Figure 7). Both the validated pharmacophore models were used as 3D queries
in database searching. The chemical library represents a family of 350 tetrabromobenzimidazole
derivatives built in silico through combinatory chemistry of small chemical fragments (Figure 7).
Among others, TDB (1-β-D-2′-deoxyribofuranosyl-4,5,6,7- tetrabromo-1H-benzimidazole) resulted to
be the most promising molecule retrieved from the screening procedure [84]. As expected TDB showed
an ATP competitive inhibition with both CK2 and PIM1 (Ki values, 0.015 and 0.040 µM respectively),
and a promising selectivity, being almost ineffective against a panel of 124 protein kinases, at 1 µM
concentration [84]. The selectivity of TDB is also confirmed by the values for the Gini coefficient
(0.553) and hit rate (0.14), denoting that TDB is one of the most specific inhibitors of CK2. Only two
other protein kinase, DYRK1a and CLK2 have been shown to be affected by TDB (IC50 = 0.4 µM and
0.02 µM, respectively) [84]. To note that the overexpression of CLK2 is also implicated in many tumors,
thus the triple specificity of TDB against CK2, CLK2 and PIM1, should be considered an advantage,
rather than a weakness. The specificity of TDB towards CK2 and PIM1 was also demonstrated in
living cells, where the compound was able to inhibit the endogenous activity of both protein kinases,
and to reduce the phosphorylation level of specific substrates of CK2 and PIM1 (Akt Ser129 and Bad
Ser112, respectively) [84]. To note that, the combined efficacy of TDB against CK2 and PIM1 was
probably responsible of the remarkable cytotoxicity of the compound against cancer cells (CEM and
HeLa) compared to non-tumor (cells CCD34Lu and heK-293t), showing that TDB was even better than
CX-4945 in a comparative MTT test on CEM cells [84].



Pharmaceuticals 2017, 10, 26 13 of 23

Pharmaceuticals 2017, 10, 26  13 of 23 

 

 

Figure 7. Structure based pharmacophore screening applied for the discovery of TDB 

(1-β-D-2′-deoxyribofuranosyl-4,5,6,7-tetrabromo-1H-benzimidazole), a CK2 and PIM1 dual inhibitor. 

Spheres represent chemical features: Red for donor, blue for acceptor, orange and yellow for 

hydrophobic/aromatic. 

Table 2. List of CK2 and PIM1 crystal structures (PDB codes) used as training and test set for 

pharmacophore building. 

CK2 PIM1 

Training Set Test Set Training Set Test Set 

3KXM 3KXN 4ENY 3UIX 

3KXH 3KXG 4A7C 3T9I 

3PVG 3PWD 3R00 3R01 

3NGA 3Q9Y 3R02 3R04 

3AMY 3OWK 3XJ1 3XJ2 

4DGN 3MB7 3JPV 3DCV 

3OWL 3OWJ 3C4E 3BGP 

3MB6 3RPS 3BGQ 3BGZ 

1ZOH 1ZOG 3UMX 4ENX 

1M2R 1M2Q 4ALW 3UMW 

2OXD 2OXY 4ALU 4ALV 

1OM1 1M2P 4K18 4K1B 

Another modification of the benzimidazole scaffold was rationalized starting from one of its 

ATP competitive derivative K137 (N1-(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)-propane- 

1,3-diamine), with the aim to design a new family of bisubstrate inhibitors able to simultaneously 

interact with the ATP and the phosphoacceptor substrate binding sites [89] (Figure 8). To this 

purpose the extended knowledge acquired about the interactions between CK2 and its acidic 

peptide substrates (e.g., TS-Tide, RRRADDSDDDDD), together with the huge amount of 

crystallographic data for ATP competitive inhibitors, was transferred to a Molecular Dynamics 

guided Structure Based Docking procedure [89] (Figure 8). First of all the interaction pattern of K137 

and of TS-Tide with CK2 ATP and substrate binding site respectively was acquired, through 

Docking and Molecular Dynamics simulations. In particular K137 binding pose was retrieved 

Figure 7. Structure based pharmacophore screening applied for the discovery of TDB
(1-β-D-2′-deoxyribofuranosyl-4,5,6,7-tetrabromo-1H-benzimidazole), a CK2 and PIM1 dual inhibitor.
Spheres represent chemical features: Red for donor, blue for acceptor, orange and yellow for
hydrophobic/aromatic.

Table 2. List of CK2 and PIM1 crystal structures (PDB codes) used as training and test set for
pharmacophore building.

