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Acute Effects of Transforming Growth Factor-β1 
on Neuronal Excitability and Involvement in the 
Pain of Rats with Chronic Pancreatitis  

Xiaoyu Zhang,1 Hang Zheng,1 Hong-Yan Zhu,2 Shufen Hu,1 Shusheng Wang,2 Xinghong Jiang,1 and Guang-Yin Xu1,2*
1Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, 
Suzhou, China; and 2Center for Translational Medicine, the Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China

Background/Aims
This study was to investigate whether transforming growth factor-β1 (TGF-β1) plays a role in hyperalgesia in chronic pancreatitis (CP) 
and the underlying mechanisms. 

Methods
CP was induced in male adult rats by intraductal injection of trinitrobenzene sulfonic acid (TNBS). Abdominal hyperalgesia was 
assessed by referred somatic behaviors to mechanical stimulation of rat abdomen. Dil dye injected into the pancreas was used to label 
pancreas-specific dorsal root ganglion (DRG) neurons. Whole cell patch clamp recordings and calcium imaging were performed to 
examine the effect of TGF-β1 on acutely isolated pancreas-specific DRG neurons. Western blot analysis was carried out to measure the 
expression of TGF-β1 and its receptors.

Results
TNBS injection significantly upregulated expression of TGF-β1 in the pancreas and DRGs, and TGF-β1 receptors in DRGs (T9-T13) 
in CP rats. Intrathecal injection of TGF-β receptor I antagonist SB431542 attenuated abdominal hyperalgesia in CP rats. TGF-β1 
application depolarized the membrane potential and caused firing activity of DRG neurons. TGF-β1 application also reduced rheobase, 
hyperpolarized action potential threshold, and increased numbers of action potentials evoked by current injection of pancreas-specific 
DRG neurons. TGF-β1 application also increased the concentration of intracellular calcium of DRG neurons, which was inhibited by 
SB431542. Furthermore, intrathecal injection of TGF-β1 produced abdominal hyperalgesia in healthy rats. 

Conclusions
These results suggest that TGF-β1 enhances neuronal excitability and increases the concentration of intracellular calcium. TGF-β1 
and its receptors are involved in abdominal hyperalgesia in CP. This and future study might identify a potentially novel target for the 
treatment of abdominal pain in CP.
(J Neurogastroenterol Motil 2016;22:333-343)
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Introduction  

Chronic pancreatitis (CP) is a common disease characterized 
by persistent inflammation, parenchymal fibrosis, and destruction of 
the glandular pancreas.1 The most clinically relevant feature of CP 
is recurrent upper abdominal pain, which is not only intense and 
persistent but also difficult to treat.1 The pathobiological mecha-
nisms of pain in CP are incompletely understood, which makes 
obstacles in developing novel effective therapeutic approaches. 
Although central sensitization inevitably follows, sensitization of pe-
ripheral nociceptors is the critical and initiating event in pain caused 
by local inflammation.2 Previous studies demonstrated the sensitiza-
tion of pancreas-specific dorsal root ganglion (DRG) neurons and 
its involvement in abdominal pain in CP.3,4 However, the detailed 
mechanisms of peripheral sensitization in CP remain largely un-
known.

Under pathological conditions, a variety of small molecules, 
cytokines and enzymes can induce sensitization of sensory neu-
rons, resulting in persistent pain.5-7 Transforming growth factor-β1 
(TGF-β1) is also prominently expressed in such conditions and 
plays a central role in wound healing and promoting fibrosis in 
various diseases, including CP.8-10 However, the role of TGF-β1 in 
pain processing is controversial. Evidence suggests that TGF-β1 
has protective effects against neuropathic pain in the central nervous 
system,11,12 while in peripheral nervous system, TGF-β1 is recently 
reported as an algogenic substance that contributes to peripheral 
sensitization by downregulation of the KCNA4 gene,13 or activation 
of cyclin-dependent kinase-transient receptor potential vanilloid 
type 1 (Cdk5-TRPV1) signaling14,15 and transforming growth fac-
tor β activated kinase 1 (TAK1)/protein kinase C (PKC)-TRPV1 
signaling.16 As mentioned in those studies,13-16 TGF-β1 is a com-
plex modulator of sensory neuronal function, and its signaling 
pathway in the induction and development of pancreatic pain in rats 
with chronic pancreatitis was not fully understood. Therefore, the 
roles of TGF-β1 and its receptors were re-explored in the setting of 
chronic pancreatitis.

