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Abstract

With the rapid increase of omics data, correlation analysis has become an indispensable tool for inferring meaningful
associations from a large number of observations. Pearson correlation coefficient (PCC) and its variants are widely used for
such purposes. However, it remains challenging to test whether an observed association is reliable both statistically and
biologically. We present here a new method, CorSig, for statistical inference of correlation significance. CorSig is based on a
biology-informed null hypothesis, i.e., testing whether the true PCC (r) between two variables is statistically larger than a
user-specified PCC cutoff (t), as opposed to the simple null hypothesis of r = 0 in existing methods, i.e., testing whether an
association can be declared without a threshold. CorSig incorporates Fisher’s Z transformation of the observed PCC (r),
which facilitates use of standard techniques for p-value computation and multiple testing corrections. We compared CorSig
against two methods: one uses a minimum PCC cutoff while the other (Zhu’s procedure) controls correlation strength and
statistical significance in two discrete steps. CorSig consistently outperformed these methods in various simulation data
scenarios by balancing between false positives and false negatives. When tested on real-world Populus microarray data,
CorSig effectively identified co-expressed genes in the flavonoid pathway, and discriminated between closely related gene
family members for their differential association with flavonoid and lignin pathways. The p-values obtained by CorSig can be
used as a stand-alone parameter for stratification of co-expressed genes according to their correlation strength in lieu of an
arbitrary cutoff. CorSig requires one single tunable parameter, and can be readily extended to other correlation measures.
Thus, CorSig should be useful for a wide range of applications, particularly for network analysis of high-dimensional
genomic data.

Software Availability: A web server for CorSig is provided at http://202.127.200.1:8080/probeWeb. R code for CorSig is
freely available for non-commercial use at http://aspendb.uga.edu/downloads.
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Introduction

With the accumulation of large-scale data from various high-

throughput technologies over the last decade, correlation network

analysis has gained popularity for systems investigation of complex

biological traits [1–3]. By studying the network topology of co-

expressed genes under varying conditions, for instance, Carter et

al. [4] showed that network connectivity is a reliable measure of

condition-specific ‘‘essential genes’’ that may escape detection by

conventional differential expression (DE) analysis. Gene network

analysis has been exploited to understand regulatory mechanisms

[5–9], including analysis of common promoter binding sites of co-

expressed genes to infer co-regulation [10]. The interrogation of

multi-omics profiling via network approaches is also of pivotal

importance to the development of personalized medicine [11–13].

Central to these network inference approaches are correlation

measures that seek to describe the relationship among variables.

Commonly used correlation measures include Pearson correlation,

Spearman correlation, mutual information and their variants,

each with its own merits and limitations [14–23]. Pearson

correlation and mutual information are well-suited for modeling

linear and non-linear relationship, respectively, whereas condi-

tional measures (e.g., partial Pearson correlation or conditional

mutual information) are more effective for inferring non-static

relationships [24].

A challenge in large-scale correlation analysis is to discern

statistically significant relationships. Given two gene variables,

their co-expression strength can be depicted by a correlation

coefficient, such as Pearson correlation coefficient (PCC), calcu-

lated from the observed expression profiles. For a large number of

genes, an arbitrary minimum PCC cutoff (MC) is often applied to

identify biologically meaningful co-expression candidates, analo-

gous to the use of an arbitrary fold-change cutoff in DE analysis.

Although intuitive and simple, such a method does not control
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sampling errors and, therefore, is prone to false positives. Unlike

the advances in multiple comparisons for DE analysis [25–29],

rigorous statistical testing for correlation analysis remains under-

developed [30,31]

Several approaches are available for testing the significance of

PCC (or the likes). One method is to test the null hypothesis that

the true value of PCC (r) is equal to zero [32]. Thus, an

association will be declared if the observed PCC is significantly

different from zero. Another method infers significance by

constructing a confidence interval for r at a given probability

[32]. Other methods combining the above-mentioned approaches

have also been proposed, such as the two-stage procedure of Zhu

et al. [33], which attempts to control both statistical as well as

biological significance. Statistical significance of the observed r’s at

a given correlation threshold is first assessed by p-values calculated

under the null hypothesis r = 0. A false discovery rate (FDR)-based

confidence interval is then constructed to control false positives. In

contrast to the simple MC methods, Zhu’s method tends to be

extremely stringent, due to the rigid two-stage workflow.

We argue that the simple null hypothesis is not applicable in

genomics-level correlation analysis where the main challenge is to

differentiate biologically significant correlations from those that

occur by chance. To address this issue, we propose an alternative

significance inference framework, i.e., testing if the following holds:

rj jwt ð1Þ

where 0,t,1 is a given threshold for an observed r (both positive

and negative correlations can be considered using the absolute

value of r). Eq.(1) represents an improvement over Zhu’s two-stage

procedure in that we seek to simultaneously control biological and

random errors in an integrative, rather than discrete, manner, and

that we infer statistical significance under a more biologically

relevant context of Eq.(1) rather than the simple null hypothesis

r = 0. We devised a statistical procedure, based on Fisher’s Z-

transformation of PCC, that facilitates the use of standard

statistical techniques and multiple testing corrections for reliable

identification of co-expressed genes. The proposed method,

CorSig, can be extended to other correlation measures and should

be applicable to other genomics studies, such as protein-protein

interaction, metabolomics and genetic linkage analyses.

