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Intrinsically disordered proteins (IDPs) have been paid more and more attention over the
past decades because they are involved in a multitude of crucial biological functions.
Despite their functional importance, IDPs are generally difficult to investigate because they
are very flexible and lack stable structures. Computer simulation may serve as a useful tool
in studying IDPs. With the development of computer software and hardware,
computational methods, such as molecular dynamics (MD) simulations, are popularly
used. However, there is a sampling problem in MD simulations. In this work, this issue is
investigated using an IDP called unique long region 11 (UL11), which is the conserved
outer tegument component from herpes simplex virus 1. After choosing a proper force field
and water model that is suitable for simulating IDPs, integrative modeling by combining an
enhanced sampling method and experimental data like small-angle X-ray scattering
(SAXS) is utilized to efficiently sample the conformations of UL11. The simulation
results are in good agreement with experimental data. This work may provide a
general protocol to study structural ensembles of IDPs.
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INTRODUCTION

It has been recognized that a large segment of the human proteome comprises intrinsically
disordered proteins (IDPs) that lack stable secondary and tertiary structures under physiological
conditions (Colak et al., 2013; Kulkarni and Uversky, 2019). IDPs play important roles in a
multitude of crucial biological functions despite their lack of a stable structure, such as cell cycle
regulation, molecular recognition, and signal transduction (Dunker et al., 2005; Uversky et al.,
2005). According to previous work, IDPs are involved in the majority of human cancer
(Iakoucheva et al., 2002) and many chronic diseases like cardiovascular disease (Cheng
et al., 2006), neurodegenerative diseases (Uversky, 2009; Uversky, 2014), and type 2 diabetes
(Du and Uversky, 2017).

Although researchers continue to discover the functional importance of IDPs, it remains difficult
to explore the structure-function relationship because getting the high-resolution structures of IDPs
remains elusive. Since an IDP is generally not stable in one conformational state, these classical
technologies of structural biology, including X-ray crystallography and cryo-EM, cannot determine
its atomic-resolution structure. Alternatively, structural information on the ensemble average of the
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IDP is available by techniques like nuclear magnetic resonance
(NMR) (Dunker and Oldfield, 2015), small-angle X-ray scattering
(SAXS) (Bernado and Svergun, 2012), and For̈ster resonance
energy transfer (FRET) (LeBlanc et al., 2018).

In order to obtain structural details of IDPs, atomistic molecular
dynamics simulation is a useful and complementary method for
illuminating the molecular nature of IDPs’ conformational
ensembles because it can provide spatial and temporal resolution
unavailable from experiments (Potoyan and Papoian, 2011; Burger
et al., 2014; Granata et al., 2015; Bhowmick et al., 2016). Despite the
significant progress made, a sampling problem remains in MD
simulations of IDPs. The conformational space of an IDP is generally
very large, so conventional MD simulations at a timescale of
microseconds (μs) cannot capture all the states adequately. To
tackle this problem, many enhanced sampling methods have
been developed, which achieve good sampling by modifying
potential energy function (Hamelberg et al., 2004) or increasing
the temperature of barrier regions (Zhang et al., 2003; Hu et al.,
2012). In recent years, a new kind of sampling techniques has been
proposed, which are built on iterative multiple independent MD
(MIMD) simulations (Harada and Kitao, 2013, Harada and Kitao,
2015; Shkurti et al., 2019; Yuan et al., 2020; Zhang and Gong, 2020).
Such a method generally contains many cycles, and each cycle
consists of a number of short MIMD simulations starting from
selected seed conformations. The sampling efficiency would depend
on the strategy of selecting seeds, and different criteria have been
tried (Harada and Shigeta, 2018).