In the present study, we show that TGF-β1 promptly excites 
primary sensory neurons and increases the concentration of intracel-
lular calcium, both of which have not been reported before. Since 
TGF-β1 is known to be upregulated in the pancreas in rodents as 
well as humans with CP,17,18 we investigated the role of TGF-β1 
in the development of abdominal pain. We show that TGF-β1 in 
vivo promptly induces mechanical hyperalgesia of the abdomen. 
TGF-β1 and its receptors are up-regulated in pancreatic DRGs 

in CP rats. Blockade of this signaling attenuates mechanical hy-
peralgesia. Our results provide a novel mechanism underlying the 
involvement of TGF-β1 in abdominal pain hypersensitivity.

Materials and Methods  

Animals
Adult male Sprague-Dawley rats (200-220 g) were employed 

in the present study. Care and handling of rats were approved by 
the Institutional Animal Care and Use Committee of Soochow 
University. All experiments were performed in accordance with the 
guidelines of the International Association for the Study of Pain. 
Abdominal surgery was carried out under anesthesia of ketamine 
(80 mg/kg, intraperitoneal [i.p.]) plus xylazine (5-10 mg/kg, i.p.). 
Following tissue harvest, rats were sacrificed by decapitation.

Induction of Chronic Pancreatitis in Rats
Chronic pancreatitis (CP) was induced by an intraductal 

injection of trinitrobenzene sulfonic acid (TNBS), as described 
previously.3,4 Control rats received normal saline (NS). Further 
intervention and experiments in vivo or in vitro are performed at 
3 weeks after TNBS treatment when a robust chronic pancreatitis 
had developed.

Western Blotting
Proteins were extracted from T9-T13 DRGs from control and 

CP rats as described previously.19,20 Protein extracts from DRGs 
or pancreas were loaded onto a 15% Tris-HCl SDS-PAGE gel 
(Bio-Rad, Hercules, CA, USA). After electrophoresis, proteins 
were electrotransferred onto 0.22 μm polyvinyldifluoride mem-
brane (Millipore, Billerica, MA, USA) at 200 mA for 2 hours 
at 4°C. Primary antibodies used in the present study were mouse 
anti-TGF-β1 (1:2000; Abcam ab27969, Cambridge, UK), rabbit 
anti-TGF-βR I (1:200; Abcam ab31013), rabbit anti-TGF-βR II 
(1:1000; Abcam ab186838), and rabbit anti-GAPDH or mouse 
anti-β-actin (1:1000; MultiSciences Biotech Co, Hangzhou, 
China). Mouse anti-TGF-β1 can recognize both TGF-β1 and 
latent TGF-β1 complex. The same loading control, GAPDH, 
was used for analysis of both TGF-β1 and latent TGF-β1 com-
plex (Fig. 1E and 1F). Secondary antibodies were horseradish 
peroxidase-conjugated goat anti-mouse or rabbit antibody (1:4000; 
MultiSciences Biotech Co). The immunoreactive proteins were 
detected by enhanced chemiluminescence (ECL kit; Amersham 
Biosciences, Arlington Heights, IL, USA). The membranes were 
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scanned and bands were visualized by Bio-Rad ChemiDoc XRS+. 
Band intensities were measured by Image J software. All samples 
were normalized to GAPDH or β-actin as a loading control.

Von Frey Filament Measurements
Von Frey filament (VFF) testing was performed as described 

previously.4,20 The filament at the force of 10 g (North Coast Medi-
al Inc, San Jose, CA, USA) was applied to the designated abdomi-
nal area 10 times each for 1-2 seconds, with a 10-second interval 
between applications. A response was considered positive when the 
rat raised its belly. All behavioral tests were performed in a blinded 
manner. Behavioral data were expressed as the number of positive 
responses per 10 times stimulation for each rat.

