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Abstract: A decline in the Spatial Navigation (SN) abilities has been observed in the course of
healthy aging. Walking is an inseparable part of the navigation process; however, research tasks
overlook this aspect in studies involving seniors. The present study was designed to overcome this
limitation by recording gait parameters during natural environment navigation and to determine gait
indicators that most accurately assign the participants to the proper age category. Thirteen elderly
(mean age = 69.1 ± 5.4 year) and sixteen young women (mean age = 21.5 ± 2.2 year) equipped with
gait sensors were asked to learn a path while walking in a real building (Learning Phase), reproduce
the path (Memory Phase) and reach targets after a 30 min delay (Delayed Phase). The Receiver
Operating Characteristics (ROC) analysis showed that our self-developed Gait Style Change indicator,
that is, the difference in the probability of feet landing between particular SN task phases, classified
the participants into either the elderly or the young group with the highest accuracy (0.91). The
second most important indicator, the Task-Related (step counts in each SN task phase), achieved the
accuracy discrimination of 0.83. The gait indicators, comprising single gait parameters measured
while navigating, might be considered as accurately differentiating older from younger people.

Keywords: spatial navigation; gait; dual-task; aging

1. Introduction

Spatial Navigation (SN) is defined as a complex ability to find the right way in the
environment, plan how to reach a particular destination, and return to the starting point [1,2].
SN recruits a wide range of cognitive functions [2–5] and also involves much of the brain,
mainly the hippocampus, parahippocampal gyrus, prefrontal, and parietal cortices (see
Reference [6] for a review). SN skills deficits, coexisting with changes in the brain regions
mentioned above, are observed in the course of Mild Cognitive Impairment, Alzheimer’s
Disease, or healthy aging [7–9]. SN has been typically evaluated using the multi-staged
computer and virtual reality tasks [10,11] or the real (natural) environment [12,13]. The
virtual reality technology allows studying SN in well-controlled conditions [14], but it also
deprives participants of the possibility to naturally explore the surrounding through walking
which might reduce the ecological validity of these methods [15,16]. Compared to computer
tests, the real environment tasks where a predefined path is required to be retraced seem
to be closer to daily living situations and much more suitable for the seniors unfamiliar
with information technology. Furthermore, when we take into account that SN is based on
two kinds of information: visual and that delivered from the vestibular signals and motor
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efference copies [17], deprivation of the possibility to move in space while navigating, might
result in committing more errors compared to the condition where visual cues are available
and exploration by walking is possible [18].

Considering all the aforementioned reasons, in the present study, we decided to use
the real environment task to investigate the SN ability of elderly people. When reviewing
the contemporary research in this area, we have discovered that the existing measures do
not capture all mental processes engaged in SN (e.g., uncertainty about decisions made on
the path [12]). To fill this gap, we decided to record gait parameters during navigation. The
rationale behind this idea comes from the evidence suggesting that some gait features are
associated with cognitive processes [19–24], including those involved in SN, for example,
executive functions (necessary to plan where to go and how to get there) [25–27] or attention
and working memory [28,29]. Therefore, we claim that particular gait characteristics might
be additional indicators of the real environment SN task performance.

Subtle changes in some gait characteristics are considered as predictors of cognitive
decline [19,20,23,29–31], for example, an increase in stride-to-stride variability while usual
walking and dual-tasking were found to be sensitive to dementia [29]. To date, several
studies have revealed abnormalities in gait parameters in elderly people while walking
at their comfortable speed, that is, a decrease in gait velocity and step length [32] or a
reduction of cadence, step and stride length [33]. In healthy aging faster gait speed coexisted
with better performance in memory, executive function, and global cognition tasks [20].
Furthermore, among older people both spatial (stride length) and temporal (e.g., gait speed,
step count, cadence) gait features as well as greater variability in stride length, swing time,
and stance time were related to deterioration in global cognition as well as in more specific
domains such as memory, language, visuospatial and executive functions [23].