Many studies have shown the possibility of combining
experimental data and computational simulations to interpret
structural dynamics of large biomolecules in a solution that is
called integrative modeling (Braitbard et al., 2019). There are
various integrative modeling techniques for the interpretation of
different structural data (Bonomi et al., 2017; Saltzberg et al., 2019;
Orioli et al., 2020), which can be divided into two categories: refining-
while-sampling and the screening-after-sampling (Zhang et al., 2015).
A refining-while-sampling method directly adds an extra pseudo
energy term based on the experimental data and then a
conformation or an ensemble is simulated by optimizing the
energy (Zheng and Tekpinar, 2011; Bjorling et al., 2015). In a
screening-after-sampling method, a structure pool of the
biomolecule is firstly sampled without experimental restraints, and
then a reweighting method acts on these conformations to optimize
their weights in order to fit the experimental data well (Bottaro et al.,
2020). An ensemble containing a small number of conformations
selected from the pool could be determined (Bernado et al., 2007;
Curtis et al., 2012).

In this work, we propose a general strategy to study the
conformations of IDPs. After choosing a suitable force field and
water model for simulating IDPs, an integrative modeling
procedure combining an enhanced sampling method based on
iterativeMIMD and SAXS data is used to sample conformations of
IDPs efficiently. We present a case study on an IDP called unique
long region 11 (UL11), an RNA-binding protein that is one of the
conserved outer tegument components from herpes simplex virus
1 (HSV-1) (Bowzard et al., 2000; Metrick et al., 2020).

HSV-1 contains a unique tegument layer sandwiched between the
capsid and lipid envelope, including 24 tegument proteins

(McLauchlan and Rixon, 1992). UL11 is the smallest tegument
protein with only 96 amino-acid residues (MacLean et al., 1989;
Bowzard et al., 2000). UL11 and its homologs have been found to
play crucial roles in efficient viral replication (MacLean et al., 1992;
Baird et al., 2010) and tegument assembly (Owen et al., 2015).
However, the mechanistic understanding of its role in these
processes is limited due to the lack of knowledge of its
biochemical and structural properties. A recent article
(Metrick et al., 2020) has suggested that UL11 is an IDP in
solution, which can undergo liquid–liquid phase separation
(LLPS) in vitro. Analysis of experimental SAXS data showed
that the protein is highly dynamic. Here, we aim to construct an
atomic structural ensemble of UL11 that is in agreement with
the available experimental data.

MATERIALS AND METHODS

An Initial Atomic Model of UL11
The UL11 construct used in this work is called UL11-Stll (Metrick
et al., 2020), which is the UL11 sequence (96 residues) plus a small
C-terminal Strep-tag II (Stll) including eight residues
(WSHPQFEK). We used this 104-residue construct, on which
the SAXS experiment was conducted. In the following, we call this
construct UL11 for simplicity.

According to a prediction from the FoldUnfold server (http://
bioinfo.protres.ru/ogu), many residues of UL11 are predicted to be
disordered, except for some N-terminal residues that are natively
folded (Metrick et al., 2020). We predicted an atomic model of
UL11 using the tFOLD server (https://drug.ai.tencent.com/
console/cn/tfold) (Figure 1). There are some β-strands at the
N-terminus (residues 11–14, 17–20, 24–27, 39–41, and 44–47),
while the other regions are disordered till the C-terminal end. The
tFOLD model is consistent to the prediction of the disorder, so we
used it as a starting structure for simulations.

Simulation Details
In this work, all-atom conventional MD (cMD) simulations and
accelerated MD (aMD) simulations were conducted using the
Amber20 package.

Conventional MD (cMD) Simulation
It has been recognized that, in MD simulations using those
traditional force fields and water models, IDPs may become
over-compact. Therefore, combinations of new force fields and
water models have been proposed to address this issue (Kuzmanic
et al., 2019). In this work, we used the A99SB force field in
combination with a 4-point OPC water model (Izadi et al., 2014).

FIGURE 1 | An atomic model of UL11 predicted by tFOLD.
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It has been reported that this A99SB/OPC combination is suitable
for simulating conformations of IDPs (Shabane et al., 2019).