Drug Application
TGF-β1 (PeproTech, Rocky Hill, NJ, USA) was dissolved in 

phosphate buffered saline (contain 0.1% bovine serum albumin) as 
stock solution, and freshly prepared diluted in normal external solu-
tion or 0.9% NS. TGF-β receptor I antagonist, SB431542 (Sigma-
Aldrich, St. Louis, MO, USA) was dissolved in dimethyl sulfoxide 
(DMSO) as stock solution, and freshly prepared in normal external 
solution or 0.9% NS. TRPV1 antagonist, capsazepine (CZP; 
Sigma-Aldrich) was dissolved in methanol as stock solution, and 
freshly prepared diluted in normal external solution.
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Figure 1. Trinitrobenzene sulfonic acid (TNBS) injection up-regulates expression of transforming growth factor-β1 (TGF-β1) and TGF-β recep-
tors. (A, B) TNBS injection significantly enhanced the expression of TGF-β1 and latent TGF-β1 complex in the pancreas of rats (*P < 0.05, n 
= 4 per group, two-sample t test). (C-F) TNBS injection significantly enhanced the expression of TGF-β receptor I and II, TGF-β1, and latent 
TGF-β1 complex in the pancreatic dorsal root ganglions (DRGs) of rats (*P < 0.05, n = 4 per group, two-sample t test). CON, control.



336

Xiaoyu Zhang, et al

Journal of Neurogastroenterology and Motility 

Evaluation of Motor Performance
The effects of SB431542 and TGF-β1 on motor performance 

of rats were determined by the Rota-rod test as described previ-
ously.21 The length of time for rats to stay on the revolving bar (20 
rpm) was recorded and analyzed.

Labeling of Pancreas-specific Dorsal Root Ganglia 
Neurons 

For experiments involving calcium imaging and patch clamp 
recordings, the lipid-soluble fluorescence dye, 1,19-dioleyl-3, 3, 39, 
3-tetramethy-lindocarbocyanine methanesulfonate (DiI; Invitrogen, 
Carlsbad, CA, USA), 25 mg in 0.5 mL methanol, was injected 
in 1 μL volume at 8-10 sites on the exposed pancreas under anes-
thesia, as described previously.3,4 Three weeks after Dil injection, 
DRGs (T9-T13) were dissected out for patch clamp recordings 
and calcium imaging study.

Dissociation of Dorsal Root Ganglion Neurons
Isolation of DRG neurons from adult rats was performed as 

described previously.3,4,22 In brief, bilateral T9-T13 DRGs were dis-
sected out and incubated in dissecting solution containing collage-
nase D (1.5-1.8 mg/mL; Roche, Indianapolis, IN, USA) and tryp-
sin (1.2 mg/mL; Sigma-Aldrich) for 90 minutes at 34.5°C. DRGs 
were then washed and transferred to the dissecting solution contain-
ing DNase (0.5 mg/mL; Sigma-Aldrich). A single cell suspension 
was obtained by repeated trituration through flame-polished glass 
pipettes. Cells were then plated onto acid-cleaned glass coverslips 
for patch-clamp recordings and calcium measurements.

Patch-clamp Recordings
As described previously,3,21 coverslips containing adherent 

DRG neurons were put in a chamber (~1 mL volume), attached 
to the stage of an inverting microscope (IX70 Olympus, Tokyo, 
Japan), and continuously superfused (1.5 mL/min) at room tem-
perature with normal external solution.3 Recording pipettes were 
pulled from the borosilicate glass tubing using a horizontal puller 
(P-97; Sutter Instruments, Novato, CA, USA) and typically had 
a resistance of 5-8 MΩ when filled with normal pipette solution.3 
Recordings were performed with an EPC10 amplifier and the pro-
gram Patchmaster (HEKA Elektronik, Lambrecht, Germany).

Intracellular Calcium Measurements
Fura-2 Ca2+ imaging was performed as described previously.20 

Recordings were performed by the program MetaFlour (Molecular 

Device, Sunnyvale, CA, USA). The ratio of fluorescence signal 
measured at 340 nm, divided by the fluorescence signal measured at 
380 nm, was used as an indicator for intracellular calcium mobiliza-
tion. The percentage of changes in ratio was calculated to measure 
the drug-induced calcium mobilization.

Statistical Methods
All data in the present study were expressed as mean ± SEM 

or as a percentage. Statistical analyses were conducted using Orig-
inPro 8 (OriginLab, Northampton, MA, USA). Normality of all 
data was checked before analyses. Significance of difference was 
determined by two-sample or paired sample t test, one-way repeated 
measures ANOVA followed by Tukey post hoc test, or two-way 
ANOVA followed by Tukey post hoc test. A P-value < 0.05 was 
considered statistically significant.