Figure 1. Relationship of p-values and observed r’s. A is for four cases of n = 20; B is for three cases of t = 0.6.
doi:10.1371/journal.pone.0077429.g001

Table 1. Numbers of variables identified by CorSig with a p-value cutoff of 0.05, using a theoretical value of SD (A), or a fitted value
of SD (B), using Simulation Data I.

A. Theoretical SD

True# n = 5 n = 10 n = 20 n = 50 n = 100 n = 500 n = 1000 n = 5000 n = 10000

t = 0.2 807 129 342 465 567 628 734 758 791 793

t = 0.4 599 80 244 340 389 439 531 557 583 591

t = 0.6 395 49 154 217 260 286 344 366 385 391

t = 0.8 198 21 70 103 123 132 171 185 192 197

B. Fitted SD

True# n = 5 n = 10 n = 20 n = 50 n = 100 n = 500 n = 1000 n = 5000 n = 10000

t = 0.2 807 601 719 749 757 770 789 796 804 806

t = 0.4 599 361 466 520 521 536 578 580 596 598

t = 0.6 395 192 281 316 317 321 370 379 390 395

t = 0.8 198 78 122 141 155 156 180 191 197 199

doi:10.1371/journal.pone.0077429.t001

CorSig
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Methods

Relevant Probability Distribution Theories
An intuitive option for solving the inference problem of rj jwt is

to use the probability distribution of sample PCC r, denoted by

D(r). However, D(r) is not well understood. Some properties of the

distribution have been reported under certain data scenarios. For

two uncorrelated variables that follow a bivariate normal

distribution, for example, r approximately follows a t-distribution

with a degree of freedom n-2 (n is the sample size) [32,34].

Depending on the data, D(r) can be influenced by the true PCC r
and the sample size n. For dataset with r = 0, r is symmetrically

distributed around 0, and therefore, is an unbiased estimator of r.

When r.0 or r,0, however, the distribution of r will be skewed

toward the negative or the positive side, respectively. Finally, n can

influence D(r), as the larger the n, the smaller the standard

deviation of r.

Fisher [35] developed a variance-stabilizing transformation to

convert r values into weighted z scores. This provides a convenient

means by which to draw inference on r when it is different from

zero. Without loss of generality, we write the Fisher’s Z-

transformation as:

Z(r)~0:5 log
1zr

1{r

� �
{0:5 log

1zh

1{h

� �
ð2Þ

where h [ ½{1,1� is a constant and can be conveniently set as h = t
(see explanation in the next section). In contrast to our limited

understanding of D(r), extensive studies have been conducted on

the properties of Z [36–38]. Given r, Z is approximately normally

distributed with mean calculated from r via Eq.(2) and standard

deviation (SD), defined as:

s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=(n{3)

p
ð3Þ

In the following section, we describe the application of the

Fisher transformation to the proposed statistical inference about

rj jwt.

The CorSig Framework of Identifying Reliable Co-
expressions and Its Statistical Solution

For the presentation of the proposed framework, we assume a

gene expression data set containing the expression levels of m genes

in n observations (samples), denoted as a matrix of m rows and n

columns:

m genes

e11 e12 � � � e1n

e21 e22 � � � en

..

. ..
. ..

. ..
.

em1 em2 � � � emn

8>>>><
>>>>:

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n samples

ð4Þ

The expression vector of each gene can be represented as

xi~(eik),i~1,2, � � � ,m,k~1,2, � � � ,n. So, the observed PCC

between two genes, i and j, can be calculated as

rij~

P
xixj{

P
xi

P
xj

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
P

x2
i {

(
P

xi )
2

n
)(
P

x2
j {

(
P

xj )2

n
)

r ð5Þ

We aim to determine whether the true PCC r between genes i

and j is significantly larger than a given threshold t by the observed

value rij. More specifically, we estimate the p-value of rij under

rj jƒt.

To solve the significance problem, we assume the following null

hypothesis H0: rj jƒt against the alternative hypothesis H1: rj jwt.