The system was built via the LEaP module (Case et al., 2005).
The OPC waters (Izadi et al., 2014) were added to a truncated
octahedral box with a minimal distance of 10.0 Å between the
solute and the box boundary. 102 Na+ and 98 Cl− ions were added by
replacing water molecules to balance the charge on the system and
bring the salt concentration to about 100mM NaCl. The box size is
1.66× 106 Å3, with 205,909 atoms in total. To remove bad contacts, the
waters and ions were initially minimized for 2,000 steps using the
steepest descent method for the first 1,500 steps and then the
conjugate gradient for the last 500 steps, with the position of
protein fixed (force constant was 500 kcal mol−1 Å−2). In the
second energy minimization, the restraints on the protein were
removed. This stage was conducted for 2,500 steps, using the
steepest descent method in the first 1,000 steps and then the
conjugate gradient algorithm for the last 1,500 steps. After that,
a heat-up MD was run at a constant volume. The system was
heated from 0 to 300 K for 100 ps with a weak restraint of
10 kcal mol−1 Å−2 on the solute. A free MD simulation of
150 ns was carried out under the NPT condition utilizing the
GPU-accelerated pmemd.cuda code. The temperature was
regulated using the Langevin dynamics with a collision
frequency of 1.0 ps−1 (Pastor et al., 1988). Pressure was
controlled with isotropic position scaling at 1 bar with a
relaxation time of 2.0 ps. All the bonds involving hydrogen
atoms were constrained using the SHAKE algorithm (Ryckaert
et al., 1977). A 2 fs integration step was used. Van der Waals
interactions outside the cutoff distance were approximated via a
continuum model (vdwmeth � 1) (Izadi et al., 2014; Izadi and
Onufriev, 2016). The long-range electrostatic interaction was
calculated using the PME method (Muller et al., 1996) with a
10 Å cutoff for the range-limited nonbonded interaction.

Accelerated MD (aMD) Simulation
The aMD (Muller et al., 1996) introduces a boost potential,ΔV(r),
to the original potential energy V(r) when the latter is below a
threshold energy E:

ΔV(r) �
⎧⎪⎪⎨⎪⎪⎩

0, V(r)≥ E,

[ (E − V(r))
α + (E − V(r))]

2

, V(r)＜E.
(1)

where α is a factor that tunes the depth of the modified energy
basins. Boosting potentials were applied to both the total potential
and the individual dihedral energy term. The aforementioned
150 ns cMD simulation was used to estimate the aMD
parameters. In the cMD trajectory, the average total potential
energy was −641,138 kcal mol−1 and the average dihedral energy
was 1,068 kcal mol−1. UL11 has 104 residues and the simulated
system consists of 205,909 atoms. The following parameters were
set based on the above information:

E (tot) � −641,138 kcal mol−1 + (0.2 kcal mol−1 atom−1 ×
205,909 atoms)≈−599,956 kcal mol−1

α (tot) � 205,909 atoms × 0.2 kcal mol−1 atom−1

≈41,182 kcal mol−1

E (dih) � 1,068 kcal mol−1 + (3.5 kcal mol−1 residue−1 × 104
residues)≈ 1,432 kcal mol−1

α (dih) � 0.2 × (3.5 kcal mol−1 residue−1 × 104 residues)≈
73 kcal mol−1

With these parameters, a 150 ns aMD simulation was
conducted. All the other parameters were the same to the
aforementioned cMD simulation.

The Strategy of Integrative Modeling
We have previously developed a method called SAXS-oriented
ensemble refinement (SAXS-ER) (Cheng et al., 2017), and the
flowchart is as follows (Figure 2). The code is available at https://
github.com/pcheng27/SAXS-ER/tree/v1.1.

1) Set up the system starting from an initial structure of the
biomolecule, and perform a preliminary simulation. Any
simulation method can be utilized, such as atomistic MD
simulations, enhanced sampling techniques, or coarse-grained
modeling. In this work, we are studying an IDP, and the
sampling is challenging. Therefore, aMD simulations are
carried out using the most updated code of pmemd.cuda in
the Amber20 package.

2) Calculate the scoring function and obtain an ensemble of
conformers with the best score. The number of conformers
in the ensemble is Nes. In this work, the scoring function is χ2
between the calculated SAXS profile of the ensemble and the
experimental SAXS profile.More details will be introduced in
the “Ensemble Optimization Method” section.

3) Starting from the Nes conformers selected by scoring func-
tion, Nsim (�Nes)-independent simulations are carried out.
Multiple independent short-time simulations may achieve a
better sampling than a single long-time simulation. All the
trajectories are combined.