Results  

TNBS Injection Up-regulates Expression of Trans-
forming Growth Factor-β1 and Transforming 
Growth Factor-β Receptors

Three weeks after TNBS injection, the expression of TGF-β1 
and latent TGF-β1 complex (TGF-β1 precursor) in pancreas of 
rats were significantly increased (*P < 0.05 versus control; n = 
4 per group; Fig. 1A and 1B), consistent with clinical features of 
patients with CP described previously.17 We further examined the 
expression of TGF-β1 and its receptors in pancreatic DRGs (T9-
T13) from control and TNBS-treated rats. The expression of 
TGF-β1, latent TGF-β1 complex, and TGF-β receptor I and II 
in pancreatic DRGs were significantly increased (*P < 0.05 versus 
control; n = 4 per group; Fig. 1C-F). These data suggest that 
TNBS injection leads to up-regulation of TGF-β1 and its receptors 
in peripheral nervous system, which implicates the possible activa-
tion of TGF-β1/TGF-β receptors signaling in pancreatic DRGs of 
CP rats.

Transforming Growth Factor-β Receptor I Antagonist 
Attenuates Mechanical Hyperalgesia

Single intrathecal injection (i.t.) of SB431542, a specific and 
potent TGF-β receptor I antagonist, significantly reduced the 
response frequency to stimulation force of 10 g compared with 
the NS group in a dose-dependent manner (**P < 0.01, ***P < 
0.001 versus NS; n = 7 per group; Fig. 2A). The optimized dose 
of the maximal inhibition effect was 100 μg/kg body weight (P 
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> 0.05, 300 μg/kg versus 100 μg/kg), which lasted for 2 hours. 
Thus, we used this dose in age-matched healthy rats to determine 
the drug specificity. SB431542 at a dose of 100 μg/kg had no sig-
nificant effect on response frequency in healthy rats, indicating that 
SB431542 is not a nonspecific analgesic (compared with Pre [before 
administration], n = 7; Fig. 2B) and exerts its effect on behavior 
only in CP rats. Furthermore, SB431542 at 100 μg/kg was admin-
istered intrathecally once daily for 7 consecutive days in CP rats. 
As expected, multiple injections of SB431542 produced a dramatic 
antinocifensive effect in CP rats, lasting for at least 24 hours (**P 
< 0.01, ***P < 0.001 versus Pre; n = 7; Fig. 2C). To exclude 

the possible effect of SB431542 on motor performance, the Rota-
rod test was performed. Neither single nor multiple injections of 
SB431542 at 100 μg/kg altered the time for rats to stay on the rota-
tion bar compared with Pre (n = 8; Fig. 2D). These data suggest 
that TGF-β1/TGF-β receptor signaling is involved in mechanical 
hyperalgesia of abdomen in CP.

Transforming Growth Factor-β1 Produces Mechani-
cal Hyperalgesia

To determine whether TGF-β1 produces hyperalgesia, 
TGF-β1 was injected intrathecally in healthy rats. Administration 
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Figure 2. Transforming growth factor-β (TGF-β) receptor I antagonist SB431542 attenuates mechanical hyperalgesia. (A) Intrathecal injection 
(i.t.) of SB431542 significantly reduced response frequency of chronic pancreatitis (CP) rats to von Frey filament (VFF) stimuli (10 g) (**P < 0.01, 
***P < 0.001 versus normal saline [NS]; n = 7 per group). (B) SB431542 at 100 μg/kg (i.t.) had no significant effect on response frequency of 
control rats (n = 7). (C) Daily intrathecal injection of SB431542 at 100 μg/kg for 7 days significantly reduced the response frequency of CP rats, 
which last for 24 hours (**P < 0.01, ***P < 0.001 versus Pre [before administration]; n = 7). (D) SB431542 at 100 μg/kg (i.t.) did not produce 
any effect on time for the CP rats to stay on the rotation bar (n = 8). Paired sample t test (B-D), two-way ANOVA followed by Tukey post hoc test 
(A). 
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of TGF-β1 produced an increase in response frequency to stimula-
tion force of 10 g compared with NS controls in a dose-dependent 
manner (*P < 0.05, ***P < 0.001 versus NS; n = 7 per group; 
Fig. 3A). The maximal hyperalgesic effect was observed at a dose of 
10 ng per rat. The effect produced by 1 and 3 ng per rat TGF-β1 
lasted for 0.5 and 1 hours, respectively (Fig. 3A). Interestingly, the 
effect produced by 10 ng per rat TGF-β1 last for at least 48 hours. 
However, Rota-rod test shows TGF-β1 at 10 ng per rat did not 
alter the time for rats to stay on the rotation bar compared with Pre (n 
= 8; Fig. 3B).