CK2 PIM1

Training Set Test Set Training Set Test Set

3KXM 3KXN 4ENY 3UIX
3KXH 3KXG 4A7C 3T9I
3PVG 3PWD 3R00 3R01
3NGA 3Q9Y 3R02 3R04
3AMY 3OWK 3XJ1 3XJ2
4DGN 3MB7 3JPV 3DCV
3OWL 3OWJ 3C4E 3BGP
3MB6 3RPS 3BGQ 3BGZ
1ZOH 1ZOG 3UMX 4ENX
1M2R 1M2Q 4ALW 3UMW
2OXD 2OXY 4ALU 4ALV
1OM1 1M2P 4K18 4K1B

Another modification of the benzimidazole scaffold was rationalized starting from one of its ATP
competitive derivative K137 (N1-(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)-propane- 1,3-diamine),
with the aim to design a new family of bisubstrate inhibitors able to simultaneously interact with the
ATP and the phosphoacceptor substrate binding sites [89] (Figure 8). To this purpose the extended
knowledge acquired about the interactions between CK2 and its acidic peptide substrates (e.g., TS-Tide,
RRRADDSDDDDD), together with the huge amount of crystallographic data for ATP competitive
inhibitors, was transferred to a Molecular Dynamics guided Structure Based Docking procedure [89]
(Figure 8). First of all the interaction pattern of K137 and of TS-Tide with CK2 ATP and substrate
binding site respectively was acquired, through Docking and Molecular Dynamics simulations.
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In particular K137 binding pose was retrieved through a genetic algorithm based molecular docking
(Gold software, genetic algorithm), while the CK2-peptide substrate complex was obtained through
a protein-protein docking procedure (PIPER software [90]). 1000 complexes were obtained from
protein-protein docking algorithms and clusterized using the pairwise Root Mean Square Deviation
(RMSD) into the six largest clusters. The final complex was chosen according to the energy scoring
function. Both the docking experiments were submitted to a Molecular Dynamics protocol (NAMD
2.8 [91], 100 ns of NPT, 1 atm, 300 K) to optimize the interactions within the complexes. These data were
used to propose a binding motif for K137, to identify the minimum interactions required to allocate
the acidic peptide substrate in CK2 substrate binding site, and to design the best chemical spacer to
connect the K137 moiety to the acidic peptide. From this procedure, a small group of molecules, was
prioritized for biochemical evaluation [89]; the best compound resulted to be K137-E4 (IC50 = 0.025 µM)
in which K137 was derivatized in position 3 by a chemical spacer connected to a peptidic fragment
composed by 4 glutamic acid [89] (Figure 8). From the in silico analysis, K137-E4 was predicted to
interact in the ATP binding site through the K137 moiety, and in the substrate binding region with
the peptide portion (E4). Mixed competition kinetics and mutational analysis demonstrated in vitro
that the compound is indeed able to interact simultaneously with both the ATP and substrate binding
sites [89]. In addition to a highter potency as compared to K137 (IC50 = 0.13 µM), K137-E4 is more
selective: while K137 is able to inhibit 35 out of 140 protein kinases more potently than CK2, K137-E4
is only active against CK2 [89]. This remarkable selectivity is also demonstrated by the value of the hit
rate for K137-E4 (0.05) much lower than the one for K137 (0.27) [89].
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3.3.3. Hit to Lead: Other Examples

In the absence of crystallographic informations, molecular docking has been widely used to
determine the binding motif of CK2 inhibitors. This technique was particularly useful to explain
the SAR of several families of compounds, and to design optimized molecules starting from their
docking pose. For example, a family of pyrimidine derivatives [92] was recently further optimized,
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generating a series of novel ATP-directed compounds with variable activities against CK2; one of
them NHTP23 (3-(5-phenylthieno [2,3-d]pyrimidin-4-ylamino)benzoic acid) was extremely active
(IC50 = 0.01 µM) and selective against a small panel of eight protein kinases [93]. Likewise, a novel
family of tetrabromobenzotriazole derivatives was studied for their inhibitory activity toward CK2 and
rationalized through docking experiments. R-7b (IC50 = 0.80µM) was the best hit compound obtained,
being however effective in MCF7 adherent cells only at concentration between 50 and 100 µM [94].
To note that molecular docking was also used to clarify the binding mode of the promising peptide
inhibitor Pc, able to interfere with the interaction surface between CK2 catalytic (α) and regulatory (β)
subunits; this results could pave the way to the development of allosteric inhibitors of CK2 [95].