4) Repeat steps 2 and 3 for N cycles. Analyze all those cycles
with the saturated scoring function.

SAXS Data
The SAXS data of UL11 were taken from SASBDB (www.sasbdb.
org) with the ID SASDEX4. All the experimental details and
analyzed results can be found in the database and the published
article (Metrick et al., 2020). In this work, we took the data points
with q from 0.009 to 0.206 Å-1 (q � 4π sin θ/λ, where 2θ is the
scattering angle and λ is the wavelength of 1.246 Å), and the
signal–noise ratios in this range are essentially larger than 2.0
(Figure 3A). The radius of gyration (Rg) of the protein was
estimated to be 24.1 ± 1.7 Å by Guinier analysis using the autoRg
program in the ATSAS package (Franke et al., 2017). The pair
distance distribution function (PDDF) was calculated by GNOM
(Semenyuk and Svergun, 1991) using the maximum dimension
(Dmax) of 89.0 Å as input. The normalized PDDF is asymmetrical
and tailed off to a large distance (Figure 3B), which resembles
the shape of an elongated ellipsoid (Mertens and Svergun, 2010).
Therefore, the protein should be able to take extended
conformations in the solution that can be disordered. The
Kratky plot (Figure 3C) also supports that the protein is an
IDP with partially folded regions.
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CRYSOL (Svergun et al., 1995) was used to compute the
theoretical SAXS profile of a known atomic structure in PDB
format, and then autoRg was run on the SAXS profile to
estimate the Rg of the structure. The CaPP software, available
at github.com/Niels-Bohr-Institute-XNS-StructBiophys/CaPP, was
used to calculate PDDF from these PDB files.

Ensemble Optimization Method
A structural ensemble was obtained by the ensemble optimization
method (EOM) (Bernado et al., 2007). EOM was used to select a
small number of representative conformations from a pool
containing lots of conformations of UL11 in order to fit the
experimental SAXS data. The scoring function of EOM is as follows:

χ2 � 1
K − 1

∑K
i�1

[μI(qi) − Iexp(qi)
σ(qi) ]2

, (2)

where K is the number of data points in the SAXS profile and σ(q)
are experimental errors. For every conformation in the ensemble,
its theoretical scattering profile is computed. I(q) is the average of
them, and μ is a scaling factor.

A new version of EOM called EOM2 (Tria et al., 2015) was used to
compute the scoring function (Eq. 2) and pick the ensembles. In the
original SAXS-ER using EOM2 (Cheng et al., 2017), the program
automatically determined the ensemble size in each cycle that was
generally small. An IDP should be represented by an ensemble
containing more conformers than folded proteins. Therefore, in this
work, we used an option of fixing the ensemble size to a relatively large
number like 24 when running EOM2 in each cycle.

RESULTS AND DISCUSSION

aMD of UL11 without Integrating the SAXS Data. Three
independent aMD simulations, each of 150 ns, were conducted.

We converted a trajectory into sequentially individual PDB files;
then CRYSOL and autoRg were run to obtain Rg of each atomic
structure as described in the “SAXSData” section. The initial structure
of UL11 (Figure 1) is extended with Rg of 35.2 Å. In the first 70 ns of
the aMD simulations, the protein is equilibratingwith a clear tendency
of Rg decrease (Figure 4A), and then the Rg values essentially fluctuate
between 21.0 and 27.5 Å in the remaining simulations. According to
the Rg distribution of the conformations in the last 80 ns (Figure 4B),
they seem to show agreementwith the experimental Rg of 24.1± 1.7 Å.
We calculated the PDDF of each conformation in the last 80 ns of one
trajectory and then plotted the ensemble-averaged PDDF (Figure 4C).
The shape of the three ensemble-averaged PDDF curves is obviously
not similar to that of the experimental PDDF (Figure 3B). That is to
say, the aMD simulations at the time scale of 150 ns cannot adequately
sample solution conformations of the IDP, which is the cause for the
discrepancy between the simulated and the experimental PDDF. A
straightforward way is to simply run longer simulations so that the
protein could expand again and sample diverse conformations.
However, it is not sure how long would be long enough to give a
representative picture of the IDP. Therefore, we performed integrative
modeling of UL11.