Transforming Growth Factor-β1 Induces Depolarization 
or Firing Activity of Dorsal Root Ganglion Neurons

In order to investigate the potential role of TGF-β1 in the ac-
tivation of peripheral nociceptors, electrophysiological recordings 
were performed on small and medium-size DRG neurons that are 
likely to mediate nociception and pain.23,24 In our study, Dil-labeled 
pancreas-specific DRG neurons were recorded (Fig. 4A). Under 
whole-cell current clamp recordings, bath application of 10 ng/
mL TGF-β1 depolarized the resting membrane potential (RP) in 
a portion of DRG neurons (34 out of 55 neurons recorded; Fig. 
4B and 4C). The RP returned to the baseline within 1 minute after 
washout. Sixteen of these 34 neurons exhibited action potentials 
(APs) after TGF-β1 application (16 out of 55 neurons recorded; 
Fig. 4B and 4C). For the remaining 18 activated neurons without 
firings, the average amplitude of depolarization was 5.9 ± 1.2 mV 
(Fig. 4D). The other 21 neurons showed no response to TGF-β1 
application (Fig. 4B and 4C).

Transforming Growth Factor-β1 Enhances Excitability 
of Dorsal Root Ganglion Neurons

As the above results suggest that TGF-β1 depolarized the 
RP in a portion of DRG neurons, we then examined the effect of 
TGF-β1 (10 ng/mL, bath application for 3 minutes) on provoked 
excitability of DRG neurons. Rheobase, the minimal stimulation 
current to evoke APs, was significantly decreased after TGF-β1 ap-
plication (Pre: 103.2 ± 15.8 pA, Post: 87.4 ± 14.1 pA; *P < 0.05; 
n = 19; Fig. 5A). The AP threshold, the minimal voltage at which 
the AP was generated, was markedly decreased after TGF-β1 
application (Pre: –29.7 ± 0.9 mV, Post: –33.3 ± 0.9 mV; **P < 
0.01; n = 19; Fig. 5B). In addition, application of TGF-β1 also 
increased the number of APs evoked by 300-milliseconds 2 times 
(2×) and 3 times (3×) rheobase current stimulation (2×, Pre: 4.84 
± 0.24, Post: 5.79 ± 0.44, *P < 0.05, n = 19; 3×, Pre: 8.00 ± 
0.31, Post: 9.26 ± 0.58, **P < 0.01, n = 19; Fig. 5C and 5D). 
Furthermore, application of TGF-β1 significantly increased the 
number of APs evoked by 1-second ramp current stimulation from 
0 to 200 pA or 500 pA (200 pA ramp, Pre: 2.84 ± 0.61, Post: 4.26 
± 0.76, **P < 0.01, n = 19; 500 pA ramp, Pre: 6.32 ± 0.85, 
Post: 7.89 ± 0.96, **P < 0.01, n = 19; Fig. 5E and 5F). These 
results suggest that TGF-β1 treatment promptly enhances the ex-
citability of pancreas-specific DRG neurons.

Transforming Growth Factor-β1 Increases Intracellular 
Calcium Ion Concentration via Transforming Growth 
Factor-β Receptor I in Dorsal Root Ganglion Neurons

We then studied the acute effect of TGF-β1 on intracellular 
calcium mobilization of DRG neurons. Bath application of 10 ng/
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mL TGF-β1 for 1 minute caused significant intracellular calcium 
ion concentration ([Ca2+]i) increase in a portion of DRG neurons 
(32 of 114 neurons recorded; Fig. 6A). The average magnitude of 
TGF-β1-induced [Ca2+]i increase was 36.4 ± 6.0% (n = 32; Fig. 
6A). The [Ca2+]i returned to baseline within 1 minute after wash-
out in most neurons tested. When TGF-β1 was applied twice at an 
interval of 10 minutes, the magnitude of the second [Ca2+]i increase 
was 33.7 ± 7.0%, which was not significantly different from that of 
the first amplitude (n = 32; Fig. 6A), suggesting that no desensiti-

zation occurs during repetitive application of TGF-β1.
To examine whether TGF-β receptor I was involved in the 