The relationship between cognitive demands and gait in healthy aging has been
also tested with the use of a dual-tasking procedure where a cognitive task (e.g., talking,
counting) is performed while walking (see Reference [28] for a review). In such a condition
seniors (women mostly) demonstrated altered gait parameters compared to young adults,
predominantly decreased gait speed and increased variability in stride velocity [34–36].
Furthermore, attention, and memory turned out to predict gait velocity in the dual-task
condition in persons at the age of 70 and over [19].

Despite the fact that healthy older adults do not typically report serious spatial naviga-
tion problems, they are thought to perform more poorly, compared to young individuals,
in the tasks requiring spatial memory in large-scale environments (see Reference [6] for a
review). Specifically, age-related changes include impaired sequencing of route informa-
tion [37], difficulty in the formation and use of the cognitive map to navigate [38] or inability
to choose a proper strategy to deal with the SN tasks [39]. We believe that these subtle SN
deficits might be well reflected in particular gait parameters registered during navigation.
According to the authors’ best knowledge, this pilot study is the first demonstrating the
effects of combining a real environment SN task and simultaneous gait monitoring.

In order to conduct the research in the ecological conditions, we developed an in-
novative procedure to investigate SN in the real building and equipped the participants
with wearable sensors, previously developed by our team [40], to measure gait parameters
while navigating. The goal of the present study was twofold: to develop a new procedure
to examine spatial navigation ability in the real environment and to identify gait indicators,
collected while navigating that would allow for the most accurate assignment of the partic-
ipants to the proper category (young or elderly). We believed that this approach would
allow us to determine whether our procedure could be sensitive enough to detect even
subtle cognitive changes in the course of healthy aging.

Since elderly and young adults are proved to be different in terms of both SN tasks
performance and gait characteristics [28,32,41–44], a classification analysis of particular
gait features in the present study was conducted. Additionally, to reduce the variability of
the analyzed parameters, only one sex (female) was included. Furthermore, we recruited
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only women characterized by a relatively high level of cognitive functioning to avoid a
dramatic difference in SN task performance between young adults and seniors.

2. Materials and Methods
2.1. Participants

Out of 47 recruited women, 18 were excluded from analysis due to technical prob-
lems with the experimental procedure. The remaining 29 participants were assigned to
two groups by age: elderly and youths (Table 1). Elderly participants were recruited from
among students of the University of the Third Age in Toruń. The younger group consisted
of students of the Nicolaus Copernicus University and randomly selected high schools in
Toruń, Poland. All participants were in good general health, had no history of neurologi-
cal/psychiatric diseases, or any other serious illnesses, and they did not use the medications
affecting the Central Nervous System. They had normal hearing up to 8 kHz (verified by
pure tone audiometry), normal or corrected-to-normal vision, and no self-reported limita-
tions in walking. All women included in the study declared that they took regular physical
exercise (three times a week).

Table 1. The characteristics of participants.

Elderly Participants (n = 13) Young Participants (n = 16)

Age years, mean (SD) 69.1 (5.4) 21.5 (2.2)
Education years, mean (SD) 12.8 (2.7) 13.6 (2.1)
Height centimeters, mean (SD) 160.4 (6.0) 167.0 (5.2)
Weight kilograms, mean (SD) 68.3 (7.3) 62.5 (10.3)

The group of high-functioning elderly subjects was specifically selected to be best
compared to their young counterparts. Their cognitive reserve was characterized by a
high score of general cognitive functioning (MMSE≥27) [45] no sign of severe depression
(BDI ≤ 11) [46], educational attainment (≥11 years of education) [47], intellectual [48] and
social activity in leisure time (or/and having tight social bonds) [49]. Moreover, age groups
did not vary in years of education (U = 74, p = 0.46) and weight (U = 41, p = 0.1), however
their height was significantly different (U = 23, p < 0.01), which is partially the effect of
physiological aging on body characteristics [50]. The study was approved by the Ethical
Committee at the Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum
and was in accordance with the Declaration of Helsinki. Each participant provided written
informed consent to take part in the study after the procedure had been fully explained.