In standard statistical theory, the null hypothesis H0 is termed

composite null hypothesis in that it specifies an interval of values

for r rather than a fixed value as seen in the simple null hypothesis

(r = 0). Unlike the single-value null hypothesis test that has been

relatively well studied, there is no specific procedure in standard

statistical theory for the composite null hypothesis test [32,39]. It

Figure 2. The observed SD varied according to n and r, in sharp
contrast to the invariable theoretical SD. A. The influence of n
across nine different r values. The nine corresponding theoretical SDs
are connected by dotted lines. B. The influence of r on the observed
SDs (thick lines) across nine n levels. The corresponding theoretical SDs
are shown in thin lines.
doi:10.1371/journal.pone.0077429.g002
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has been suggested that an approximation can be obtained by

constructing a likelihood ratio test of H0 versus H1 and then

applying the asymptotic distribution theory [40]. Here, we

consider the probability of rj jw rij

�� ��, where r represents sample

PCC’s under H0. Let p denote the p-value of rij, p can be estimated

as the conditional probability Pr( rj jw rij

�� ��|H0). As H0 represents

an interval of r, it is not possible to directly calculate the

conditional probability using standard statistical theory. To bypass

this problem, we choose an element of H0 which is the most

difficult to reject as an upper bound for the conditional

probability. For positive rij’s, the most stringent H0 to reject is

r = t, while for negative rij’s, it is r = 2t. Thus, the resulting

inference procedure can be formulated as

pƒ Pr ( rj jw rij

�� ��jr~t) ð6Þ

It should be noted that either r = t or the absolute value of r = t
will produce the same p estimate mathematically. Using Eq.(6),

therefore, we can estimate the upper bound (conservative) p-value

(hereafter, referred to as p-value), i.e.,

p~ Pr ( rj jw rij

�� ��jr~t)~ Pr (rw rij

�� ��jr~t)

z Pr (rv{ rij

�� ��jr~t)
ð7Þ

Because the distribution of r under r = t is unknown, Eq.(7) can

not be immediately calculated. Considering the probability

distribution theories discussed in the previous section, we turned

to Fisher’s Z-transformation of r under r = t for estimating p. We

denote the Fisher’s Z-transformation of r, rij and t by zr, zij andzr,

respectively, which can be calculated by Eq.(2). Because Fisher’s

Z-transformation is an increasing function, Eq.(7) can be

equivalently rewritten as

p~ Pr (zw zij

�� ��jzr~zt)z Pr (zv� zij

�� ��jzr~zt) ð8Þ

where z represents the Fisher’s Z-transformation of r by Eq.(2) and

follows a normal distribution z*N(zt,s) as described above.

More intuitively, we set h = t in Eq.(2) to have z*N(0,s), i.e., z is

symmetric around zero. Therefore, the p-value of rij can be

estimated by Eq. (8) as the sum of the upper-tail and lower-tail

probabilities of a normal distribution centered at zero. We note

that this p-value is a conservative estimation as an upper bound

conditional probability.

Simulation Data Generation
We applied the following procedures to generate various types

of simulation data for model evaluation. 1) Sampling n numbers

from the standard normal distribution N(0,1) as the target variable

t, and 2) randomly generating G = 1000 variables

ui~rtzxi

ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
, i = 1,2,…,G, where 0,r,1 is a constant,

representing the population PCC between mi and t, and xi is a

standard normal random variable uncorrelated with t. The

procedure makes sure that t and mi are correlated with a

population PCC of r.

For Simulation Data I, each of the G variables was generated by

using a r uniformly sampled from a range (0,1). By varying n

among N~f5,10,20,50,100,500,1000,5000,10000g, we generat-

ed nine such data sets. For each data set, we aimed to identify the

correlated variables with r.t,

t~f0:1,0:2,0:3,0:4,0:5,0:6,0:7,0:8,0:9g.
For Simulation Data II, each of the G variables was generated

by using a fixed r, and by varying n among N and r among

f0:1,0:2,0:3,0:4,0:5,0:6,0:7,0:8,0:9g respectively, to produce 81

(969) data sets. The Simulation Data II were designed to observe

how significantly an observed SD (s) deviates from the theoretical

values, and how n and r influence the results.

For Simulation Data III, 900 of the G variables were generated

by using a r uniformly sampled from (0,t) and the remaining 100

by using a r uniformly sampled from a sub-range (t,1). At the

same time, noise was added to the data by making xi correlated

with t at a random PCC around 0.2. The introduced noise is

expected to inflate r, possibly leading to more false positives (FP)

than false negatives (FN). Similar to Simulation Data II, 969 such

data sets were generated by varying n and t for algorithm

Figure 3. Cumulative probability distribution of the p-values calculated using different values of SD. A is for the n = 5 & t = 0.2 data
scenario and B the n = 5 & t = 0.8 data scenario.
doi:10.1371/journal.pone.0077429.g003
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evaluation. Compared with Simulation Data I and II, Simulation

Data III is more challenging due to the complex structure and the

added noise.

Simulation Data IV were similarly generated as Simulation

Data III, except using a non-normal Chi-square distribution with

degree of freedom set at 5 and a non-centrality of 1. As with other

cases, 969 data sets were obtained by varying n and t for different

data scenarios. Compared to the other data types, Simulation

Data IV has a long tailed distribution, which is expected to

produce spurious correlation coefficients between unrelated

variables, thus complicating the analysis.