TGF-β1-evoked [Ca2+]i increase, DRG neurons were pretreated 
with SB431542 (10 μM, 3 minutes). In the presence of SB431542, 
the [Ca2+]i increase evoked by TGF-β1 was significantly less than 
that in the control medium (***P < 0.001 versus Pre, n = 43; Fig. 
6B). The inhibitory effect of SB431542 on the [Ca2+]i increase 
was partly reversed after 10 minute washings (*P < 0.05 versus 
SB431542, n = 43; Fig. 6B). Since previous reports revealed that 
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Figure 4. Transforming growth factor-β1 (TGF-β1) induces depolarization and firing activity of dorsal root ganglion (DRG) neurons. (A) DiI-
fluorescence (left) and bright-field (right) images of acutely isolated DRG neurons. Pancreas-specific neurons are shown in red in DiI-fluorescence 
image. Bar = 25 μm. (B) The typical current-clamp recordings of DRG neurons showing firings, depolarization or no response after application 
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TGF-β1 sensitizes TRPV1 in DRG neurons14,16,25 we next exam-
ined whether TRPV1 was involved in the TGF-β1-induced [Ca2+]

i increase. Pretreatment with TRPV1 antagonist CZP (10 μM, 3 
minutes) did not alter the magnitude of TGF-β1-evoked [Ca2+]i 
increase (Fig. 6C, n = 28), suggesting that TGF-β1-evoked [Ca2+]i 
increase is not mediated by TRPV1.

Discussion  

The present study demonstrated that TGF-β1 and its recep-
tors are involved in the mechanical hyperalgesia of abdomen in rats 
with chronic pancreatitis (CP). It is well known that TGF-β1 is up-
regulated in the pancreas of rodents as well as patients with CP17,18, 

and plays a dominant role in the development of CP by contribut-
ing to local inflammation and promoting pancreatic fibrosis.10,18,26 
In addition to upregulation of TGF-β1 expression in the pancreas 
of TNBS-treated rats, we furthermore showed that TGF-β1 and 
it receptors were also up-regulated in pancreatic DRGs of CP rats, 
which implicated that TGF-β1/TGF-β receptor signaling might be 
also activated in the peripheral nervous system in CP rats. A recent 
report shows that administration of TGF-β1 neutralizing antibody 
significantly attenuated the pancreatic hyperalgesia in rats with CP.13 
In the present study, administration of SB431542, a potent and 
selective TGF-β receptor I antagonist,27 significantly attenuated 
mechanical hyperalgesia of abdomen in CP rats. Together, these 
data suggest a role for TGF-β1 and its receptors in the develop-
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ment of abdominal hyperalgesia in rats with CP. Of particular note 
is that SB431542 did not affect nociceptive behaviors in control rats 
in our study, while in the previous report,13 TGF-β1 neutralization 
in control rats resulted in pancreatic hyperalgesia. This discrepancy 
may be due to differences in the administration methods (intrathecal 
vs intraperitoneal) and in the focus on action time of the drugs (0.5-
8 hours after injection vs 1 week after injection), or more probably 
due to the fact that we used the TGF-β receptor I antagonist which 
blocks the TGF-β signaling including TGF-β1, TGF-β2 and 
TGF-β3,27-29 while TGF-β1 neutralizing antibody does not block 
the other 2 isoforms (TGF-β2 and TGF-β3) that can also bind to 
TGF-β receptors and further activate the downstream signaling. 

Another important finding is that TGF-β1 plays an acute effect 
on neuronal excitability. To the best of our knowledge, this is the first 
report that shows the acute effect of TGF-β1 on neuron excitability. 
This is supported by the following observations. First, TGF-β1 
application depolarized the membrane potential and caused firing 
activity of pancreas-specific DRG neurons. Second, TGF-β1 ap-
plication also reduced the rheobase, hyperpolarized action potential 
threshold, and increased the number of action potentials evoked by 
current injection of pancreas-specific DRG neurons. In a previous 

report13 TGF-β1 sensitization of DRG neurons in vitro, occurring 
after incubation of TGF-β1 for 24 hours but not earlier (1 hour), 
was attributed to downregulation of the Kv1.4 gene and decreased 
voltage-gated A-type K+ currents (IA), while TGF-β1 sensitization 
in our study, occurring after application of TGF-β1 for 3 minutes, 
was accompanied by decreased AP duration (data not shown), 
suggesting that the acute sensitized effect of TGF-β1 was due to 
some factors other than Kv1.4. Although these factors remain to be 
further investigated, one possibility is that 2-pore domain potassium 
channels are the effectors in this pathway because inhibition of their 
activity leads to membrane depolarization30 similar to that observed 
in our study. This pathway mediates an immediate but mild depo-
larization that is not enough to trigger discharges. 