Integrative Modeling of UL11. Starting from the same
structural model (Figure 1), we conducted integrative
modeling of UL11 using the protocol introduced in Figure 2.
A cycle consisted of Nsim � 24 independent 200 ps aMD
simulations using A99SB/OPC. In each aMD simulation, a
conformation was recorded every 1 ps, so a structural pool
containing 4,800 conformations was generated in one cycle. By
fitting the experimental SAXS data of UL11, EOM2 selected an
ensemble with the size of Nes � 24 from the pool. Starting from
these conformations, the next cycle of multiple independent
simulations was run. We carried out 30 cycles, so the total
simulation time was 144 ns (200 ps × 24 aMD × 30 cycles).

The χ2 and the average Rg (<Rg>) of the ensemble are plotted
against the cycle number (Figure 5A). The initial model of UL11

FIGURE 2 | Flowchart of integrative modeling that is a modification from Figure 1 in (Cheng et al., 2017).
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is very extended (Figure 1); the EOM ensemble generated at cycle
0 cannot fit the experimental SAXS data well, with a χ2 of 2.3. It is
found that χ2 decreases relatively fast in the first eight cycles
(from 2.3 to 1.0), and then it slowly converges to about 0.9 after
the 10th cycle (Figure 5A, circle). When looking at the time
evolution of the <Rg> (Figure 5A, up-triangle), it converges to
25.5 Å after 12 cycles, that is in good agreement with the
estimated Rg (24.1 ± 1.7 Å) from the experimental SAXS data
(Figure 3A). Therefore, we plotted the calculated SAXS profile of
the ensemble at the 12th cycle and its error-weighted residual

(Figure 5B). The residuals are defined as (Iexp(q) − Icalc(q))/σexp(q),
corresponding to the difference between the experimental and the
computed intensities weighted by the experimental uncertainty
(Carter et al., 2015; Trewhella et al., 2017). The residual difference
plot is flat, which indicates that the results are in good agreement
with the data. The inset is the normalized average PDDF of the
ensemble, which has a similar shape to the experimental PDDF
(Figure 3B).

To characterize conformations consistent with the SAXS data,
we analyzed the Rg distribution of all the ensembles after the 11th
cycle (Figure 5C). There is a major peak with the Rg value around
24.6 Å, a minor peak located between 27.5 and 30.0 Å, and two

FIGURE 3 | SAXS data analysis of UL11. (A) The experimental SAXS
profile of UL11 is shown with errors. (B) The pair distance distribution function
(PDDF) is normalized so that the sum under the curve is 1. (C) Kratky plot.

FIGURE 4 | Results of aMD using A99SB/OPC. (A) Time evolution of Rg.
(B) Rg distribution in the last 80 ns aMD simulations. (C) Ensemble-averaged
PDDF in the last 80 ns aMD simulations. The three independent simulations
are shown in different colors.
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more peaks with the Rg values larger than 30.0 Å that do not appear
in the 150 ns aMD simulations (Figure 4B). A representative
structure of each peak is shown in Figure 5D. One can clearly
see several states of UL11, which correspond to relatively compact,
intermediate, and extended conformations, respectively.

To test the reproducibility of the results, we also conducted the
integrative modeling starting from a relatively compact structure
of UL11 (inset in Figure 6A) taken from the 150 ns cMD
simulation using A99SB/OPC. χ2 and <Rg> of the ensemble
are plotted against the cycle number (Figure 6A). χ2 of the
ensemble at cycle 0 is 1.8, and only after seven cycles, it
converges to 0.9 (Figure 6A, circle). < Rg> of the ensemble at
cycle 0 is 23.6 Å, and it converges to 25.8 Å after 11th cycles
(Figure 6A, up-triangle). We plotted the calculated SAXS profile
of the ensemble at the 12th cycle and its error-weighted residual
(Figure 6B). The residual difference plot between the
experimental and the computed I(q) is flat, which indicates
that the results fit with the data. The normalized ensemble-
averaged PDDF is in agreement with the experimental curve
(Figure 3B). The Rg distribution of all the ensembles after the
12th cycle also indicates a major peak around 24.1 Å, a minor one
between 27.5 and 30.0 Å, and two more peaks with the Rg values
larger than 30.0 Å (Figure 6C). The representative structures of
the peaks (Figure 6D) correspond to states of UL11 from the
relatively compact, the intermediate, and to the extended
conformations. It has been found that the two independent
integrative models of UL11 starting from the different
structures show fairly consistent results.