Results

The Properties of the CorSig p-value on Normal Data
We first evaluated the proposed method using Simulation Data

I. After obtaining the observed r’s for all pairwise comparisons of

variables, p-values were calculated using the theoretical SDs from

Eq.(3) for each of the nine data scenarios. Fig. 1A shows the

relationship between the p-value and the observed r for four

scenarios with different t from the n = 20 data sets. The calculated

p-values are inversely proportional to the observed r’s for any t, as

one may predict. It also shows that the p-value at t is 0.5 for all t
scenarios. This is due to the asymptotic normality of the Fisher

transformation of the observed r’s. When r = t, there exists a

probability of 0.5 for an observed PCC being no larger than the

true PCC r = t.

Fig. 1B revealed a strong influence of n on the r vs. p-value

relationship curves. In particular, as n increases, the p-values

become increasingly biased toward the extremes (0 and 1), due to

the gradually decreasing deviation of an observed Z(r) from its

population Z(r). In light of the relationship of SD and n depicted in

Eq.(3), this suggests that the value of SD can greatly influence the

calculation of p-values in the proposed method. Using a p-value

cutoff of 0.05, we identified the variables that were significantly

correlated with the target variable t under various data scenarios,

as shown in Table 1A. The number of variables declared

significant was found to increase as n increased and approached

Table 2. FP and FN discoveries* by MC, CorSig and Zhu’s procedures for different Simulation Data III scenarios.

n = 5 n = 10 n = 20 n = 50 n = 100 n = 500 n = 1000 n = 5000 n = 10000

MC

t = 0.1 725/11 628/6 534/9 448/5 318/2 147/1 118/0 43/0 35/0

t = 0.2 533/25 430/7 303/9 159/6 183/1 76/0 48/0 23/0 18/0

t = 0.3 392/31 287/10 216/4 223/2 92/1 48/1 34/0 23/0 17/0

t = 0.4 273/26 128/36 75/20 67/4 91/1 28/1 38/2 18/1 12/0

t = 0.5 225/9 45/49 66/7 12/20 27/6 35/1 17/0 11/0 4/0

t = 0.6 156/78 27/40 95/8 113/1 24/5 11/5 25/0 7/0 5/0

t = 0.7 71/47 72/5 15/18 72/1 15/8 9/0 19/0 7/0 6/0

t = 0.8 114/12 55/11 5/32 16/11 16/7 4/5 5/2 2/0 2/0

t = 0.9 24/31 21/9 7/17 41/0 20/3 9/0 7/0 7/0 5/0

CorSig (fitted SD)

t = 0.1 575/17 506/8 434/12 365/5 261/2 113/1 76/0 18/0 1/0

t = 0.2 327/44 255/13 186/11 87/8 137/3 58/1 23/1 11/0 3/0

t = 0.3 212/53 110/19 105/9 157/4 56/5 32/1 12/3 12/0 0/0

t = 0.4 116/52 47/50 17/30 18/8 52/2 18/3 15/4 7/3 0/1

t = 0.5 69/29 12/70 10/21 0/29 11/13 19/2 7/2 5/0 1/1

t = 0.6 54/93 6/35 19/17 44/7 7/14 5/8 8/3 2/3 0/5

t = 0.7 20/68 14/20 1/37 23/9 1/18 2/3 3/3 0/1 0/1

t = 0.8 16/44 7/46 7/24 3/33 1/18 0/8 0/7 1/0 0/0

t = 0.9 2/63 1/49 2/38 12/5 4/9 6/1 0/4 0/0 0/0

Zhu’s procedure

t = 0.1 0/100D 1/79 0/71 0/49 0/31 0/17 0/3 0/4 0/4

t = 0.2 0/100D 0/99 0/84 0/82 0/46 0/22 0/26 0/20 2/18

t = 0.3 0/100D 0/79 0/52 1/21 1/30 2/9 2/9 2/1 2/2

t = 0.4 0/100D 0/100D 0/91 0/68 0/42 0/29 0/22 0/19 0/21

t = 0.5 0/100D 0/100D 0/74 0/62 0/38 0/16 0/13 0/8 0/8

t = 0.6 0/100D 0/100D 0/75 0/35 0/42 0/27 0/14 0/16 0/15

t = 0.7 0/95 0/72 0/67 2/24 2/32 2/17 2/6 2/5 3/4

t = 0.8 0/100D 0/85 0/82 0/58 0/45 0/24 0/15 0/6 0/4

t = 0.9 0/100D 0/93 0/78 0/29 0/34 0/18 0/19 0/13 0/13

*Data are presented as FP/FN;
DReaching the maximum of FN.
doi:10.1371/journal.pone.0077429.t002
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the corresponding true numbers when n = 500 or higher,

irrespective of the t. This is consistent with the limitation of

Eq.(3) in that SD can be reliably estimated as a function of the

sample size n only when n is sufficiently large. For a small or

moderate n, Eq.(3) does not hold [9].