2.2. Study Design

The study protocol comprised two sessions, administered within a day and separated
by a ca. 30-min break. First, each participant completed questionnaires concerning her
health condition and habits, and then the MMSE and BDI were administered. During the
second session, the Navigation Task (NT) was performed. Each session lasted ca. 1.5 h (with
short breaks) and the duration of the session was adjusted to the participant’s individual
work pace.

2.3. Navigation Task (NT)

The NT was conducted in the complex multi-level building of the Faculty of Physics,
Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Poland. Such a
complex building was selected to reduce participants’ tendency to rely on cues available
directly in the visual field (see Reference [51]). Each participant declared that they had never
visited the place where the NT was conducted and were not familiar with the building’s
route network.

The NT was adapted from Koening et al. [13] studies and consisted of three phases:
(1) Learning Phase (LP), (2) Memory Phase (MP), and (3) Delayed Phase (DP). During the
LP phase the participants were led by the experimenter along a predefined path containing
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10 target locations. On the ground floor there were four objects (elevator, bar, whiteboard,
photocopying shop), on the first floor there were two locations (columns, the poster on the
wall), on the second floor there were two objects (telephone, computer room), and in the
basement, there were two objects (tables). The experimenter provided each target’s name
and the floor where it was located. Participants’ task was to remember each target and
path leading to it.

Immediately after the LP, the MP was administered. Participants reproduced the
previous presented path and pointed at the target locations along the way. The DP phase
took place after a 30-min-break and required finding 10 targets, given one by one, and
reaching them in the shortest possible way. These targets had been already used during
the LP and MP and their order was counterbalanced across the participants. In order to
guarantee their safety and to control the task performance, the experimenter followed each
participant at the 2-m distance during both the MP and the DP phases. In case of going
off the track participants were given a guiding cue [13]. During the task participants were
asked to maintain their natural walking pace. The total path length was approximately
385 m for each phase.

2.4. Gait Measurement

While performing the NT each participant was equipped with two inertial measure-
ments units (AltIMU-10 v4). The sensors were connected to custom-made integrated board
that stored the data on SD card. Sensors were configured for acquisition of 6 degree-of-
freedom data – three axis acceleration and angular rate (dynamic bandwith: ±8 g, ±2000°/s
respectively) at 400 Hz sampling rate. Units were attached to the midpoint of the left and
right metatarsi with elastic clamping bands. The inertial data were recorded separately for
each foot and stored on an internal SD card. The process of data acquisition was managed
and monitored online via the mobile phone application.

2.5. Gait Data Preprocessing

The motion sensors enabled the raw accelerometer data collection that was used to
compute the traversing path of the subjects. An exact three-dimensional reconstruction
of the feet movement was performed by the deduced navigation (DN) algorithm that
integrated sensory readings (motion sensors attached to the feet). Technique zero-velocity
update (ZUPT) was exploited to overcome sensor drift and measurement error [52]. The
above operations allowed to determine a set of feet positions at the end of the stride phase,
which is considered to be a series of heading normalized foot flat positions in relation to
step starting position, further called Feet Landing (FL). This procedure enabled isolation
of the individual gait parameters. Each of them was obtained separately for each leg (left,
right) and phase of the NT (LP, MP, DP).

2.6. Gait Indicators

The single gait parameters (e.g., step count, length, time, and width as well as path
length) were combined into several indicators. This approach was used because the classi-
fication analysis based on individual gait parameter did not bring a satisfactory solution
(the mean significance of all single gait parameters was below 0.1). The gait measures
were grouped into the following categories based on the literature: Task Related (parame-
ters that correspond to the quantification of solving navigation task; step count and path
length separately in each NT phase [16,53]); Gait Variability (standard deviations of spatial
and temporal gait features, such as step length and step time [54] separately in each NT
phase); and Mean Pace (mean values of step length and step time separately in each NT
phase [28,55–57]).