It is worth noting that the total time scale of the integrative
modeling is only 144 ns, but it can achieve a more efficient sampling
and better convergence than the 150 ns aMD simulations (Figure 4).

In a previous work (Metrick et al., 2020), the authors ran RANCH,
an internal program of EOM2, to generate a coarse-grained structural
pool using a simple exclusion energy term. Then EOMwas applied to
the pool to pick an ensemble by fitting the SAXS data. The ensemble
also included states from compact to extended. Our results of
integrative modeling support their study. However, our ensembles
consist of atomic models generated by fine Amber force field and
explicit watermodel, which should be physicallymore reasonable than
those generated by RANCH.However,more experimental data would
be needed to further validate these models.

CONCLUSION

This work integrates an enhanced samplingmethod and experimental
SAXS data to study IDPs. In our strategy, we first need to choose a
combination of the force field and water model, such as A99SB/OPC,
that is suitable for simulating IDPs, and then an enhanced sampling
technique like aMD is taken. After that, integrative modeling is
conducted based on iterative multiple independent simulations.
Experimental data like SAXS are used to design a scoring function
for screening conformations and thus guide the simulations toward an
ensemble that fits the experimental data well. Therefore, we think this
strategy of integrative modeling is well suited for investigating
conformational ensembles of IDPs.

FIGURE 5 | Integrative modeling from an extended structure of UL11 (Figure 1). (A) The minimal χ2 (circle) and the corresponding <Rg> (up-triangle) at each cycle.
(B) The back-calculated SAXS profile of the selected ensemble (red line) is fitted to the experimental data (black line with errors). The lower plot shows the error-weighted
residual of the model fitting. The inset is the normalized ensemble-averaged PDDF. (C) The distribution of Rg values calculated from the ensembles after the 11th cycle.
(D) Representative structures according to the Rg distribution.
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We have carried out the integrative modeling of UL11, which is
important for efficient viral replication and tegument assembly. To
the best of our knowledge, the understanding of its biochemical
structure and mechanism is still limited, except for some coarse-
grained structural information (Metrick et al., 2020). In this work, we
have predicted an ensemble of atomic structures, which includes
both the relatively compact and extended conformations of UL11.
This ensemble is in agreement with the available experimental data
andmay provide information on the functionalmechanism ofUL11.
It has been said that UL11 undergoes LLPS in vitro (Metrick et al.,
2020). Our study on the monomer and the integrative modeling
strategy may be helpful for future research on LLPS.

There are various tools for integrative modeling (Bonomi et al.,
2017; Orioli et al., 2020), which use either the refining-while-sampling
or the screening-after-sampling strategy. A refining-while-sampling
method is efficient, but one needs to modify complicated simulation
code to add an energy term for experimental restraints. In a screening-
after-sampling method, although there is no need to change the
simulation code, the postprocessing reweighting procedure would
rely on adequately sampling conformations of the biomolecule,
which is, however, a nontrivial issue for IDPs. Our method can be
regarded as an iterative screening-after-sampling strategy, so we do not
change the MD code. However, the sampling is still efficient because it
is guided by the experimental data.

Our integrative modeling method has some other
characteristics. The first is that the iterative multiple
independent simulations are very suitable for parallel
computing. In this work, 24 independent simulations are run

simultaneously, but one can use more CPU/GPU if they are
available. The second is the high adaptability. Any sampling
methods and ensemble optimization methods can be easily
implemented with minor modifications to the scripts. Last but
not least, many experimental data may be integrated
simultaneously as long as a proper scoring function is designed.
One of the future improvements is to input multiple initial models
at the beginning of the integrative modeling in order to sample the
conformations of IDPs as adequately as possible.
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