Influence of the SD
We next investigated the empirical distribution of SD, especially

when n is small, using Simulation Data II. In each data scenario,

the observed r’s of the 1000 variables share a common r. We

therefore Fisher-transformed the r’s and calculated the SDs for the

fixed r. As shown in Fig. 2, the observed SDs varied with changing

n and r, whereas the corresponding theoretical values obtained by

Eq.(3) did not. Specifically, the observed SDs were always lower

than the theoretical values, approaching the theoretical values only

when n is very large (e.g, .5000) (Fig. 2A). This translates into an

underestimate of significantly correlated variables in data scenarios

with a small n, as obtained for Simulation Data I (Table 1A).

Figure 4. Changes of FP-FN disparity at p-value cutoffs between 0.01 and 0.1 for Simulation Data III. A–F are for scenarios of
t = 0.2,0.4,0.6,0.8 with n = 5 (A), 10 (B), 20 (C), 50 (D), 100 (E) and 500 (F), respectively. Note the different y-axis scales.
doi:10.1371/journal.pone.0077429.g004

Table 3. Results by CorSig using an adjusted SD on Simulation Data III.

FP/FN SD FP/FN SD FP/FN SD FP/FN SD

n = 5 n = 10 n = 20 n = 50

t = 0.2 95/73 0.40 35/37 0.25 20/22 0.15 16/18 0.08

t = 0.4 54/62 0.40 50/49 0.10 25/29 0.05 13/14 0.05

t = 0.6 90/88 0.20 24/24 0.08 17/17 0.10 15/16 0.10

t = 0.8 30/37 0.25 29/25 0.08 19/17 0.08 10/12 0.02

n = 100 n = 500 n = 1000 n = 5000

t = 0.2 9/15 0.08 6/4 0.04 7/5 0.025 3/2 0.012

t = 0.4 11/12 0.08 6/4 0.02 5/4 0.025 4/3 0.012

t = 0.6 11/11 0.03 7/7 0.01 4/3 0.025 2/1 0.005

t = 0.8 7/9 0.02 4/5 0.001 2/2 0.005 1/0 0.001

doi:10.1371/journal.pone.0077429.t003

CorSig
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Table 4. FPR(%)/FNR(%) by MC, CorSig and Zhu’s procedures for different Simulation Data IV scenarios.

t\n 5 10 20 50 100 500 103 5000 104 5 10 20 50 100 500 103 5000 104

MC Zhu’s procedure

0.1 82/10 74/6 72/3 66/1 70/0 73/0 73/0 74/0 73/0 0/97 0/53 0/13 0/7 11/0 46/0 55/0 66/0 67/0

0.2 64/6 59/2 51/2 66/0 70/0 72/0 73/0 73/0 72/0 0/93 0/53 0/42 22/14 35/11 61/7 66/8 70/7 70/7

0.3 52/18 49/7 57/6 69/0 70/1 75/0 74/0 76/0 76/0 0/97 0/53 9/1 41/0 47/0 65/0 68/0 71/0 73/0

0.4 49/10 54/6 62/3 70/1 68/0 72/0 70/0 73/0 73/0 0/88 4/23 31/7 50/4 54/3 65/1 65/1 70/1 71/1

0.5 37/12 47/4 47/2 56/0 69/0 67/0 65/0 67/0 67/0 0/82 9/15 14/2 36/1 55/1 62/1 61/1 65/1 66/1

0.6 53/4 57/2 41/8 71/0 66/1 64/0 67/0 69/0 69/0 0/58 23/4 7/3 58/2 56/1 60/2 64/2 67/2 68/2

0.7 28/11 33/11 56/0 54/1 66/0 62/0 64/0 65/0 65/0 0/82 0/31 37/0 40/0 58/0 57/0 60/0 63/0 64/0

0.8 13/31 41/2 36/3 61/0 54/1 60/0 60/0 57/0 57/0 0/97 12/2 13/2 48/1 44/1 56/1 56/1 56/1 57/1

0.9 21/13 15/23 40/1 57/0 47/0 51/0 49/0 48/0 48/0 0/84 0/64 20/5 46/3 36/4 48/3 46/4 47/4 47/3

CorSig (SD = 0.2) CorSig (SD = 0.5)

0.1 34/39 11/16 9/6 3/5 2/2 1/2 0/0 0/0 0/0 7/62 0/38 0/16 0/26 0/19 0/18 0/17 0/17 0/18

0.2 24/21 14/11 8/6 22/1 21/0 27/0 26/0 26/0 26/0 4/33 0/27 0/29 0/18 0/12 0/12 0/11 0/11 0/12

0.3 19/33 17/16 28/10 38/4 32/1 41/0 41/0 42/0 42/0 4/54 0/40 0/26 1/16 0/19 0/11 0/11 0/11 0/11