In addition to enhancing the neuronal excitability, TGF-β1 
quickly increased [Ca2+]i in pancreas-specific DRG neurons. Pre-
treatment of SB431542 largely inhibited or even completely blocked 
TGF-β1-induced [Ca2+]i increase, indicating the involvement of 
TGF-β receptor I. Since TGF-β receptors (I and II) are serine-
threonine kinase receptors that cannot act as ion channels,31 down-
stream signaling and effectors are definitely necessary for TGF-
β1-induced [Ca2+]i increase. Recent studies indicate that TGF-β1 
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signaling sensitizes TRPV1 in primary sensory neurons.14-16 How-
ever, our result suggests that TGF-β1-induced [Ca2+]i increase 
was independent of TRPV1. Of special note is that the proportion 
(16 of 55 neurons) of neurons displaying TGF-β1-induced firing 
is very similar to the proportion (32 of 114 neurons) of neurons 
showing [Ca2+]i increase to TGF-β1, suggesting that TGF-β1-
induced [Ca2+]i increase might be due to the extracellular calcium 
influx through voltage-gated calcium channels (VGCCs). Never-
theless, our preliminary experiments show that neither pretreatment 
of CdCl2 (a none selective VGCC antagonist) nor removal of the 
extracellular calcium inhibited TGF-β1-induced [Ca2+]i increase 
(data not shown), suggesting that calcium release from intracel-
lular calcium pools might be a main source of TGF-β1-induced 
[Ca2+]i increase. Thus, another possibility mediating the acute ef-
fects of TGF-β1 is that calcium released from intracellular calcium 
pools as a second message opens one or more non-selective cation 
channels in direct or indirect ways, thus resulting in robust depolar-
ization and discharges. 

Although the detailed mechanisms have yet to be investigated, 
administration of TGF-β1 induced mechanical hyperalgesia dose- 
and time- dependently in healthy rats, confirming the involvement 
of acute effects of TGF-β1 in pancreatic nociception. Surprisingly, 
a single administration of TGF-β1 at a high dose produced a per-
sistent algogenic effect lasting for at least 48 hours. It is possible that 
excessive TGF-β1 may trigger some chronic effects. Our study 
does not exclude the importance of chronic effects of TGF-β1 in 
peripheral sensitization. Acute effects may be an initiating event 
and accumulation of acute effects probably contributes to the oc-
currence and development of chronic effects, and in return, the 
chronic effects may amplify acute effects. Although the detailed 
mechanisms by which the acute effects of TGF-β1 leads to chronic 
pain are unknown, we propose that the acute effects of TGF-β1 
might contribute to chronic pain in at least 2 ways. Firstly, TGF-β1 
causes discharges and increases the intracellular calcium in DRG 
neurons. As a second message, Calcium ions may trigger many 
cascade signal responses and further influences gene transcrip-
tion or phosphorylation of kinases and receptors. In the present 
study, this acute effect may lead to the upregulation of TGF-β1/
TGF-β receptors in DRGs of the CP model. Secondly, since the 
expression of TGF-β1/TGF-β is increased, we hypothesize that 
the acute excitatory effects of TGF-β1 may be amplified and thus 
cause more discharges and more calcium increase in DRG neurons 
of the CP model. It is possible that the acute effects of TGF-β1 at 
normal level is not enough to trigger mechanical hyperalgesia in 
vivo, whereas the acute effects of TGF-β1 under pathophysiologi-

cal conditions may cause mechanical hyperalgesia and contribute 
to chronic pain in CP model. This hypothesis is supported by our 
results that SB431542 attenuates mechanical hyperalgesia in CP 
rats but has no effect on responses in healthy rats. Further studies 
are needed to test the detailed signaling pathways of TGF-β1 effect 
in the animal model of chronic pancreatitis. The origin of TGF-β1 
might be from mononuclear cells located in the fibrotic areas and 
ducts damaged by fibrosis in the pancreas of CP patients.17

In summary, our study demonstrated for the first time that 
TGF-β1 plays an acute effect on neuronal excitability, which might 
contribute to the mechanical hyperalgesia of abdomen in rats with 
chronic pancreatitis.
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