Many other computational studies have been performed on existing families of CK2 inhibitors.
However, most of them have been dedicated to the development of new computational strategies and
techniques, to clarify the SAR of existing families of compounds and their interaction with CK2, without
leading to novel optimized chemical entities. For example, the tricyclic quinoline compound CX-4945,
the only CK2 inhibitor in clinical trials, has been studied in silico, through molecular docking and
dynamics, to clarify the role of its acidic portion, responsible for its marked activity [96]. In particular,
the presence of non-R2 carboxylate function resulted in a different protein-ligand recognition, leading
to unfavourable electrostatic interactions with the ATP binding site of CK2 [96]. Another example is
provided by the exploration of interactions between a group of tetrabromobenzimidazole derivatives
with CK2, exploiting a QM/MM-PB/SA method [97]. This approach was used to estimate the binding
free energies of CK2-inhibitor complexes obtained through QM/MM molecular dynamics. The results
demonstrated that the contribution of solvation (PB/SA) is essential to retrieve reliable results, that
the hydrophobic contribution represents the driving force for the binding, while the electrostatic
interactions are important for the correct orientation of benzimidazole inhibitors in the CK2 active
site [97]. Moreover, the in silico methodology suggested modifications able to potentially increase the
binding affinity, however no evaluation of these hypothetical molecules is actually available.

4. Rational Drug Design of CK2 Inhibitors: Ligand Based Drug Design

The huge number of crystallographic structures available for CK2, have tipped the balance of
computational studies in favor of structure based drug design. However, some examples of efficient
Ligand-Based Drug Design (LBDD) procedures applied to the development of CK2 inhibitors are also
available in literature (discussed below). Instead of being focused on the biological target, like in the
case of SBDD, LBDD exploits the knowledge of known active molecules to predict novel chemical
entities able to affect the target of interest. To note that this approach, even if can be combined with
SBDD techniques, it is born to be independent from the structure of the target, thus can prove extremely
helpful to develop novel ligands against targets lacking tridimensional information. A huge amount
of CK2 inhibitors (>200) are available in literature, belonging to several chemical class of compounds
(e.g., anthraquinone, coumarin, flavone, quinoline) and characterized by a wide range of in vitro
activities and selectivity (see specific reviews for detailed informations [27,28]). This structure diversity
should be considered an advantage in the application of LBDD approaches for the developing and
optimization of CK2 inhibitors. For this purpose, Pharmacophore screening [98] and Quantitative
Structure–Activity Relationship (QSAR/3D-QSAR) [99,100] are the most used LBDD, the former
mainly focused on the structural geometries and characteristics of known compounds, the latter
on the correlation between calculated chemical properties of molecules and their experimentally
determined activity.

4.1. The Pharmacophore Approach

A pharmacophore can be defined as an ensemble of chemical features, generally consisting of
hydrogen bond acceptors/donors, electrostatic features and hydrophobic centroids, necessary to ensure
the molecular recognition between a ligand and its biological target. A generated pharmacophore
model could identify the minimum chemical features which different ligands should possess to bind a
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common binding site and can be used in a ligand-based virtual screening to identify new molecules
with the same features [98]. It is normally built from a training set of diverse molecules active against
the same biological target, whose low energy conformers are generated and superimposed. The 3D
alignment of the ligands is used to extract chemical properties for the pharmacophore model, assigning
the correct pharmacophoric features [98]. The final model must be validated with a set of known active
compounds against the common biological target. It is fairly common for pharmacophore approach
to be combined with SBDD techniques when tridimensional information for the biological target
is available. For example, results from a ligand-based pharmacophore model are often confirmed
through molecular docking before being validated by biochemical evaluation.

4.1.1. The Pharmacophore Approach: Applications

An interesting combination of pharmacophore hypothesis, the Bayesian model (LBDD technique)
and molecular docking was recently performed [101]. Bayesian model, a probabilistic classifier based
on applying Bayes’ theorem, is one of the most versatile machine learning algorithms. It was used
to distinguish active from non-active inhibitors of CK2, by training the protocol with a set 73 active
and 29 inactive compounds. On the other side a pharmacophore model was developed using seven
active CK2 inhibitors together with two non-active compounds; finally a docking protocol was used to
confirm the data obtained from LBDD analysis. Bayesian model, pharmacophore model and molecular
docking were sequentially used to filter more than one million molecules; 30 compounds were selected
from the in silico analysis and one of them (compound C1) resulted to be structurally unrelated to the
other known CK2 inhibitor and displayed an IC50 of 5.85 µM [101].