A novel indicator, developed specifically for our procedure, called Gait Style Change
was used, as well. Gait Style, that is, a measure of the probability of foot landing when
performing particular phases of the NT, is the number of steps of a given length and
width. A graphic representation of Gait Style is shown in Figure 1. Consistently with the
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above definition, in the current work, the Gait Style Change is conceived as the difference
in the probability of feet landing between particular phases of the NT. To estimate the
probability of feet landing in each NT phase (Gait Style) we used multivariate Kernel
Density Estimation with Scott’s rule for optimal bandwidth matrix selection [58]. That
calculation allowed defining the Feet Landing Probability Distribution Function (FL-PDF).
Then, the comparison of FL-PDF across the subjects and the NT phases was exploited by
the Earth Mover Distance algorithm (EMD) [59]. That analysis defines a distance measure
between two probability distributions for bivariate probabilities. It allows estimating the
minimum cost of transforming one probability into another by comparing all of the moments
of the density function and summarizing them as one distance value of Gait Style Change.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Longitudinal step length [m], left leg

0.5

0.0

0.5

1.0

1.5

2.0

La
tit

ud
in

al
 st

ep
 le

ng
th

 [m
]

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Longitudinal step length [m], right leg

0.5

0.0

0.5

1.0

1.5

2.0

Figure 1. The example of Feet Landing Probability Distribution Function (Gait Style). This particular dataset includes three
local maxima that depict three distinctive points of feet landing (based on the number of strides with particular length, and
width). The shapes of the probability estimation consist of every subject but vary in the position of statistical moments and
dispersions around those, resulting in different distribution in each task phase and across the subjects. We can see that the
most frequent step length for the left foot was 1.5 [m] with a step width of 0.8 [m].

2.7. Data Analysis

Gait measurements of each category were combined into a single augmented indica-
tor using the Principal Component Analysis (PCA). This approach allows for the correct
comparison of the different gait parameters categories without being influenced by the
dimensionality in each group (the number of definable parameters in each category is varied,
see Table 2). During the generation of factor score for each created indicator, no rotation
was used.

Binary classification task (target variable was the age group) was conducted using
a support vector machine (SVM) classifier with linear kernel (C = 1.0). Each augmented
indicator was tested separately using 5-fold cross-validation. To carry out the classification
evaluation the Receiver Operating Characteristics (ROC) analysis was used. The ROC
was performed to validate the procedure and find the best-fit age classification indicator,
minimizing the number of misclassifications [60]. Moreover, the area under curve (AUC) of
the ROC analysis was used to determine the probability of correct classification, where “1”
was a theoretically perfect distribution to our age groups and “0.5” was a chance level. The
accuracy of discrimination is considered to be on a low level when the value is between
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0.5 and 0.7, the range between 0.7 and 0.9 is considered as a moderate level, and the value
above 0.9 is a satisfactory point of high accuracy for group discrimination [61].

Table 2. The results of the Principal Component Analysis (PCA) analysis for each group of gait
parameters (indicators).

Indicator Gait Parameters Coefficients

Gait Variability SD of step length (MP) −0.49
SD of step length (LP) −0.45
SD of step time (DP) −0.35
SD of step time (MP) −0.35
SD of step time (LP) −0.30

Mean Pace Mean of step length (MP) −0.61
Mean of step length (LP) −0.46
Mean of step length (DP) −0.45

Task-Related step count (MP) 0.80
step count (DP) 0.48
step count (LP) 0.33

Gait Style Change FL-PDF phase substraction (LP-MP) 0.87
FL-PDF phase substraction (MP-DP) 0.40

Note: FL-PDF, Feet Landing Probability Distribution Function; LP, learning phase of Navigation Task;
MP, memory phase of Navigation Task; DP, delayed phase of Navigation Task; NT, Navigation Task.

3. Results

There were 76,534 feet movements collected from both young adults (n = 16) and
older people (n = 13), whereas 58,581 ( 76%) were classified as being part of the continuous
walking routine (the main component of step landing probability distribution). Each
participant performed 2570 ± 282 steps on average and the number of steps for each
procedure was 856 ± 17. Therefore, the criterion of collecting >700 steps for proper gait
measurement [56] was achieved. Since the information derived from the left-foot and
right-foot sensors was not significantly different, only the parameters from the right foot
were included in further analysis.