0.4 23/21 32/14 43/7 48/1 45/0 45/0 44/0 47/0 48/0 7/42 7/21 15/14 1/2 2/1 2/0 0/1 3/0 3/0

0.5 21/24 32/13 27/6 35/4 49/2 47/0 44/0 47/0 47/0 6/40 12/24 3/14 3/12 16/3 1/0 6/0 9/0 9/0

0.6 38/13 44/7 21/16 56/1 48/3 45/0 49/0 52/0 52/0 20/22 26/18 0/34 32/2 15/6 7/0 13/0 17/0 16/0

0.7 15/22 18/23 44/5 39/4 51/0 45/0 47/0 47/0 48/0 4/36 2/42 26/11 10/6 25/3 15/0 17/0 19/0 19/0

0.8 6/45 31/09 21/9 47/1 37/2 47/0 45/0 42/0 42/0 1/70 15/15 2/13 25/6 12/6 21/0 20/0 17/0 17/0

0.9 15/23 6/31 27/7 43/1 31/3 36/0 33/0 32/0 32/0 6/36 0/58 12/16 23/5 12/5 16/0 14/0 13/0 13/0

Note: Best results are indicated in bold.
doi:10.1371/journal.pone.0077429.t004

Figure 5. CEL stratifications of co-expressed genes in Populus microarray data analysis. A is the simplified flavonoid pathway and B–D are
stratifications of co-expressed genes by CEL for seed genes, CHI (B), F3H (C) and BAN2 (D). In B–D, only flavonoid gene names are given, and 5-CEL
(CEL = 1, 3, 5, 10 and 15) stratifications are shown for each seed gene.
doi:10.1371/journal.pone.0077429.g005
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Figure 6. Identification of genes significantly co-expressed with the Populus phenylpropanoid-flavonoid pathway genes (x-axes) by
the three methods. The analysis was performed with Pearson correlation (A–D) or Spearman correlation (E–H) using t = 0.2 (A,E), 0.4 (B,F), 0.6 (C,G),
or 0.8 (D,H).
doi:10.1371/journal.pone.0077429.g006
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When n is small, the SD is greatly influenced by both n and r, as

shown in Fig. 2B. This indicates that the theoretical SD is not

reliable enough to be adopted in practice.

In light of the observations above, we used the observed SDs for

Simulation Data II (Fig. 2) to train a regression model for SD

estimation based on n and r, using the LOWESS algorithm [41] in

R package STATS. Empirical testing of various smoothing

parameters and polynomial degrees produced essentially the same

model, therefore, the default settings (0.75 and 2, respectively),

were used. We revisited the Simulation Data I and used the

learned model to obtain the LOWESS-fitted SDs for each data

scenario. The fitted SD values were then used to re-calculate the p-

values for each of the nine data scenarios. As shown in Table 1B,

the numbers of variables predicted as significant were much closer

to the true values when compared to those shown in Table 1A,

especially for data sets with n #100. The results suggest that an

improved SD estimation can enhance the performance of the

proposed significance inference.

To further evaluate the influence of SD on the proposed

CorSig, we repeatedly changed the SD and re-calculated the p-

values using the Simulation Data I. The cumulative probability

curves of the resultant p-values under different SDs are shown in

Fig. 3 for two data scenarios. In both cases, as SD decreased, the p-

value distribution became increasingly distorted toward the two

extremes. In particular, when SD#0.001, the p-values were either

close to 1 (for variables with Z( rj j)wzt) or 0 (for variables with

Z( rj j)vzt). This pattern resembles the outcome of simply

comparing the observed r with t using the MC method. In other

words, the MC method can be regarded as an extreme version of

CorSig with a very small SD. Taken together, the results suggest

that SD can be treated as a tunable parameter to improve

significance estimation.

Evaluation on Normal Data with Complex Structure and
Added Noise

We compared CorSig with fitted SDs against the simple MC

method as well as Zhu’s procedure on the Simulation Data III,

designed to contain complex structure and data noise. Significance

was declared by a PCC cutoff (t) alone in MC, along with an

arbitrary p-value cutoff of 0.05 in CorSig, or following the default

parameters in Zhu’s [33]. As expected, the MC method detected a

large number of FP, especially for data sets with a small n, but was

generally effective against FN, with essentially no FN from data

sets with a large n (Table 2). In comparison, CorSig had

considerably fewer FP, but sometimes at the expense of more

FN (e.g., when n is small and t is large). By contrast, Zhu’s

procedure led to more FN than FP in almost all cases (Table 2).

Although the results of CorSig were intermediate between the two

extremes (MC and Zhu’s), its overall bias toward more FP than FN

for data sets with small n and t highlighted the need for additional

tuning.