4.2. Quantitative Structure–Activity Relationship (QSAR)

Quantitative structure-activity relationships (QSAR) can be defined as regression or classification
models used in several scientific applications. In computational chemistry and in drug design in
general, QSAR have been applied to study the relationship between physicochemical properties of
molecules and their biological activities; QSAR aims at building reliable statistical models to predict
the activities of novel chemical entities [99,100]. The basic concept of QSAR is that structural properties
of molecules are strictly connected with their biological activities; in other words inhibition constants,
rate constants and affinities of compounds with their targets are correlated with chemical features like
electronic and steric properties, lipophilicity, polarizability. 3D-QSAR has emerged as an optimized
methodology for the design of new molecules, by exploiting the three-dimensional properties of
known compounds to predict the biological activities of novel chemical entities through chemometric
techniques such as Partial Least Squares (PLS), Principal Components Analysis (PCA), Comparative
Molecular Field Analysis (CoMFA), Molecular Similarity Indices in a Comparative Analysis (CoMSIA).

4.2.1. The QSAR Approach: Applications

By exploiting a pool of 38 CK2/inhibitors complexes a QSAR model based on Multiple Linear
Regression (MLR) was built in combination with a docking protocol (AutoDock) for the generation
of energy-based descriptors. After a cross-validation procedure, 20 analogues of ellagic acid were
subjected to the QSAR-Docking approach; intriguingly two compounds were predicted in silico to be
more potent than ellagic acid, however these results were not validated in a biochemical assays [102].
On the other hand, CoMFA and CoMSIA methodologies, based on several CK2 inhibitors, were used
in a 3D-QSAR study, generating a statistically solid model; unfortunately, the in silico analysis was
not applied for the discovery of novel compounds, but only suggested plausible substitutions in the
development of CK2 inhibitors [103]. CoMFA and CoMSIA descriptors were also applied to study
40 coumarin derivatives combined with molecular docking. The model was successfully validated
using five known inhibitors of CK2 belonging to the coumarin family of compounds [104].
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5. Discussion

CK2 is an ubiquitous and pleiotropic protein kinase, intensively studied for its biological roles
and its implication in several human diseases in particular cancer, where its upregulation favours
tumor progression. The search of CK2 inhibitors started several years ago and at the beginning it was
grounded on “trial and error testing” against the purified enzyme. With the increasing number of
crystallographic information about CK2 alone or in complex with the first isolated inhibitors, together
with the availability of in silico protocols for the design and development of active ligands, several
research groups started to merge the classical biochemical studies with computational methodologies
able to rationalize the experimental data. Later on, in silico rational drug design became even more
important for the discovery and optimization of CK2 inhibitors in particular exploiting Structure Based
Drug Design (SBDD) techniques. The abundance of crystal structure of CK2 proved very helpful for
the optimization of virtual screening and molecular docking algorithms, as well as for the building of
solid free energy binding models. Several promising compounds have been obtained through virtual
screening campaigns, like IQA, ellagic acid and quinalizarin. Moreover, rational hit optimization by
means of molecular docking, pharmacophore approaches and molecular dynamics simulations has
been shown to be able to retrieve novel potent inhibitors of CK2, with different mechanism of action
and specificity.

Special reference needs to be made for Ligand-Based Drug Design (LBDD) techniques; despite
the abundance of CK2 inhibitors available in the literature, the success of these approaches is very
limited; in fact LBDD techniques were able to suggest new scaffolds, however characterized by poor
potency and not further optimized. The general impression is that the development of CK2 inhibitors
through LBDD techniques is still in an early phase, probably restrained by the presence of validated
and efficacious SBDD protocols. This is confirmed also by the majority of published papers, where
LBDD techniques are applied for the design of CK2 inhibitors. In these cases, indeed, calibration,
validation and improvement of the methodologies are the main addressed aspects, rather than specific
applications for the development of potent and selective inhibitors of CK2.
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In conclusion, as summarized in Figure 9, the introduction of in silico rational drug design in
the discovery and optimization of CK2 inhibitors was of invaluable usefulness to retrieve novel hit
compounds by virtual screening and to focalize the synthesis of optimized molecules by molecular
docking and dynamics. The combination of in silico techniques with biochemical, crystallographic,
and in cell approaches has accelerated the discovery of more active and more selective inhibitors of
CK2, as compared to the traditional trials and error testing. Moreover the increasing of computational
power based not only on the Central Processing Unit (CPU) but also on the Graphics Processing Unit
(GPU), gives a promising perspective on the development of even better computational algorithms for
CK2 drug design, involving mechanics calculation in the quantum level based on larger databases
of compounds.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/10/1/26/s1,
Table S1: Summary of all CK2 crystal structures deposited in the Protein Data Bank (PDB).
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