The PCA results with the factor loadings > 0.3, obtained separately for each indicator,
are presented in Table 2. The Task-Related indicator received the highest inputs from the
step counts in each phase of the SN task, the Gait Variability got the biggest loadings from
both the standard deviations of step length and the step time in all the NT task phases. The
Mean Pace was mostly loaded by the mean of step length in each task phase and the Gait
Style Change indicator received the highest inputs from the FL-PDF differences between
the LP and MP and between the MP and DP of the SN task. The ROC analysis (Table 3)
revealed that only one indicator Gait Style Change) classified the participants into either
elderly or young group with high accuracy (AUC = 0.91). The accuracy discrimination
on the moderate level (AUC = 0.83) was achieved by the Task-Related indicator whereas
the AUC values for the remaining groups of gait characteristics corresponded to a low
discrimination ability.

Table 3. Discriminative accuracy of each group of gait parameters (indicators).

Indicator Area Under Curve Confidence Interval
Lower Upper

Gait Style Change 0.91 0.81 1.0
Task-Related 0.83 0.70 0.95
Mean Pace 0.63 0.47 0.81
Gait Variability 0.51 0.34 0.68
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4. Discussion

In the current work, we demonstrate a new procedure for investigating the SN in the
real world. The novelty of our approach consists in combining a multi-stage task with gait
features collected while navigating. Similarly to previous research [16,62], our SN task
comprised subsequent phases differing in terms of cognitive load: the initial phase when
participants learn the path by walking simultaneously with an experimenter is relatively
easy whereas the other stages that require recalling the location of objects and retracing the
path to them demand more cognitive effort. According to our knowledge, in none of such
studies gait indicators have been determined.

The studies with the use of the dual-task paradigm indicate that the task difficulty
might affect gait parameters [63]. Therefore, more complex tasks would cause a greater
change in gait features than simple ones [19,64]. Congruently, we expected that the subse-
quent phases of our SN task and the amount of cognitive resources allocated to them might
be reflected in particular gait parameters. The differences between both the SN performance
and the gait characteristics could be especially observed among seniors demonstrating
even subtle signs of cognitive decline [65].

In this study, the classification analysis was applied to assign elderly and young people
to the proper age category based on gait indicators (see Table 3). This approach allows
extracting the gait indicators sensitive to a subtle cognitive decline in healthy aging (our
elderly group included women with high cognitive functioning only). The accuracy of each
gait indicator in the classification of elderly and young people into the appropriate age
category is discussed below.

4.1. Gait Variability and Mean Pace

The gait indicators that have been used in previous research were determined in our
study and their accuracy in the classification of participants into particular age groups was
evaluated. As a result, the Gait Variability turned out to have the lowest classification value.
Despite that this indicator included the largest number of gait parameters, it classified
participants into the proper age group by only random efficiency (51%). This effect is
congruent with the literature and might result from large individual differences in the
study samples (regardless of the chronological age) [29,41,66,67]. Specifically, participants
are diverse in terms of a history of falls [66,67], the characteristics of the musculoskeletal
system [41] and gait speed variability [29]. Furthermore, in these studies, various tasks have
been applied, with different distances to be covered [44,68], and also various definitions
of gait variability have been accepted [29,68]. The group recruited for the present study
was not exceptional in these regards, being heterogeneous in terms of the aforementioned
factors, which might explain a low classification value of our Gait Variability indicator.

The Mean Pace, based on the mean step length (Table 2), turned out to be a slightly
better classifier with accuracy of 63% (Table 3). Previous evidence has demonstrated a de-
crease in step length with aging, especially in those persons who have experienced falls [69],
which suggests that this gait parameter might reflect changes in the musculoskeletal system.
Step length is also thought to be associated with gait speed [70–72], compensatory strategy
in walking after falls [73], or problems in keeping balance [74]. Furthermore, the differences
(or a lack of them) in gait speed (and possibly also in step length) between seniors and youth
might be dependent on the experimental procedure, for example, walking in preferred or
fast tempo, or without any control of it [75]. Therefore, following other authors [76] and
based on our preliminary results we recommended taking into account various parame-
ters that could potentially affect the step length while defining its relationship with the
aging process.