Based on the idea that SD may be a tunable parameter and that

too small or too large SDs tend to produce very extreme p-value

estimations (Fig. 3), we reasoned that a proper SD may help deal

with complex or noisy data like the Simulation Data III. We tuned

the values of SD to re-calculate the p-values for Simulation Data

III. Based on the resultant p-values, the FP-FN disparities at

different significance cutoffs are summarized in Fig. 4 for scenarios

of t = 0.2, 0.4, 0.6 and 0.8 with a small or moderate n = 5 (A), 10

(B), 20 (C), 50 (D), 100 (E) and 500 (F). The disparities reached the

minimum in all cases at a p-value cutoff between 0.01 and 0.1. The

chosen SD values and the resultant FP and FN at a p-value cutoff

of 0.05 for representative data sets are shown in Table 3. The

results provided experimental support for the suitability of SD as a

tunable parameter to obtain a more balanced significance measure

than those by MC, Zhu’s procedure or with the fitted SD (Table 2).

Because SDs are inversely proportional to n (Table 3), users can

choose values of SD according to the experimental sample size.

We recommend an SD from the range of [0.2,0.4] for data sets

with small sample sizes (n#5) and an SD of [0.01,0.15] for

moderate sample sizes (5,n#500). In general, the performance of

CorSig on large data sets (n$500) appeared less sensitive to SD. In

such cases, an SD can be chosen by the LOWESS regression

presented above or from the range of [0.001, 0.04].

Evaluation on Non-normal Data
We next evaluated CorSig on Simulation Data IV with non-

normal distribution. For these data sets, spuriously large sample

correlation coefficients are expected due to the long tailed data

distribution, and more outliers will be introduced with larger

sample sizes and larger population correlation. This was indeed

the case, based on the overall higher false positive rates (FPR)

obtained by the three methods (Table 4). The MC method showed

a severe bias towards high FPR across all data scenarios, especially

when sample sizes are large. Zhu’s method, on the other hand,

showed two distinct patterns of imbalanced discoveries, biasing

toward high false negative rates (FNR) when samples sizes were

small but exhibiting high FPR with increasing sample sizes. In

comparison, CorSig with SD = 0.2 or 0.5 obtained more balanced

FPR and FNR for almost all the data scenarios. It was also

observed that larger SDs were needed to deal with more outliers in

the cases of larger sample sizes and larger population correlations.

Together, these results confirm that CorSig is more effective than

the previous methods for detecting significant correlations even for

the non-normal data.

Evaluation on Real-world Gene Expression Data
We applied CorSig to a Populus Affymetrix microarray data set

encompassing 20 experimental conditions that examined gene

expression changes of leaves or roots in response to various

perturbations (each with 2 biological replicates) [42]. Raw

hybridization signals were processed using the R package

affyPLM, and m = 5463 probes that passed quality control (QC)

filtering (raw intensities $100 in all 40 samples) were obtained for

co-expression analysis.

We considered the relatively well-studied flavonoid biosynthetic

pathway that gives rise to a suite of secondary metabolites,

including condensed tannins (CTs), that are abundant in Populus

and serve important defense functions [43]. Fig. 5A shows the

simplified pathway. This pathway is known to be under

transcriptional regulation [44], and co-expression of the Populus

genes has been previously reported [43]. Of the nine enzymatic

steps depicted in the flavonoid pathway branch, seven gene

families (nine isoforms), including CHS, CHI, F3H, F3’H, DFR,

LAR and BAN, were represented in the data, in addition to three

upstream steps (PAL, 4CL and C4H, seven isoforms) of the

general phenylpropanoid pathway. We compared CorSig, MC

and Zhu’s for identifying genes that were significantly co-expressed

with each of the flavonoid genes, using a range of t (0.2 to 0.8)

[33]. As Zhu’s method controls FDR [45], the same multiple

testing correction was also applied to the p-values obtained by

CorSig for a fair comparison. In both cases, FDR cutoff was set at

0.01.

Consistent with the findings from the simulation data sets, the

numbers of significantly correlated genes identified by CorSig

were much lower than those from MC but higher than those of

Zhu’s in all cases examined (Fig. 6A–D). Similar results were

obtained using the Spearman correlation coefficient (SCC) in

CorSig
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place of PCC (Fig. 6E–H). Examination of the results using t = 0.6

as an arbitrary cutoff [33] showed that Zhu’s method missed

several co-regulating flavonoid genes. For example, only three

flavonoid pathway genes were found to exhibit significant co-

expression with CHI, while CorSig identified all eight of them,

plus two upstream (PAL4 and C4H1) genes (Fig. 5B). As another

example, the two 4CL isoforms present in our dataset, 4CL1 and

4CL2, are known to be differentially associated with lignin and

flavonoid biosynthesis, respectively [46,47]. For the flavonoid-

related 4CL2, Zhu’s procedure called 15 genes with significant co-

expression, but none associated with the phenylpropanoid-

flavonoid pathway. CorSig identified six genes in this pathway

(PAL3, C4H2, CHS1, CHIL2, DFR2, and F3’H) that showed

significant correlation with 4CL2. No significant co-expression was

found for the lignin-specific 4CL1 by Zhu’s, whereas CorSig

detected eight such genes, including PAL4 and C4H1 and HCT1

that have been previously shown to exhibit preferential expression

in lignifying tissues by multiple research groups [43,48,49]. The

low number of genes co-expressed with 4CL1 was not surprising,

since lignifying tissues were not well-represented in the Populus

dataset used. Nevertheless, the results demonstrate that CorSig-

assisted correlation analysis is effective for identifying biologically

meaningful co-expression patterns.