4.2. Task-Related Indicator and Gait Style Change

In the present study, the Task-Related indicator showed a high, albeit not the highest,
accuracy of the age-group classification (83%, Table 3). This gait indicator received the
highest inputs in the PCA from the number of steps in each phase of the SN task (Table 2).
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Despite that path length was also investigated. Both aforementioned gait measures have
been previously used to determine navigation accuracy [16,53]. Consistently with Tolman’s
theory, a cognitive map is defined as a neural system for coding the representation of the
explored environment in a third-person (allocentric) perspective [77]. Tolman’s observations
led to the conclusion that the construction of a cognitive map allows for flexible behavior
and use of alternative routes and shortcuts to the destination when the standard path is
blocked. In our SN task, the number of steps may reflect the utility of this cognitive map
in remembering the route. Participants while retracing the track and searching for the
landmarks could get lost; hence, a greater number of steps occurred. Thus, the number of
steps might be a valuable gait measure to differentiate between persons who deal with the
spatial navigation tasks more or less successfully, for example, young adults and seniors, as
it was demonstrated in our study.

Although the Task-Related indicator turned out to be quite a good classifier, we were
not completely satisfied with the obtained solution. Fortunately, our procedure provided
an opportunity to observe changes in gait parameters between particular stages of the
SN task, which encouraged us to develop an additional gait indicator, that is, the Gait
Style Change. It proved into classify our participants to particular age groups with the
highest 91% accuracy (Table 3). Considering that gait is a complex and multidimensional
process [25], we decided to build a measure that might reflect the whole stride. In our
classification analysis, we used the Probability Distribution Function, which proved to
provide the parameters of higher accuracy compared to the linear discriminant analysis [78].
We estimated the frequency of particular step types for each SN task phase based on their
length and width (the variability of both the gait parameters proved to explain variance in
gait performance in elderly people [55]). The Gait Style Change was obtained by subtracting
the probability distribution of feet landing position between each phase of the NT. This
subtraction allows investigating gait changes simultaneously in three dimensions, which
practically means that one measure carries more information than an individually collected
parameter. What is worth mentioning, this procedure through subtraction also eliminates
individual differences in gait resulting from physical characteristics such as weight, height,
or motor skills. For all the above reasons, the Gait Style Change might have turned out to
be the most accurate in the classification of our participants into the proper age category.

5. Conclusions and Future Directions

The present work has showed the preliminary results of testing the accuracy of a multi-
staged real-world spatial navigation task with simultaneous acquisition of gait parameters.
The applied classification analysis revealed that two gait indicators, that is, the Task-Related
one encompassing step count (in three separated phases of the navigation task) and the Gait
Style Change built on subtraction of foot landing probability (again: in particular phases of
the task) could classify young and senior women into the adequate age categories with the
highest accuracy. Thus, we might carefully conclude that not single gait parameters but
their compilations are better classifiers of the above groups. The obtained results (with 83%
and 91% accuracy in classification to the group) are very promising enough that we may
recommend considering them for investigating navigation abilities in natural environment
tasks, especially to capture even subtle SN deficits like those observed in healthy aging.

Although in the existing studies in this area the authors have not taken into account the
gait indicators composed of several characteristics, they have highlighted the importance of
gait dynamics, that is, changes in its parameters over time. It has been shown that the gait
analysis based on particular step characteristics and the dynamics of their changes could be
a more precise indicator of task performance than the averaged results of gait parameters
and also allows for accurate differentiation between children and adolescents, young and
elderly, or those with and without a history of falls [79]. Therefore, we recommend building
such indicators in further studies, each time when gait parameters are used to measure
cognitive task performance. The proposed procedure of investigating navigation in the
real environment might be also used in future studies to classify clinical groups, especially
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those presenting spatial perception and memory deficits (e.g., patients with Mild Cognitive
Impairment or Alzheimer’s disease).
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