Another application of the proposed significance testing is that

the p-values obtained from CorSig provide an alternative measure

to PCC for co-expression analysis between the seed and the tested

genes. For each seed gene, we assigned the associated genes into

six co-expression levels (CEL), {0,1,3,5,10,15}, based on the

negative log10 transformed p-values. This in effect stratified genes

of interest according to the statistical support of their co-expression

with the seed, which reflects the PCC strength. The results can be

visualized as a concentric stratification graph centered around the

seed, with co-expressed genes arranged in decreasing order of

statistical support from inner to outer rings (Fig. 5B–D). As shown

for three seed genes from the flavonoid pathway, most of the other

phenylpropanoid-flavonoid pathway members were found to be

co-expressed at the highest CELs (15 and 10). The data also

revealed that the CELs of the co-expressed genes corresponded

reversely to their relative distances to the corresponding seed in the

pathway (Fig. 5A), suggesting different regulation between early

and late pathway genes.

Discussion

In this paper, we have defined a new type of statistical inference

problem for correlation analysis, and proposed a method (CorSig)

to compute p-values for all observed correlations at a user-defined

co-expression threshold (t). CorSig requires only one adjustable

parameter, SD (s). For a sufficiently large sample size n, s is a

function of n and can be calculated conceptually. However, for a

small or moderate n, s is influenced by both n and the true PCC

(r) according to simulation analysis. Based on this observation, a

LOWESS regression model was used to compute s according to n

and r. The model was shown to be effective for normal data sets

with a low level of noise (represented by Simulation Data I) or for

complex data sets with large sample sizes (represented by

Simulation Data III).

For complex data with small sample sizes or a non-normal

distribution, a true s value is not necessary for the p-value

estimation, due to the asymptotic property of Fisher’s Z

transformation. Empirical testing with Simulation Data III and

IV showed that in such cases, a larger s value can be used to

obtain a more balanced result between FP and FN. Choosing a

proper s may be challenging for complex data in practice, which is

beyond the scope of the present investigation and will be addressed

in the future. In practice, it is highly recommended that genomic

data be pre-processed and normalized by appropriate QC

measures to remove data noise and to reduce the occurrence of

spurious correlation coefficients that can affect data inference. In

our experience, skewed data distribution can often be alleviated

after QC filtering. By examining data distribution patterns, the

researchers will be able to select an appropriate SD estimation

means: a fitted SD typically works well for normal data, while a

larger SD is more appropriate for complex or non-normal data

(Table 4).

In theory, TN should have a small observed Z( rj j) while TP

should have a large Z( rj j). Accurate significant measure should

ideally minimize both FP and FN. In practice, however, biological

data are often influenced by non-experimental or non-controlled

factors in such a way that TN could have an r as large as that of

TP and vice versa. In these situations, high rates of FP and FN or

an unbalanced FP/FN discovery would result. We showed that the

use of an arbitrary correlation cutoff tends to produce a large

number of TP due to the lack of significance control, while Zhu’s

method tends to be extremely conservative. The proposed CorSig

provides an optimal solution by maintaining the FP and FN

balance for Simulation Data III with complex structure. When

applied to Populus microarray analysis, CorSig outperformed Zhu’s

for identification of co-expressed genes in the flavonoid biosyn-

thetic pathway. We also showed that p-values obtained by CorSig

can be directly used as a parameter to depict the strength of co-

expression in a concentric stratification graph (see Fig. 5), in lieu of

a significance cutoff, to facilitate an integrative interpretation of

biological and statistical significance of the observed co-expression

patterns.

Despite the usefulness of correlation analysis, there are known

limitations. For instance, performing correlation analysis with

small sample sizes is generally not advisable. PCC, in particular, is

susceptible to the influence of outliers or data noise [50], and

insensitive to non-linear relationships [51]. As demonstrated for

the Populus dataset, CorSig is not correlation method-dependent,

and is extendable to other algorithms, such as the Spearman

correlation (Fig. 6E–H). We envision its application to other

correlation measures as well, such as mutual information [14] and

maximum information coefficient [52]. CorSig is simple to

implement and effective for multiple data scenarios. As such,

CorSig should be applicable to a wide range of applications,

particularly for high-dimensional genomic data.
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